Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Prediction of lithium treatment response in bipolar depression using 5-HTT and 5-HT1A PET

Abstract

Background

Lithium, one of the few effective treatments for bipolar depression (BPD), has been hypothesized to work by enhancing serotonergic transmission. Despite preclinical evidence, it is unknown whether lithium acts via the serotonergic system. Here we examined the potential of serotonin transporter (5-HTT) or serotonin 1A receptor (5-HT1A) pre-treatment binding to predict lithium treatment response and remission. We hypothesized that lower pre-treatment 5-HTT and higher pre-treatment 5-HT1A binding would predict better clinical response. Additional analyses investigated group differences between BPD and healthy controls and the relationship between change in binding pre- to post-treatment and clinical response. Twenty-seven medication-free patients with BPD currently in a depressive episode received positron emission tomography (PET) scans using 5-HTT tracer [11C]DASB, a subset also received a PET scan using 5-HT1A tracer [11C]-CUMI-101 before and after 8 weeks of lithium monotherapy. Metabolite-corrected arterial input functions were used to estimate binding potential, proportional to receptor availability. Fourteen patients with BPD with both [11C]DASB and [11C]-CUMI-101 pre-treatment scans and 8 weeks of post-treatment clinical scores were included in the prediction analysis examining the potential of either pre-treatment 5-HTT or 5-HT1A or the combination of both to predict post-treatment clinical scores.

Results

We found lower pre-treatment 5-HTT binding (p = 0.003) and lower 5-HT1A binding (p = 0.035) were both significantly associated with improved clinical response. Pre-treatment 5-HTT predicted remission with 71% accuracy (77% specificity, 60% sensitivity), while 5-HT1A binding was able to predict remission with 85% accuracy (87% sensitivity, 80% specificity). The combined prediction analysis using both 5-HTT and 5-HT1A was able to predict remission with 84.6% accuracy (87.5% specificity, 60% sensitivity). Additional analyses BPD and controls pre- or post-treatment, and the change in binding were not significant and unrelated to treatment response (p > 0.05).

Conclusions

Our findings suggest that while lithium may not act directly via 5-HTT or 5-HT1A to ameliorate depressive symptoms, pre-treatment binding may be a potential biomarker for successful treatment of BPD with lithium.

Clinical trial registration

PET and MRI Brain Imaging of Bipolar Disorder Identifier: NCT01880957; URL: https://clinicaltrials.gov/ct2/show/NCT01880957

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

BPD:

bipolar depression

PET:

positron emission tomography

MRI:

magnetic resonance imaging

5-HTT:

serotonin transporter

5-HT1A :

serotonin-1A receptor

HV:

healthy volunteer

SSRI:

selective serotonin reuptake inhibitor

CUMC:

Columbia University Medical Center

BNL:

Brookhaven National Laboratory

Yale:

Yale University Medical Center

SBU:

Stony Brook University

DSM-IV:

Diagnostic and Statistical Manual of Mental Disorders – version IV

HDRS-24:

Hamilton Depression Rating Scale – 24 Item

LEGA:

likelihood estimation in graphical analysis

V T :

distribution volume

f P :

free fraction in plasma

BPF :

binding potential

SCID:

Structured Clinical Interview for DSM-IV

References

  1. 1.

    Fountoulakis KN, Vieta E, Sanchez-Moreno J, Kaprinis SG, Goikolea JM, Kaprinis GS. Treatment guidelines for bipolar disorder: a critical review. J Affect Disord. 2005;86(1):1–10.

  2. 2.

    Geddes JR, Burgess S, Hawton K, Jamison K, Goodwin GM. Long-term lithium therapy for bipolar disorder: systematic review and meta-analysis of randomized controlled trials. Am J Psychiatry. 2004;161(2):217–22.

  3. 3.

    Hou L, Heilbronner U, Degenhardt F, Adli M, Akiyama K, Akula N, et al. Genetic variants associated with response to lithium treatment in bipolar disorder: a genome-wide association study. Lancet (London, England). 2016;387(10023):1085–93.

  4. 4.

    Benard V, Vaiva G, Masson M, Geoffroy PA. Lithium and suicide prevention in bipolar disorder. L'Encephale. 2016;42(3):234–41.

  5. 5.

    Song J, Sjölander A, Joas E, Bergen SE, Runeson B, Larsson H, et al. Suicidal behavior during lithium and valproate treatment: a within-individual 8-year prospective study of 50,000 Patients With Bipolar Disorder. Am J Psychiatr. 2017;174(8):795–802.

  6. 6.

    Carli M, Afkhami-Dastjerdian S, Reader TA. Effects of a chronic lithium treatment on cortical serotonin uptake sites and 5-HT1A receptors. Neurochem Res. 1997;22(4):427–35.

  7. 7.

    Carli M, Reader TA. Regulation of central serotonin transporters by chronic lithium: an autoradiographic study. Synapse (New York, NY). 1997;27(1):83–9.

  8. 8.

    Ho AKS, Loh HH, Craves F, Hitzemann RJ, Gershon S. The effect of prolonged lithium treatment on the synthesis rate and turnover of monoamines in brain regions of rats. Eur J Pharmacol. 1970;10(1):72–8.

  9. 9.

    Treiser S, Kellar KJ. Lithium: effects on serotonin receptors in rat brain. Eur J Pharmacol. 1980;64(2–3):183–5.

  10. 10.

    Pei Q, Leslie RA, Grahame-Smith DG, Zetterstrom TS. 5-HT efflux from rat hippocampus in vivo produced by 4-aminopyridine is increased by chronic lithium administration. Neuroreport. 1995;6(5):716–20.

  11. 11.

    Miller JM, Hesselgrave N, Ogden RT, Sullivan GM, Oquendo MA, Mann JJ, et al. PET quantification of serotonin transporter in suicide attempters with major depressive disorder. Biol Psychiatry. 2013;74(4):287–95.

  12. 12.

    Oquendo MA, Hastings RS, Huang YY, Simpson N, Ogden RT, Hu XZ, et al. Brain serotonin transporter binding in depressed patients with bipolar disorder using positron emission tomography. Arch Gen Psychiatry. 2007;64(2):201–8.

  13. 13.

    Collier DA, Stober G, Li T, Heils A, Catalano M, Di Bella D, et al. A novel functional polymorphism within the promoter of the serotonin transporter gene: possible role in susceptibility to affective disorders. Mol Psychiatry. 1996;1(6):453–60.

  14. 14.

    Serretti A, Malitas PN, Mandelli L, Lorenzi C, Ploia C, Alevizos B, et al. Further evidence for a possible association between serotonin transporter gene and lithium prophylaxis in mood disorders. Pharmacogenom J. 2004;4(4):267–73.

  15. 15.

    Garcia-Garcia AL, Newman-Tancredi A, Leonardo ED. 5-HT(1A) [corrected] receptors in mood and anxiety: recent insights into autoreceptor versus heteroreceptor function. Psychopharmacology. 2014;231(4):623–36.

  16. 16.

    Mizuta T, Segawa T. Chronic effects of imipramine and lithium on postsynaptic 5-HT1A and 5-HT1B sites and on presynaptic 5-HT3 sites in rat brain. Jpn J Pharmacol. 1988;47(2):107–13.

  17. 17.

    McQuade R, Leitch MM, Gartside SE, Young AH. Effect of chronic lithium treatment on glucocorticoid and 5-HT1A receptor messenger RNA in hippocampal and dorsal raphe nucleus regions of the rat brain. J Psychopharmacol. 2004;18(4):496–501.

  18. 18.

    Lan MJ, Hesselgrave N, Ciarleglio A, Ogden RT, Sullivan GM, Mann JJ, et al. Higher pre-treatment 5-HT(1A) receptor binding potential in bipolar disorder depression is associated with treatment remission: a naturalistic treatment pilot PET study. Synapse (New York, NY). 2013;67(11). https://doi.org/10.1002/syn.21684.

  19. 19.

    Ananth MR, DeLorenzo C, Yang J, Mann JJ, Parsey RV. Decreased pretreatment amygdalae serotonin transporter binding in unipolar depression remitters: a prospective PET study. J Nucl Med. 2018;59(4):665–70.

  20. 20.

    Lobbestael J, Leurgans M, Arntz A. Inter-rater reliability of the Structured Clinical Interview for DSM-IV Axis I disorders (SCID I) and Axis II disorders (SCID II). Clin Psychol Psychother. 2011;18(1):75–9.

  21. 21.

    Roberts CA, Jones A, Montgomery C. Meta-analysis of molecular imaging of serotonin transporters in ecstasy/polydrug users. Neurosci Biobehav Rev. 2016;63:158–67.

  22. 22.

    Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatry. 1960;23:56–62.

  23. 23.

    Bartlett EA, Ananth M, Rossano S, Zhang M, Yang J, Lin S, et al. Quantification of positron emission tomography data using simultaneous estimation of the input function: validation with venous blood and sample size considerations. Mol Imaging Biol. 2018; In Revision.

  24. 24.

    Ogden RT, Ojha A, Erlandsson K, Oquendo MA, Mann JJ, Parsey RV. In vivo quantification of serotonin transporters using [(11)C]DASB and positron emission tomography in humans: modeling considerations. J Cereb Blood Flow Metab. 2007;27(1):205–17.

  25. 25.

    Milak MS, DeLorenzo C, Zanderigo F, Prabhakaran J, Kumar JS, Majo VJ, et al. In vivo quantification of human serotonin 1A receptor using 11C-CUMI-101, an agonist PET radiotracer. J Nucl Med. 2010;51(12):1892–900.

  26. 26.

    Miller JM, Oquendo MA, Ogden RT, Mann JJ, Parsey RV. Serotonin transporter binding as a possible predictor of one-year remission in major depressive disorder. J Psychiatr Res. 2008;42(14):1137–44.

  27. 27.

    Ogden RT, Zanderigo F, Choy S, Mann JJ, Parsey RV. Simultaneous estimation of input functions: an empirical study. J Cereb Blood Flow Metab. 2010;30(4):816–26.

  28. 28.

    Ogden RT. Estimation of kinetic parameters in graphical analysis of PET imaging data. Stat Med. 2003;22(22):3557–68.

  29. 29.

    Parsey RV, Kent JM, Oquendo MA, Richards MC, Pratap M, Cooper TB, et al. Acute occupancy of brain serotonin transporter by sertraline as measured by [11C]DASB and positron emission tomography. Biol Psychiatry. 2006;59(9):821–8.

  30. 30.

    Ogden RT, Tarpey T. Estimation in regression models with externally estimated parameters. Biostatistics. 2006;7(1):115–29.

  31. 31.

    Sullivan GM, Ogden RT, Oquendo MA, Kumar JS, Simpson N, Huang YY, et al. Positron emission tomography quantification of serotonin-1A receptor binding in medication-free bipolar depression. Biol Psychiatry. 2009;66(3):223–30.

  32. 32.

    Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 2010;33(1):1–22.

  33. 33.

    Haenisch F, Cooper JD, Reif A, Kittel-Schneider S, Steiner J, Leweke FM, et al. Towards a blood-based diagnostic panel for bipolar disorder. Brain Behav Immun. 2016;52:49–57.

  34. 34.

    Pripp AH, Stanisic M. Association between biomarkers and clinical characteristics in chronic subdural hematoma patients assessed with lasso regression. PLoS One. 2017;12(11):e0186838.

  35. 35.

    Ramsay IS, Ma S, Fisher M, Loewy RL, Ragland JD, Niendam T, et al. Model selection and prediction of outcomes in recent onset schizophrenia patients who undergo cognitive training. Schizophrenia Res Cogn. 2018;11:1–5.

  36. 36.

    Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B Methodol. 1996;58(1):267–88.

  37. 37.

    Parikh R, Mathai A, Parikh S, Chandra Sekhar G, Thomas R. Understanding and using sensitivity, specificity and predictive values. Indian J Ophthalmol. 2008;56(1):45–50.

  38. 38.

    Ananth M, Bartlett EA, DeLorenzo C, Lin X, Kunkel L, Vadhan N, et al. Effects of lithium monotherapy on the serotonin-1A binding and prediction of treatment response in bipolar depression. Submitted to AJP 2018.

  39. 39.

    Lim CS, Baldessarini RJ, Vieta E, Yucel M, Bora E, Sim K. Longitudinal neuroimaging and neuropsychological changes in bipolar disorder patients: review of the evidence. Neurosci Biobehav Rev. 2013;37(3):418–35.

  40. 40.

    Price JL, Drevets WC. Neurocircuitry of mood disorders. Neuropsychopharmacology. 2009;35:192.

  41. 41.

    Hajek T, Cullis J, Novak T, Kopecek M, Höschl C, Blagdon R, et al. Hippocampal volumes in bipolar disorders: opposing effects of illness burden and lithium treatment. Bipolar Disord. 2012;14(3):261–70.

  42. 42.

    Sheline YI, Barch DM, Donnelly JM, Ollinger JM, Snyder AZ, Mintun MA. Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: an fMRI study. Biol Psychiatry. 2001;50(9):651–8.

  43. 43.

    Garrett A, Chang K. The role of the amygdala in bipolar disorder development. Dev Psychopathol. 2008;20(4):1285–96.

  44. 44.

    Odagaki Y, Koyama T, Matsubara S, Matsubara R, Yamashita I. Effects of chronic lithium treatment on serotonin binding sites in rat brain. J Psychiatr Res. 1990;24(3):271–7.

  45. 45.

    Shioe K, Ichimiya T, Suhara T, Takano A, Sudo Y, Yasuno F, et al. No association between genotype of the promoter region of serotonin transporter gene and serotonin transporter binding in human brain measured by PET. Synapse (New York, NY). 2003;48(4):184–8.

  46. 46.

    Miller JM, Everett BA, Oquendo MA, Ogden RT, Mann JJ, Parsey RV. Positron emission tomography quantification of serotonin transporter binding in medication-free bipolar disorder. Synapse (New York, NY). 2016;70(1):24–32.

  47. 47.

    Perry EK, Marshall EF, Blessed G, Tomlinson BE, Perry RH. Decreased imipramine binding in the brains of patients with depressive illness. Br J Psychiatry. 1983;142:188–92.

  48. 48.

    Polter AM, Li X. Glycogen synthase Kinase-3 is an intermediate modulator of serotonin neurotransmission. Front Mol Neurosci. 2011;4:31.

  49. 49.

    Li X, Zhu W, Roh MS, Friedman AB, Rosborough K, Jope RS. In vivo regulation of glycogen synthase kinase-3beta (GSK3beta) by serotonergic activity in mouse brain. Neuropsychopharmacology. 2004;29(8):1426–31.

  50. 50.

    Malhi GS, Tanious M, Das P, Coulston CM, Berk M. Potential mechanisms of action of lithium in bipolar disorder. Current understanding. CNS Drugs. 2013;27(2):135–53.

  51. 51.

    Riad M, Garcia S, Watkins KC, Jodoin N, Doucet E, Langlois X, et al. Somatodendritic localization of 5-HT1A and preterminal axonal localization of 5-HT1B serotonin receptors in adult rat brain. J Comp Neurol. 2000;417(2):181–94.

Download references

Acknowledgments

We would like to thank the study coordinators Kristin Kolb, Sunia Choudhury, Kalynn Gruenfelder, Robert Lopez, Meghan Leonhardt, and study nurse practitioners Sally South and Colleen Oliva. We would also like to thank the Yale PET Center for radiotracer synthesis, PET scanning, and blood analysis. Finally, we thank the Center for Understanding Biology using Imaging Technology (CUBIT) image analysts at SBU for their work in data importing, analysis, and quality control.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Funding

The National Institute of Mental Health provided funding for this study (R01MH090276, PI: Ramin Parsey, MD, PhD).

Author information

MA and EB have contributed to the acquisition, analysis, and interpretation of the data, the draft, revision and finalization of the manuscript. CD contributed to the design of the work, the acquisition and interpretation of the data, and the revision and finalization of the manuscript. XL and RTO contributed to the analysis and interpretation of the data, and the revision and finalization of the manuscript. LK, NV, GP, MG, and DH contributed to the design of the work, the acquisition and analysis of the data, and the revision and finalization of the manuscript. CH contributed to the interpretation and revision and finalization of the manuscript. RVP contributed to the conception and design of work, the acquisition and interpretation of the data, and the revision and finalization of the manuscript.

Correspondence to Mala Ananth.

Ethics declarations

Ethics approval and consent to participate

This study was approved by the Institutional Review Boards of Columbia University Medical Center (CUMC), Brookhaven National Laboratory (BNL), Yale University Medical Center (Yale), and Stony Brook University (SBU). All participants provided written, informed consent. Recruitment occurred from March 2008 through June 2017.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neurology

Mala R. Ananth and Elizabeth Bartlett are co-first author

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ananth, M., Bartlett, E., DeLorenzo, C. et al. Prediction of lithium treatment response in bipolar depression using 5-HTT and 5-HT1A PET. Eur J Nucl Med Mol Imaging (2020). https://doi.org/10.1007/s00259-020-04681-6

Download citation

Keywords

  • Bipolar depression
  • Lithium
  • Prediction
  • PET
  • Serotonin transporter
  • Serotonin-1A