Advertisement

Molecular imaging of carotid artery atherosclerosis with PET: a systematic review

  • Reza PiriEmail author
  • Oke Gerke
  • Poul F. Høilund-Carlsen
Review Article
  • 82 Downloads
Part of the following topical collections:
  1. Cardiology

Abstract

Purpose

To conduct a systematic review of articles on PET imaging of carotid atherosclerosis with emphasis on clinical usefulness and comparison with other imaging modalities.

Methods

Research articles reporting carotid artery PET imaging with different radiotracers until 30 November 2018 were systematically searched for in Medline/PubMed, Scopus, Embase, Google Scholar, and Cochrane Library. Duplicates were removed, and editorials, case studies, and investigations on feasibility or reproducibility of PET imaging and of patients with end-stage diseases or immunosuppressive medications were omitted. After quality assessment of included articles using Joanna Briggs Institute checklists, all eligible articles were reviewed.

Results

Of 1718 primary hits, 53 studies comprising 4472 patients, aged 47–91 years (78.8% males), were included and grouped under the following headlines: diagnostic performance, risk factors, laboratory findings, imaging modalities, and treatment. 18F-fluorodeoxyglucose (FDG) (49/53) and 18F-sodium fluoride (NaF) (5/53) were the most utilized tracers to visualize carotid wall inflammation and microcalcification, respectively. Higher carotid FDG uptake was demonstrated in patients with than without symptomatic carotid atherosclerosis. Normal carotid arteries presented with the lowest FDG uptake. In symptomatic atherosclerosis, carotid arteries ipsilateral to a cerebrovascular event had higher FDG uptake than the contralateral carotid artery. FDG uptake was significantly associated with age, male gender, and body mass index in healthy individuals, and in addition with arterial hypertension, hypercholesterolemia, and diabetes mellitus in patients. Histological assessment indicated a strong correlation between microcalcification and NaF uptake in symptomatic patients. Histological evidence of calcification correlated inversely with FDG uptake, which was associated with increased macrophage and CD68 count, both accounting for increased local inflammatory response.

Conclusion

FDG-PET visualizes the inflammatory part of carotid atherosclerosis enabling risk stratification to a certain degree, whereas NaF-PET seems to indicate long-term consequences of ongoing inflammation by demonstrating microcalcification allowing discrimination of atherosclerotic from normal arteries and suggesting clinically significant carotid atherosclerosis.

Keywords

Inflammation Carotid artery Atherosclerosis Positron emission tomography Systematic review 18F-fluorodeoxyglucose 18F-sodium fluoride 

Notes

Compliance with ethical standards

The authors declare that they have no conflict of interest. This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

259_2019_4622_MOESM1_ESM.docx (384 kb)
ESM 1 (DOCX 383 kb)
259_2019_4622_MOESM2_ESM.docx (17 kb)
ESM 2 (DOCX 17 kb)
259_2019_4622_MOESM3_ESM.docx (13 kb)
ESM 3 (DOCX 13 kb)
259_2019_4622_MOESM4_ESM.docx (51 kb)
ESM 4 (DOCX 51 kb)
259_2019_4622_MOESM5_ESM.docx (23 kb)
ESM 5 (DOCX 22 kb)
259_2019_4622_MOESM6_ESM.docx (27 kb)
ESM 6 (DOCX 26 kb)

References

  1. 1.
    Organization WH. World health statistics 2016: monitoring health for the SDGs sustainable development goals. World Health Organization; 2016.Google Scholar
  2. 2.
    Lorenz MW, von Kegler S, Steinmetz H, Markus HS, Sitzer M. Carotid intima-media thickening indicates a higher vascular risk across a wide age range: prospective data from the Carotid Atherosclerosis Progression Study (CAPS). Stroke. 2006;37(1):87–92.PubMedCrossRefGoogle Scholar
  3. 3.
    Polak JF, Pencina MJ, O’leary DH, D’agostino RB. Common carotid artery intima-media thickness progression as a predictor of stroke in multi-ethnic study of atherosclerosis. Stroke. 2011;42(11):3017–21.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Libby P, Ridker PM, Hansson GK. Inflammation in atherosclerosis: from pathophysiology to practice. J Am Coll Cardiol. 2009;54(23):2129–38.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Raynor W, Houshmand S, Gholami S, Emamzadehfard S, Rajapakse CS, Blomberg BA, et al. Evolving role of molecular imaging with 18 F-sodium fluoride PET as a biomarker for calcium metabolism. Curr Osteoporos Rep. 2016;14(4):115–25.PubMedCrossRefGoogle Scholar
  6. 6.
    McKenney-Drake ML, Moghbel MC, Paydary K, Alloosh M, Houshmand S, Moe S, et al. 18 F-NaF and 18 F-FDG as molecular probes in the evaluation of atherosclerosis. Eur J Nucl Med Mol Imaging. 2018:1–11.Google Scholar
  7. 7.
    Blomberg BA, Thomassen A, Takx RA, Hildebrandt MG, Simonsen JA, Buch-Olsen KM, et al. Delayed 18 F-fluorodeoxyglucose PET/CT imaging improves quantitation of atherosclerotic plaque inflammation: results from the CAMONA study. J Nucl Cardiol. 2014;21(3):588–97.PubMedCrossRefGoogle Scholar
  8. 8.
    Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–9.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Joanna Briggs Institute. Joanna Briggs Institute reviewers’ manual 2014. Adelaide: The Joanna Briggs Institute; 2014.Google Scholar
  10. 10.
    Howick J, Phillips B, Ball C, Sackett D, Badenoch D, Straus S et al. Oxford Centre for Evidence-based Medicine—levels of evidence (March 2009). Centre for Evidence Based Medicine. 2009.Google Scholar
  11. 11.
    Skagen K, Johnsrud K, Evensen K, Scott H, Krohg-Sørensen K, Reier-Nilsen F, et al. Carotid plaque inflammation assessed with 18F-FDG PET/CT is higher in symptomatic compared with asymptomatic patients. Int J Stroke. 2015;10(5):730–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Cocker MS, Spence JD, Hammond R, Lum C, Wells G, Bernick J, et al. [18F]-Fluorodeoxyglucose PET/CT imaging as a marker of carotid plaque inflammation: comparison to immunohistology and relationship to acuity of events. Int J Cardiol. 2018;271:378–86.PubMedCrossRefGoogle Scholar
  13. 13.
    Masteling MG, Zeebregts CJ, Tio RA, Breek J-C, Tietge UJ, de Boer JF, et al. High-resolution imaging of human atherosclerotic carotid plaques with micro 18 F-FDG PET scanning exploring plaque vulnerability. J Nucl Cardiol. 2011;18(6):1066–75.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Kashiwazaki D, Yamamoto S, Akioka N, Kuwayama N, Noguchi K, Kuroda S. Inflammation coupling between unstable carotid plaque and spleen—a 18F-fluorodeoxyglucos positron emission tomography study. J Stroke Cerebrovasc Dis. 2018;27(11):3212–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Müller HFG, Viaccoz A, Fisch L, Bonvin C, Lovblad K-O, Ratib O, et al. 18FDG-PET-CT: an imaging biomarker of high-risk carotid plaques. Correlation to symptoms and microembolic signals. Stroke. 2014;45(12):3561–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Demeure F, Bouzin C, Roelants V, Bol A, Verhelst R, Astarci P, et al. Head-to-head comparison of inflammation and neovascularization in human carotid plaques: implications for the imaging of vulnerable plaques. Circ Cardiovasc Imaging. 2017;10(5):e005846.PubMedCrossRefGoogle Scholar
  17. 17.
    Tahara N, Kai H, Nakaura H, Mizoguchi M, Ishibashi M, Kaida H, et al. The prevalence of inflammation in carotid atherosclerosis: analysis with fluorodeoxyglucose–positron emission tomography. Eur Heart J. 2007;28(18):2243–8.  https://doi.org/10.1093/eurheartj/ehm245.CrossRefPubMedGoogle Scholar
  18. 18.
    Noh S-M, Choi WJ, Kang B-T, Jeong S-W, Lee DK, Schellingerhout D, et al. Complementarity between 18F-FDG PET/CT and ultrasonography or angiography in carotid plaque characterization. J Clin Neurol. 2013;9(3):176–85.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Kim H-J, Oh M, Moon DH, Yu K-H, Kwon SU, Kim JS, et al. Carotid inflammation on 18F-fluorodeoxyglucose positron emission tomography associates with recurrent ischemic lesions. J Neurol Sci. 2014;347(1–2):242–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Arauz A, Hoyos L, Zenteno M, Mendoza R, Alexanderson E. Carotid plaque inflammation detected by 18F-fluorodeoxyglucose-positron emission tomography: pilot study. Clin Neurol Neurosurg. 2007;109(5):409–12.  https://doi.org/10.1016/j.clineuro.2007.02.012.CrossRefPubMedGoogle Scholar
  21. 21.
    Font MA, Fernandez A, Carvajal A, Gamez C, Badimon L, Slevin M, et al. Imaging of early inflammation in low-to-moderate carotid stenosis by 18-FDG-PET. Front Biosci. 2009;14:3352–60.CrossRefGoogle Scholar
  22. 22.
    Kwee R, Truijman M, Mess W, Teule G, ter Berg J, Franke C, et al. Potential of integrated [18F] fluorodeoxyglucose positron-emission tomography/CT in identifying vulnerable carotid plaques. Am J Neuroradiol. 2011;32(5):950–4.PubMedCrossRefGoogle Scholar
  23. 23.
    Græbe M, Pedersen SF, Højgaard L, Kjær A, Sillesen H. 18FDG PET and ultrasound echolucency in carotid artery plaques. JACC Cardiovasc Imaging. 2010;3(3):289–95.PubMedCrossRefGoogle Scholar
  24. 24.
    Menezes LJ, Kotze CW, Agu O, Richards T, Brookes J, Goh VJ, et al. Investigating vulnerable atheroma using combined 18F-FDG PET/CT angiography of carotid plaque with immunohistochemical validation. J Nucl Med. 2011;52(11):1698–703.PubMedCrossRefGoogle Scholar
  25. 25.
    Rudd JH, Warburton E, Fryer TD, Jones H, Clark J, Antoun N, et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation. 2002;105(23):2708–11.PubMedCrossRefGoogle Scholar
  26. 26.
    Shaikh S, Welch A, Ramalingam S, Murray A, Wilson H, McKiddie F, et al. Comparison of fluorodeoxyglucose uptake in symptomatic carotid artery and stable femoral artery plaques. Br J Surg. 2014;101(4):363–70.PubMedCrossRefGoogle Scholar
  27. 27.
    Quirce R, Martínez-Rodríguez I, Banzo I, Jiménez-Bonilla J, Martínez-Amador N, Ibáñez-Bravo S, et al. New insight of functional molecular imaging into the atheroma biology: 18F-NaF and 18F-FDG in symptomatic and asymptomatic carotid plaques after recent CVA. Preliminary results. Clin Physiol Funct Imaging. 2016;36(6):499–503.  https://doi.org/10.1111/cpf.12254.CrossRefPubMedGoogle Scholar
  28. 28.
    Hop H, de Boer SA, Reijrink M, Kamphuisen PW, de Borst MH, Pol RA, et al. 18F-sodium fluoride positron emission tomography assessed microcalcifications in culprit and non-culprit human carotid plaques. J Nucl Cardiol. 2018.  https://doi.org/10.1007/s12350-018-1325-5.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Quirce R, Martínez-Rodríguez I, De Arcocha TM, Jiménez-Bonilla JF, Banzo I, Rebollo M, et al. Contribution of 18F-sodium fluoride PET/CT to the study of the carotid atheroma calcification. Rev Esp Med Nucl Imagen Mol. 2013;32(1):22–5.  https://doi.org/10.1016/j.remnie.2012.11.009.CrossRefPubMedGoogle Scholar
  30. 30.
    Zhang Y, Li H, Jia Y, Yang P, Zhao F, Wang W, et al. Noninvasive assessment of carotid plaques calcification by 18F-sodium fluoride accumulation: correlation with pathology. J Stroke Cerebrovasc Dis. 2018;27(7):1796–801.  https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.02.011.CrossRefPubMedGoogle Scholar
  31. 31.
    Noh TS, Moon S-H, Cho YS, Hong SP, Lee EJ, Choi JY, et al. Relation of carotid artery 18F-FDG uptake to C-reactive protein and Framingham risk score in a large cohort of asymptomatic adults. J Nucl Med. 2013;54(12):2070–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Moon SH, Noh TS, Cho YS, Hong SP, Hyun SH, Choi JY, et al. Association between nonalcoholic fatty liver disease and carotid artery inflammation evaluated by 18F-fluorodeoxyglucose positron emission tomography. Angiology. 2015;66(5):472–80.  https://doi.org/10.1177/0003319714537872.CrossRefPubMedGoogle Scholar
  33. 33.
    Bucerius J, Duivenvoorden R, Mani V, Moncrieff C, Rudd JHF, Calcagno C, et al. Prevalence and risk factors of carotid vessel wall inflammation in coronary artery disease patients. FDG-PET and CT Imaging Study. 2011;4(11):1195–205.  https://doi.org/10.1016/j.jcmg.2011.07.008.CrossRefGoogle Scholar
  34. 34.
    Bucerius J, Mani V, Wong S, Moncrieff C, Izquierdo-Garcia D, Machac J, et al. Arterial and fat tissue inflammation are highly correlated : a prospective 18F-FDG PET/CT study. Eur J Nucl Med Mol Imaging. 2014;41(5):934–45.  https://doi.org/10.1007/s00259-013-2653-y.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kim S, Lee S, Kim JB, Na JO, Choi CU, Lim H-E, et al. Concurrent carotid inflammation in acute coronary syndrome as assessed by 18F-FDG PET/CT: a possible mechanistic link for ischemic stroke. J Stroke Cerebrovasc Dis. 2015;24(11):2547–54.  https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.07.004.CrossRefPubMedGoogle Scholar
  36. 36.
    Lee DH, Lee SJ, Lee D-J, Kwon SH, Jo K-S, An Y-S, et al. Carotid artery FDG uptake may serve as a biomarker for cardiovascular risk stratification in asymptomatic adults. Nucl Med Mol Imaging. 2014;48(3):196–202.  https://doi.org/10.1007/s13139-014-0277-1.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Bernelot Moens SJ, Stoekenbroek RM, van der Valk FM, Verweij SL, Koelemay MJW, Verberne HJ, et al. Carotid arterial wall inflammation in peripheral artery disease is augmented by type 2 diabetes: a cross-sectional study. BMC Cardiovasc Disord. 2016;16(1):237.  https://doi.org/10.1186/s12872-016-0397-x.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Watanabe T, Kawasaki M, Tanaka R, Ono K, Kako N, Saeki M, et al. Anti-inflammatory and morphologic effects of pitavastatin on carotid arteries and thoracic aorta evaluated by integrated backscatter trans-esophageal ultrasound and PET/CT: a prospective randomized comparative study with pravastatin (EPICENTRE study). Cardiovasc Ultrasound. 2015;13(1):17.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Chróinín DN, Marnane M, Akijian L, Merwick Á, Fallon E, Horgan G, et al. Serum lipids associated with inflammation-related PET-FDG uptake in symptomatic carotid plaque. Neurology. 2014;82(19):1693–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Choi Y-S, Youn H-J, Chung W-B, Hwang H-J, Lee D-H, Park C-S, et al. Uptake of F-18 FDG and ultrasound analysis of carotid plaque. J Nucl Cardiol. 2011;18(2):267–72.PubMedCrossRefGoogle Scholar
  41. 41.
    Kim J, Choi K-H, Song H-C, Kim J-T, Park M-S, Cho K-H. 18 F-FDG PET/CT imaging factors that predict ischaemic stroke in cancer patients. Eur J Nucl Med Mol Imaging. 2016;43(12):2228–35.PubMedCrossRefGoogle Scholar
  42. 42.
    Fifer KM, Qadir S, Subramanian S, Vijayakumar J, Figueroa AL, Truong QA, et al. Positron emission tomography measurement of periodontal 18F-fluorodeoxyglucose uptake is associated with histologically determined carotid plaque inflammation. J Am Coll Cardiol. 2011;57(8):971–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Tawakol A, Migrino RQ, Bashian GG, Bedri S, Vermylen D, Cury RC, et al. In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol. 2006;48(9):1818–24.PubMedCrossRefGoogle Scholar
  44. 44.
    Kim CJ, Han EJ, Chu E-H, Hwang B-H, Kim J-J, Seung K-B, et al. Effect of moderate-intensity statin therapy on plaque inflammation in patients with acute coronary syndrome: a prospective interventional study evaluated by 18F-FDG PET/CT of the carotid artery. Cardiol J. 2018.Google Scholar
  45. 45.
    Oh M, Lee CW, Lee HS, Chang M, Ahn JM, Park DW, et al. Similar impact of clopidogrel or ticagrelor on carotid atherosclerotic plaque inflammation. Clin Cardiol. 2016;39(11):646–52.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Mizoguchi M, Tahara N, Tahara A, Nitta Y, Kodama N, Oba T, et al. Pioglitazone attenuates atherosclerotic plaque inflammation in patients with impaired glucose tolerance or diabetes: a prospective, randomized, comparator-controlled study using serial FDG PET/CT imaging study of carotid artery and ascending aorta. JACC Cardiovasc Imaging. 2011;4(10):1110–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Derlin T, Wisotzki C, Richter U, Apostolova I, Bannas P, Weber C, et al. In vivo imaging of mineral deposition in carotid plaque using 18F-sodium fluoride PET/CT: correlation with atherogenic risk factors. J Nucl Med. 2011;52(3):362–8.  https://doi.org/10.2967/jnumed.110.081208.CrossRefPubMedGoogle Scholar
  48. 48.
    Figueroa AL, Subramanian SS, Cury RC, Truong QA, Gardecki JA, Tearney GJ, et al. Distribution of inflammation within carotid atherosclerotic plaques with high-risk morphological features: a comparison between positron emission tomography activity, plaque morphology, and histopathology. Circ Cardiovasc Imaging. 2012;5(1):69–77.PubMedCrossRefGoogle Scholar
  49. 49.
    Liu J, Kerwin WS, Caldwell JH, Ferguson MS, Hippe DS, Alessio AM, et al. High resolution FDG-microPET of carotid atherosclerosis: plaque components underlying enhanced FDG uptake. Int Journal Cardiovasc Imaging. 2016;32(1):145–52.CrossRefGoogle Scholar
  50. 50.
    Johnsrud K, Skagen K, Seierstad T, Skjelland M, Russell D, Revheim M-E. 18 F-FDG PET/CT for the quantification of inflammation in large carotid artery plaques. J Nucl Cardiol. 2017:1–11.Google Scholar
  51. 51.
    Saito H, Kuroda S, Hirata K, Magota K, Shiga T, Tamaki N, et al. Validity of dual MRI and 18F-FDG PET imaging in predicting vulnerable and inflamed carotid plaque. Cerebrovasc Dis. 2013;35(4):370–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Graebe M, Pedersen SF, Borgwardt L, Højgaard L, Sillesen H, Kjær A. Molecular pathology in vulnerable carotid plaques: correlation with [18]-fluorodeoxyglucose positron emission tomography (FDG-PET). Eur J Vasc Endovasc Surg. 2009;37(6):714–21.PubMedCrossRefGoogle Scholar
  53. 53.
    Pedersen SF, Graebe M, Hag AMF, Hoejgaard L, Sillesen H, Kjaer A. Microvessel density but not neoangiogenesis is associated with 18 F-FDG uptake in human atherosclerotic carotid plaques. Mol Imaging Biol. 2012;14(3):384–92.PubMedCrossRefGoogle Scholar
  54. 54.
    Pedersen SF, Græbe M, Hag AMF, Højgaard L, Sillesen H, Kjær A. 18F-FDG imaging of human atherosclerotic carotid plaques reflects gene expression of the key hypoxia marker HIF-1α. Am J Nucl Med Mol Imaging. 2013;3(5):384.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Pedersen SF, Graebe M, Hag AMF, Højgaard L, Sillesen H, Kjaer A. Gene expression and 18FDG uptake in atherosclerotic carotid plaques. Nucl Med Commun. 2010;31(5):423–9.PubMedGoogle Scholar
  56. 56.
    Moustafa RR, Izquierdo-Garcia D, Jones PS, Graves MJ, Fryer TD, Gillard JH, et al. Watershed infarcts in transient ischemic attack/minor stroke with ≥50% carotid stenosis: hemodynamic or embolic? Stroke. 2010;41(7):1410–6.PubMedCrossRefGoogle Scholar
  57. 57.
    Moustafa RR, Izquierdo-Garcia D, Fryer TD, Graves MJ, Rudd JH, Gillard JH, et al. Carotid plaque inflammation is associated with cerebral microembolism in patients with recent transient ischemic attack or stroke: a pilot study. Circ Cardiovasc Imaging. 2010;3(5):536–41.PubMedCrossRefGoogle Scholar
  58. 58.
    Hyafil F, Schindler A, Sepp D, Obenhuber T, Bayer-Karpinska A, Boeckh-Behrens T, et al. High-risk plaque features can be detected in non-stenotic carotid plaques of patients with ischaemic stroke classified as cryptogenic using combined 18 F-FDG PET/MR imaging. Eur J Nucl Med Mol Imaging. 2016;43(2):270–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Calcagno C, Ramachandran S, Izquierdo-Garcia D, Mani V, Millon A, Rosenbaum D, et al. The complementary roles of dynamic contrast-enhanced MRI and 18 F-fluorodeoxyglucose PET/CT for imaging of carotid atherosclerosis. Eur J Nucl Med Mol Imaging. 2013;40(12):1884–93.PubMedCrossRefGoogle Scholar
  60. 60.
    Wang J, Liu H, Sun J, Xue H, Xie L, Yu S, et al. Varying correlation between 18F-fluorodeoxyglucose positron emission tomography and dynamic contrast-enhanced MRI in carotid atherosclerosis: implications for plaque inflammation. Stroke. 2014;45(6):1842–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Bucerius J, Vijgen GH, Brans B, Bouvy ND, Bauwens M, Rudd JH, et al. Impact of bariatric surgery on carotid artery inflammation and the metabolic activity in different adipose tissues. Medicine. 2015;94(20).PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Virmani R, Kolodgie Frank D, Burke Allen P, Finn Aloke V, Gold Herman K, Tulenko Thomas N, et al. Atherosclerotic plaque progression and vulnerability to rupture. Arterioscler Thromb Vasc Biol. 2005;25(10):2054–61.  https://doi.org/10.1161/01.ATV.0000178991.71605.18.CrossRefPubMedGoogle Scholar
  63. 63.
    Rominger A, Saam T, Wolpers S, Cyran CC, Schmidt M, Foerster S, et al. 18F-FDG PET/CT identifies patients at risk for future vascular events in an otherwise asymptomatic cohort with neoplastic disease. J Nucl Med. 2009;50(10):1611–20.  https://doi.org/10.2967/jnumed.109.065151.CrossRefPubMedGoogle Scholar
  64. 64.
    Chen NX, Moe SM. Pathophysiology of vascular calcification. Current osteoporosis reports. 2015;13(6):372–80.PubMedCrossRefGoogle Scholar
  65. 65.
    Fiz F, Morbelli S, Piccardo A, Bauckneht M, Ferrarazzo G, Pestarino E, et al. 18F-NaF uptake by atherosclerotic plaque on PET/CT imaging: inverse correlation between calcification density and mineral metabolic activity. J Nucl Med. 2015;56(7):1019–23.PubMedCrossRefGoogle Scholar
  66. 66.
    Irkle A, Vesey A, Lewis D, Skepper J, Bird J, Dweck M. Identifying active vascular microcalcification by (18) F-sodium fluoride positron emission tomography. Nat Commun. 2015;6:7495.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Butcovan D, Mocanu V, Baran D, Ciurescu D, Tinica G. Assessment of vulnerable and unstable carotid atherosclerotic plaques on endarterectomy specimens. Exp Ther Med. 2016;11(5):2028–32.  https://doi.org/10.3892/etm.2016.3096.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Stoll G, Bendszus M. Inflammation and atherosclerosis. Stroke. 2006;37(7):1923–32.  https://doi.org/10.1161/01.STR.0000226901.34927.10.CrossRefPubMedGoogle Scholar
  69. 69.
    McColl B, Allan S, Rothwell N. Systemic infection, inflammation and acute ischemic stroke. Neuroscience. 2009;158(3):1049–61.PubMedCrossRefGoogle Scholar
  70. 70.
    Calvert PA, Liew T-V, Gorenne I, Clarke M, Costopoulos C, Obaid DR, et al. Leukocyte telomere length is associated with high-risk plaques on virtual histology intravascular ultrasound and increased proinflammatory activity. Arterioscler Thromb Vasc Biol. 2011;31(9):2157–64.PubMedCrossRefGoogle Scholar
  71. 71.
    McVeigh GE, Allen PB, Morgan DR, Hanratty CG, Silke B. Nitric oxide modulation of blood vessel tone identified by arterial waveform analysis. Clin Sci. 2001;100(4):387–93.  https://doi.org/10.1042/cs1000387.CrossRefPubMedGoogle Scholar
  72. 72.
    Hong YM. Atherosclerotic cardiovascular disease beginning in childhood. Korean Circ J. 2010;40(1):1–9.  https://doi.org/10.4070/kcj.2010.40.1.1.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Sader MA, Celermajer DS. Endothelial function, vascular reactivity and gender differences in the cardiovascular system. Cardiovasc Res. 2002;53(3):597–604.  https://doi.org/10.1016/s0008-6363(01)00473-4.CrossRefPubMedGoogle Scholar
  74. 74.
    Straub RH. The complex role of estrogens in inflammation. Endocr Rev. 2007;28(5):521–74.  https://doi.org/10.1210/er.2007-0001.CrossRefPubMedGoogle Scholar
  75. 75.
    Gao F, Lucke-Wold BP, Li X, Logsdon AF, Xu L-C, Xu S, et al. Reduction of endothelial nitric oxide increases the adhesiveness of constitutive endothelial membrane ICAM-1 through Src-mediated phosphorylation. Front Physiol. 2018;8(1124).  https://doi.org/10.3389/fphys.2017.01124.
  76. 76.
    Shimbo D, Muntner P, Mann D, Viera AJ, Homma S, Polak JF, et al. Endothelial dysfunction and the risk of hypertension: the multi-ethnic study of atherosclerosis. Hypertension. 2010;55(5):1210–6.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Halcox Julian PJ, Donald Ann E, Ellins E, Witte Daniel R, Shipley Martin J, Brunner Eric J, et al. Endothelial function predicts progression of carotid intima-media thickness. Circulation. 2009;119(7):1005–12.  https://doi.org/10.1161/CIRCULATIONAHA.108.765701.CrossRefPubMedGoogle Scholar
  78. 78.
    Høilund-Carlsen PF, Moghbel MC, Gerke O, Alavi A. Evolving role of PET in detecting and characterizing atherosclerosis. PET Clinics. 2019;14(2):197–209.  https://doi.org/10.1016/j.cpet.2018.12.001.CrossRefPubMedGoogle Scholar
  79. 79.
    Swirski FK, Nahrendorf M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science. 2013;339(6116):161–6.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Qiao J-H, Mishra V, Fishbein MC, Sinha SK, Rajavashisth TB. Multinucleated giant cells in atherosclerotic plaques of human carotid arteries: identification of osteoclast-like cells and their specific proteins in artery wall. Exp Mol Pathol. 2015;99(3):654–62.PubMedCrossRefGoogle Scholar
  81. 81.
    Grønholdt M-LM, Nordestgaard BG, Bentzon J, Wiebe BM, Zhou J, Falk E, et al. Macrophages are associated with lipid-rich carotid artery plaques, echolucency on B-mode imaging, and elevated plasma lipid levels. J Vasc Surg. 2002;35(1):137–45.  https://doi.org/10.1067/mva.2002.119042.CrossRefPubMedGoogle Scholar
  82. 82.
    Prabhakaran S, Singh R, Zhou X, Ramas R, Sacco RL, Rundek T. Presence of calcified carotid plaque predicts vascular events: the Northern Manhattan Study. Atherosclerosis. 2007;195(1):e197–201.  https://doi.org/10.1016/j.atherosclerosis.2007.03.044.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Riccio SA, House AA, Spence JD, Fenster A, Parraga G. Carotid ultrasound phenotypes in vulnerable populations. Cardiovasc Ultrasound. 2006;4(1):44.  https://doi.org/10.1186/1476-7120-4-44.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Kwee RM, Teule GJ, van Oostenbrugge RJ, Mess WH, Prins MH, van der Geest RJ, et al. Multimodality imaging of carotid artery plaques: 18 F-fluoro-2-deoxyglucose positron emission tomography, computed tomography, and magnetic resonance imaging. Stroke. 2009;40(12):3718–24.PubMedCrossRefGoogle Scholar
  85. 85.
    Shaalan WE, Cheng H, Gewertz B, McKinsey JF, Schwartz LB, Katz D, et al. Degree of carotid plaque calcification in relation to symptomatic outcome and plaque inflammation. J Vasc Surg. 2004;40(2):262–9.  https://doi.org/10.1016/j.jvs.2004.04.025.CrossRefPubMedGoogle Scholar
  86. 86.
    Silvera SS, Aidi HE, Rudd JHF, Mani V, Yang L, Farkouh M, et al. Multimodality imaging of atherosclerotic plaque activity and composition using FDG-PET/CT and MRI in carotid and femoral arteries. Atherosclerosis. 2009;207(1):139–43.  https://doi.org/10.1016/j.atherosclerosis.2009.04.023.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Kerwin WS, O’Brien KD, Ferguson MS, Polissar N, Hatsukami TS, Yuan C. Inflammation in carotid atherosclerotic plaque: a dynamic contrast-enhanced MR imaging study. Radiology. 2006;241(2):459–68.  https://doi.org/10.1148/radiol.2412051336.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Nandalur KR, Baskurt E, Hagspiel KD, Phillips CD, Kramer CM. Calcified carotid atherosclerotic plaque is associated less with ischemic symptoms than is noncalcified plaque on MDCT. Am J Roentgenol. 2005;184(1):295–8.  https://doi.org/10.2214/ajr.184.1.01840295.CrossRefGoogle Scholar
  89. 89.
    Waters DD, Ho JE, Boekholdt SM, DeMicco DA, Kastelein JJ, Messig M, et al. Cardiovascular event reduction versus new-onset diabetes during atorvastatin therapy: effect of baseline risk factors for diabetes. J Am Coll Cardiol. 2013;61(2):148–52.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Nuclear MedicineOdense University HospitalOdenseDenmark
  2. 2.Research Unit of Clinical Physiology and Nuclear Medicine, Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark

Personalised recommendations