Integration of dynamic parameters in the analysis of 18F-FDopa PET imaging improves the prediction of molecular features of gliomas

  • Merwan Ginet
  • Timothée Zaragori
  • Pierre-Yves Marie
  • Véronique Roch
  • Guillaume Gauchotte
  • Fabien Rech
  • Marie Blonski
  • Zohra Lamiral
  • Luc Taillandier
  • Laëtitia Imbert
  • Antoine VergerEmail author
Original Article
Part of the following topical collections:
  1. Oncology – Brain



18F-FDopa PET imaging of gliomas is routinely interpreted with standardized uptake value (SUV)-derived indices. This study aimed to determine the added value of dynamic 18F-FDopa PET parameters for predicting the molecular features of newly diagnosed gliomas.


We retrospectively included 58 patients having undergone an 18F-FDopa PET for establishing the initial diagnosis of gliomas, whose molecular features were additionally characterized according to the WHO 2016 classification. Dynamic parameters, involving time-to-peak (TTP) values and curve slopes, were tested for the prediction of glioma types in addition to current static parameters, i.e., tumor-to-normal brain or tumor-to-striatum SUV ratios and metabolic tumor volume (MTV).


There were 21 IDH mutant without 1p/19q co-deletion (IDH+/1p19q−) gliomas, 16 IDH mutants with 1p/19q co-deletion (IDH+/1p19q+) gliomas, and 21 IDH wildtype (IDH−) gliomas. Dynamic parameters enabled differentiating the gliomas according to these molecular features, whereas static parameters did not. In particular, a longer TTP was the single best independent predictor for identifying (1) IDH mutation status (area under the curve (AUC) of 0.789, global accuracy of 74% for the criterion of a TTP ≥ 5.4 min) and (2) 1p/19q co-deletion status (AUC of 0.679, global accuracy of 69% for the criterion of a TTP ≥ 6.9 min). Moreover, the TTP from IDH− gliomas was significantly shorter than those from both IDH+/1p19q− and IDH+/1p19q+ (p ≤ 0.007).


Prediction of the molecular features of newly diagnosed gliomas with 18F-FDopa PET and especially of the presence or not of an IDH mutation, may be obtained with dynamic but not with current static uptake parameters.


18F-FDopa PET Dynamic analysis Glioma Diagnosis WHO 2016 classification IDH mutation 



The authors thank Pierre Pothier for his critical review of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed written consent was obtained from all individual participants included in the study.

Supplementary material

259_2019_4509_Fig4_ESM.png (323 kb)
Figure S1

(PNG 322 kb)

259_2019_4509_MOESM1_ESM.tif (2.1 mb)
High resolution image (TIF 2183 kb)
259_2019_4509_Fig5_ESM.png (292 kb)
Figure S2

(PNG 292 kb)

259_2019_4509_MOESM2_ESM.tif (4.3 mb)
High resolution image (TIF 4373 kb)
259_2019_4509_MOESM3_ESM.xlsx (18 kb)
ESM 1 (XLSX 18 kb)


  1. 1.
    Langen K-J, Galldiks N, Hattingen E, Shah NJ. Advances in neuro-oncology imaging. Nat Rev Neurol. 2017;13:279.CrossRefPubMedGoogle Scholar
  2. 2.
    Langen K-J, Galldiks N. Update on amino acid PET of brain tumours. Curr Opin Neurol. 2018;31:354–61.CrossRefPubMedGoogle Scholar
  3. 3.
    Galldiks N, Langen K-J. Amino acid PET in neuro-oncology: applications in the clinic. Expert Rev Anticancer Ther. 2017;17:395–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Verger A, Langen KJ. PET Imaging in Glioblastoma: use in clinical practice. In: De Vleeschouwer S, editor. Glioblastoma. Brisbane (AU): Codon Publications; 2017. pp. 155–174.Google Scholar
  5. 5.
    Verger A, Arbizu J, Law I. Role of amino-acid PET in high-grade gliomas: limitations and perspectives. Q J Nucl Med Mol Imaging. 2018;62:254–66.CrossRefPubMedGoogle Scholar
  6. 6.
    Albert NL, Weller M, Suchorska B, Galldiks N, Soffietti R, Kim MM, et al. Response assessment in neuro-oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro-Oncol. 2016;18:1199–208.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Chen W, Silverman DHS, Delaloye S, Czernin J, Kamdar N, Pope W, et al. 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med. 2006;47:904–11.PubMedGoogle Scholar
  8. 8.
    Fueger BJ, Czernin J, Cloughesy T, Silverman DH, Geist CL, Walter MA, et al. Correlation of 6-18F-Fluoro-L-Dopa PET uptake with proliferation and tumor grade in newly diagnosed and recurrent gliomas. J Nucl Med. 2010;51:1532–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Janvier L, Olivier P, Blonski M, Morel O, Vignaud J-M, Karcher G, et al. Correlation of SUV-derived indices with tumoral aggressiveness of gliomas in static 18F-FDOPA PET: use in clinical practice. Clin Nucl Med. 2015;40:e429–35.CrossRefPubMedGoogle Scholar
  10. 10.
    Humbert O, Bourg V, Mondot L, Gal J, Bondiau P-Y, Fontaine D, et al. 18F-DOPA PET/CT in brain tumors: impact on multidisciplinary brain tumor board decisions. Eur J Nucl Med Mol Imaging. 2019;46:558–68.CrossRefPubMedGoogle Scholar
  11. 11.
    Bund C, Heimburger C, Imperiale A, Lhermitte B, Chenard M-P, Lefebvre F, et al. FDOPA PET-CT of nonenhancing brain tumors. Clin Nucl Med. 2017;42:250–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Patel CB, Fazzari E, Chakhoyan A, Yao J, Raymond C, Nguyen H, et al. 18F-FDOPA PET and MRI characteristics correlate with degree of malignancy and predict survival in treatment-naïve gliomas: a cross-sectional study. J Neuro-Oncol. 2018;139:399–409.CrossRefGoogle Scholar
  13. 13.
    Schwarzenberg J, Czernin J, Cloughesy TF, Ellingson BM, Pope WB, Grogan T, et al. Treatment response evaluation using 18F-FDOPA PET in patients with recurrent malignant glioma on bevacizumab therapy. Clin Cancer Res. 2014;20:3550–9.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Pöpperl G, Kreth FW, Mehrkens JH, Herms J, Seelos K, Koch W, et al. FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur J Nucl Med Mol Imaging. 2007;34:1933–42.CrossRefPubMedGoogle Scholar
  15. 15.
    Lohmann P, Herzog H, Rota Kops E, Stoffels G, Judov N, Filss C, et al. Dual-time-point O-(2-[18F]fluoroethyl)-L-tyrosine PET for grading of cerebral gliomas. Eur Radiol. 2015;25:3017–24.CrossRefPubMedGoogle Scholar
  16. 16.
    Schiepers C, Chen W, Cloughesy T, Dahlbom M, Huang S-C. 18F-FDOPA kinetics in brain tumors. J Nucl Med. 2007;48:1651–61.CrossRefPubMedGoogle Scholar
  17. 17.
    Nioche C, Soret M, Gontier E, Lahutte M, Dutertre G, Dulou R, et al. Evaluation of quantitative criteria for glioma grading with static and dynamic 18F-FDopa PET/CT. Clin Nucl Med. 2013;38:81–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Kratochwil C, Combs SE, Leotta K, Afshar-Oromieh A, Rieken S, Debus J, et al. Intra-individual comparison of 18F-FET and 18F-DOPA in PET imaging of recurrent brain tumors. Neuro-Oncol. 2014;16:434–40.CrossRefPubMedGoogle Scholar
  19. 19.
    Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol (Berl). 2016;131:803–20.CrossRefGoogle Scholar
  20. 20.
    Lopci E, Riva M, Olivari L, Raneri F, Soffietti R, Piccardo A, et al. Prognostic value of molecular and imaging biomarkers in patients with supratentorial glioma. Eur J Nucl Med Mol Imaging. 2017;44:1155–64.CrossRefPubMedGoogle Scholar
  21. 21.
    Verger A, Stoffels G, Bauer EK, Lohmann P, Blau T, Fink GR, et al. Static and dynamic 18F–FET PET for the characterization of gliomas defined by IDH and 1p/19q status. Eur J Nucl Med Mol Imaging. 2018;45:443–51.CrossRefPubMedGoogle Scholar
  22. 22.
    Kebir S, Weber M, Lazaridis L, Deuschl C, Schmidt T, Mönninghoff C, et al. Hybrid 11C-MET PET/MRI combined with “Machine Learning” in glioma diagnosis according to the revised glioma WHO classification 2016. Clin Nucl Med. 2019;44:214–20.Google Scholar
  23. 23.
    Suchorska B, Giese A, Biczok A, Unterrainer M, Weller M, Drexler M, et al. Identification of time-to-peak on dynamic 18F-FET-PET as a prognostic marker specifically in IDH1/2 mutant diffuse astrocytoma. Neuro-Oncol. 2018;20:279–88.CrossRefPubMedGoogle Scholar
  24. 24.
    Cicone F, Carideo L, Scaringi C, Arcella A, Giangaspero F, Scopinaro F, et al. 18F-DOPA uptake does not correlate with IDH mutation status and 1p/19q co-deletion in glioma. Ann Nucl Med. 2019;33:295–302.CrossRefPubMedGoogle Scholar
  25. 25.
    Verger A, Metellus P, Sala Q, Colin C, Bialecki E, Taieb D, et al. IDH mutation is paradoxically associated with higher 18F-FDOPA PET uptake in diffuse grade II and grade III gliomas. Eur J Nucl Med Mol Imaging. 2017;44:1306–11.CrossRefPubMedGoogle Scholar
  26. 26.
    Isal S, Gauchotte G, Rech F, Blonski M, Planel S, Chawki MB, et al. A high 18F-FDOPA uptake is associated with a slow growth rate in diffuse Grade II–III gliomas. Br J Radiol. 2018;91(1084):20170803.Google Scholar
  27. 27.
    Hoffman JM, Melega WP, Hawk TC, Grafton SC, Luxen A, Mahoney DK, et al. The effects of carbidopa administration on 6-[18F]fluoro-L-dopa kinetics in positron emission tomography. J Nucl Med. 1992;33:1472–7.PubMedGoogle Scholar
  28. 28.
    Law I, Albert NL, Arbizu J, Boellaard R, Drzezga A, Galldiks N, et al. Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [18F]FDG: version 1.0. Eur J Nucl Med Mol Imaging. 2019;46:540–57.CrossRefPubMedGoogle Scholar
  29. 29.
    Ye H, Wong K-P, Wardak M, Dahlbom M, Kepe V, Barrio JR, et al. Automated movement correction for dynamic PET/CT images: evaluation with phantom and patient data. Chen K, editor. PLoS ONE. 2014;9:e103745.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ceccon G, Lohmann P, Stoffels G, Judov N, Filss CP, Rapp M, et al. Dynamic O-(2-18F-fluoroethyl)-L-tyrosine positron emission tomography differentiates brain metastasis recurrence from radiation injury after radiotherapy. Neuro-Oncol. 2017;19:281–8.Google Scholar
  31. 31.
    Perizzolo M, Winkfein B, Hui S, Krulicki W, Chan JA, Demetrick DJ. IDH mutation detection in formalin-fixed paraffin-embedded gliomas using multiplex PCR and single-base extension: IDH1/2 mutation detection by SNaPshot®. Brain Pathol. 2012;22:619–24.CrossRefPubMedGoogle Scholar
  32. 32.
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol (Berl). 2007;114:97–109.CrossRefGoogle Scholar
  33. 33.
    The Cancer Genome Atlas Research Network. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med. 2015;372:2481–98.CrossRefPubMedCentralGoogle Scholar
  34. 34.
    Pallud J, Blonski M, Mandonnet E, Audureau E, Fontaine D, Sanai N, et al. Velocity of tumor spontaneous expansion predicts long-term outcomes for diffuse low-grade gliomas. Neuro-Oncol. 2013;15:595–606.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kaloshi G, Psimaras D, Mokhtari K, Dehais C, Houillier C, Marie Y, et al. Supratentorial low-grade gliomas in older patients. Neurology. 2009;73:2093–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Jansen NL, Schwartz C, Graute V, Eigenbrod S, Lutz J, Egensperger R, et al. Prediction of oligodendroglial histology and LOH 1p/19q using dynamic [18F]FET-PET imaging in intracranial WHO grade II and III gliomas. Neuro-Oncol. 2012;14:1473–80.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Manabe O, Hattori N, Yamaguchi S, Hirata K, Kobayashi K, Terasaka S, et al. Oligodendroglial component complicates the prediction of tumour grading with metabolic imaging. Eur J Nucl Med Mol Imaging. 2015;42:896–904.CrossRefPubMedGoogle Scholar
  38. 38.
    Bashir A, Brennum J, Broholm H, Law I. The diagnostic accuracy of detecting malignant transformation of low-grade glioma using O-(2-[18F]fluoroethyl)-l-tyrosine positron emission tomography: a retrospective study. J Neurosurg. 2018;130:451–64.Google Scholar
  39. 39.
    Nomura Y, Asano Y, Shinoda J, Yano H, Ikegame Y, Kawasaki T, et al. Characteristics of time-activity curves obtained from dynamic 11C-methionine PET in common primary brain tumors. J Neuro-Oncol. 2018;138:649–58.CrossRefGoogle Scholar
  40. 40.
    Verger A, Taieb D, Guedj E. Is the information provided by amino acid PET radiopharmaceuticals clinically equivalent in gliomas? Eur J Nucl Med Mol Imaging. 2017;44:1408–10.CrossRefPubMedGoogle Scholar
  41. 41.
    Dadone-Montaudié B, Ambrosetti D, Dufour M, Darcourt J, Almairac F, Coyne J, et al. [18F] FDOPA standardized uptake values of brain tumors are not exclusively dependent on LAT1 expression. PLoS One. 2017;12:e0184625.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Pöpperl G, Kreth FW, Herms J, Koch W, Mehrkens JH, Gildehaus FJ, et al. Analysis of 18F-FET PET for grading of recurrent gliomas: is evaluation of uptake kinetics superior to standard methods? J Nucl Med. 2006;47:393–403.PubMedGoogle Scholar
  43. 43.
    Jiang H, Cui Y, Wang J, Lin S. Impact of epidemiological characteristics of supratentorial gliomas in adults brought about by the 2016 world health organization classification of tumors of the central nervous system. Oncotarget. 2017;8:20354–61.PubMedGoogle Scholar
  44. 44.
    Jansen NL, Suchorska B, Wenter V, Schmid-Tannwald C, Todica A, Eigenbrod S, et al. Prognostic significance of dynamic 18F-FET PET in newly diagnosed astrocytic high-grade glioma. J Nucl Med. 2015;56:9–15.CrossRefPubMedGoogle Scholar
  45. 45.
    Unterrainer M, Schweisthal F, Suchorska B, Wenter V, Schmid-Tannwald C, Fendler WP, et al. Serial 18F-FET PET imaging of primarily 18F-FET-negative glioma: does it make sense? J Nucl Med. 2016;57:1177–82.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Merwan Ginet
    • 1
  • Timothée Zaragori
    • 1
    • 2
  • Pierre-Yves Marie
    • 1
    • 3
  • Véronique Roch
    • 1
  • Guillaume Gauchotte
    • 4
    • 5
  • Fabien Rech
    • 6
    • 7
  • Marie Blonski
    • 6
    • 7
  • Zohra Lamiral
    • 3
  • Luc Taillandier
    • 7
    • 8
  • Laëtitia Imbert
    • 1
    • 2
  • Antoine Verger
    • 1
    • 2
    Email author
  1. 1.CHRU-Nancy, Department of Nuclear Medicine & Nancyclotep Imaging platformUniversité de LorraineNancyFrance
  2. 2.IADI, INSERM, UMR 1254Université de LorraineNancyFrance
  3. 3.Université de Lorraine, INSERM U1116NancyFrance
  4. 4.CHRU-Nancy, Department of PathologyUniversité de LorraineNancyFrance
  5. 5.INSERM U1256Université de LorraineNancyFrance
  6. 6.Department of NeurosurgeryCHU-NancyNancyFrance
  7. 7.Centre de Recherche en Automatique de Nancy CRAN, CNRS UMR 7039Université de LorraineNancyFrance
  8. 8.CHRU-Nancy, Department of Neuro-oncologyUniversité de LorraineNancyFrance

Personalised recommendations