Advertisement

Subcortical amyloid relates to cortical morphology in cognitively normal individuals

  • Shady RahayelEmail author
  • Christian Bocti
  • Pénélope Sévigny Dupont
  • Maude Joannette
  • Marie Maxime Lavallée
  • Jim Nikelski
  • Howard Chertkow
  • Sven Joubert
Original Article
Part of the following topical collections:
  1. Neurology

Abstract

Purpose

Amyloid (Aβ) brain deposition can occur in cognitively normal individuals and is associated with cortical volume abnormalities. Aβ-related volume changes are inconsistent across studies. Since volume is composed of surface area and thickness, the relative contribution of Aβ deposition on each of these metrics remains to be understood in cognitively normal individuals.

Methods

A group of 104 cognitively normal individuals underwent neuropsychological assessment, PiB-PET scan, and MRI acquisition. Surface-based cortical analyses were performed to investigate the effects of cortical and subcortical Aβ burden on cortical volume, thickness, and surface area. Mediation analyses were used to study the effect of thickness and surface area on Aβ-associated volume changes. We also investigated the relationships between structural metrics in clusters with abnormal morphology and regions underlying resting-state functional networks and cognitive performance.

Results

Cortical Aβ was not associated with cortical morphology. Subcortical Aβ burden was associated with changes in cortical volume, thickness, and surface area. Aβ-associated volume changes were driven by cortical surface area with or without thickness but never by thickness alone. Aβ-associated changes overlapped greatly with regions from the default mode network and were associated with lower performance in visuospatial abilities, episodic memory, and working memory.

Conclusions

In cognitively normal individuals, subcortical Aβ is associated with cortical volume, and this effect was driven by surface area with or without thickness. Aβ-associated cortical changes were found in the default mode network and affected cognitive performance. Our findings demonstrate the importance of studying subcortical Aβ and cortical surface area in normal ageing.

Keywords

Amyloid beta Subcortical Default mode network Pittsburgh compound B Cognitive ageing 

Notes

Funding

This work was funded by the Canadian Institutes of Health Research (no. MOP123376) and the Institute of Aging (no. IA0120269). SJ was supported by a Chercheur boursier senior award from the Fonds de recherche du Québec—Santé (FRQ-S).

Compliance with ethical standards

Conflict of interest

Christian Bocti declares investments at IMEKA. None of the other co-authors report having any conflicts of interests.

Ethical approval

All research protocols were reviewed and in accordance with ethical standards. They were approved by the Centre de recherche de l’Institut universitaire de gériatrie de Montréal, the Montreal Neurological Institute, and the Hospital Research Ethics Boards.

Informed consent

All subjects gave their informed consent prior to their participation in the study.

Supplementary material

259_2019_4446_MOESM1_ESM.docx (35 kb)
ESM 1 (DOCX 34.7 kb)

References

  1. 1.
    Thal DR, Rub U, Orantes M, Braak H. Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology. 2002;58:1791–800.CrossRefPubMedGoogle Scholar
  2. 2.
    Murray ME, Lowe VJ, Graff-Radford NR, Liesinger AM, Cannon A, Przybelski SA, et al. Clinicopathologic and 11C-Pittsburgh compound B implications of Thal amyloid phase across the Alzheimer’s disease spectrum. Brain. 2015;138:1370–81.  https://doi.org/10.1093/brain/awv050.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Epelbaum S, Genthon R, Cavedo E, Habert MO, Lamari F, Gagliardi G, et al. Preclinical Alzheimer’s disease: a systematic review of the cohorts underlying the concept. Alzheimers Dement. 2017;13:454–67.  https://doi.org/10.1016/j.jalz.2016.12.003.CrossRefPubMedGoogle Scholar
  4. 4.
    Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010;9:119–28.  https://doi.org/10.1016/S1474-4422(09)70299-6.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82:239–59.CrossRefPubMedGoogle Scholar
  6. 6.
    Palmqvist S, Mattsson N, Hansson O. Alzheimer’s disease neuroimaging I. Cerebrospinal fluid analysis detects cerebral amyloid-beta accumulation earlier than positron emission tomography. Brain. 2016;139:1226–36.  https://doi.org/10.1093/brain/aww015.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A. 2004;101:4637–42.  https://doi.org/10.1073/pnas.0308627101.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Mormino EC, Smiljic A, Hayenga AO, Onami SH, Greicius MD, Rabinovici GD, et al. Relationships between beta-amyloid and functional connectivity in different components of the default mode network in aging. Cereb Cortex. 2011;21:2399–407.  https://doi.org/10.1093/cercor/bhr025.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sperling RA, Laviolette PS, O’Keefe K, O’Brien J, Rentz DM, Pihlajamaki M, et al. Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron. 2009;63:178–88.  https://doi.org/10.1016/j.neuron.2009.07.003.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    de Flores R, La Joie R, Chetelat G. Structural imaging of hippocampal subfields in healthy aging and Alzheimer’s disease. Neuroscience. 2015;309:29–50.  https://doi.org/10.1016/j.neuroscience.2015.08.033.CrossRefPubMedGoogle Scholar
  11. 11.
    Storandt M, Mintun MA, Head D, Morris JC. Cognitive decline and brain volume loss as signatures of cerebral amyloid-beta peptide deposition identified with Pittsburgh compound B: cognitive decline associated with Abeta deposition. Arch Neurol. 2009;66:1476–81.  https://doi.org/10.1001/archneurol.2009.272.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Fagan AM, Head D, Shah AR, Marcus D, Mintun M, Morris JC, et al. Decreased cerebrospinal fluid Abeta(42) correlates with brain atrophy in cognitively normal elderly. Ann Neurol. 2009;65:176–83.  https://doi.org/10.1002/ana.21559.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Dore V, Villemagne VL, Bourgeat P, Fripp J, Acosta O, Chetelat G, et al. Cross-sectional and longitudinal analysis of the relationship between Abeta deposition, cortical thickness, and memory in cognitively unimpaired individuals and in Alzheimer disease. JAMA Neurol. 2013;70:903–11.  https://doi.org/10.1001/jamaneurol.2013.1062.CrossRefPubMedGoogle Scholar
  14. 14.
    Fjell AM, Walhovd KB, Fennema-Notestine C, McEvoy LK, Hagler DJ, Holland D, et al. Brain atrophy in healthy aging is related to CSF levels of Abeta1-42. Cereb Cortex. 2010;20:2069–79.  https://doi.org/10.1093/cercor/bhp279.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Chetelat G, Villemagne VL, Pike KE, Baron JC, Bourgeat P, Jones G, et al. Larger temporal volume in elderly with high versus low beta-amyloid deposition. Brain. 2010;133:3349–58.  https://doi.org/10.1093/brain/awq187.CrossRefPubMedGoogle Scholar
  16. 16.
    Winkler AM, Greve DN, Bjuland KJ, Nichols TE, Sabuncu MR, Ha Berg AK, et al. Joint analysis of cortical area and thickness as a replacement for the analysis of the volume of the cerebral cortex. Cereb Cortex. 2018;28:738–49.  https://doi.org/10.1093/cercor/bhx308.CrossRefPubMedGoogle Scholar
  17. 17.
    Winkler AM, Kochunov P, Blangero J, Almasy L, Zilles K, Fox PT, et al. Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. Neuroimage. 2010;53:1135–46.  https://doi.org/10.1016/j.neuroimage.2009.12.028.CrossRefPubMedGoogle Scholar
  18. 18.
    Panizzon MS, Fennema-Notestine C, Eyler LT, Jernigan TL, Prom-Wormley E, Neale M, et al. Distinct genetic influences on cortical surface area and cortical thickness. Cereb Cortex. 2009;19:2728–35.  https://doi.org/10.1093/cercor/bhp026.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Becker JA, Hedden T, Carmasin J, Maye J, Rentz DM, Putcha D, et al. Amyloid-beta associated cortical thinning in clinically normal elderly. Ann Neurol. 2011;69:1032–42.  https://doi.org/10.1002/ana.22333.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Dickerson BC, Bakkour A, Salat DH, Feczko E, Pacheco J, Greve DN, et al. The cortical signature of Alzheimer’s disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. Cereb Cortex. 2009;19:497–510.  https://doi.org/10.1093/cercor/bhn113.CrossRefPubMedGoogle Scholar
  21. 21.
    Knopman DS, Lundt ES, Therneau TM, Vemuri P, Lowe VJ, Kantarci K, et al. Joint associations of beta-amyloidosis and cortical thickness with cognition. Neurobiol Aging. 2018;65:121–31.  https://doi.org/10.1016/j.neurobiolaging.2018.01.017.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Whitwell JL, Tosakulwong N, Weigand SD, Senjem ML, Lowe VJ, Gunter JL, et al. Does amyloid deposition produce a specific atrophic signature in cognitively normal subjects? Neuroimage Clin. 2013;2:249–57.  https://doi.org/10.1016/j.nicl.2013.01.006.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Dickerson BC, Feczko E, Augustinack JC, Pacheco J, Morris JC, Fischl B, et al. Differential effects of aging and Alzheimer’s disease on medial temporal lobe cortical thickness and surface area. Neurobiol Aging. 2009;30:432–40.  https://doi.org/10.1016/j.neurobiolaging.2007.07.022.CrossRefPubMedGoogle Scholar
  24. 24.
    Villeneuve S, Rabinovici GD, Cohn-Sheehy BI, Madison C, Ayakta N, Ghosh PM, et al. Existing Pittsburgh Compound-B positron emission tomography thresholds are too high: statistical and pathological evaluation. Brain. 2015;138:2020–33.  https://doi.org/10.1093/brain/awv112.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Cho SH, Shin JH, Jang H, Park S, Kim HJ, Kim SE, et al. Amyloid involvement in subcortical regions predicts cognitive decline. Eur J Nucl Med Mol Imaging. 2018. doi: https://doi.org/10.1007/s00259-018-4081-5.
  26. 26.
    Hanseeuw BJ, Betensky RA, Mormino EC, Schultz AP, Sepulcre J, Becker JA, et al. PET staging of amyloidosis using striatum. Alzheimers Dement. 2018. doi: https://doi.org/10.1016/j.jalz.2018.04.011.
  27. 27.
    Hanseeuw BJ, Jonas V, Jackson J, Betensky RA, Rentz DM, Johnson KA, et al. Association of anxiety with subcortical amyloidosis in cognitively normal older adults. Mol Psychiatry. 2018. doi: https://doi.org/10.1038/s41380-018-0214-2.
  28. 28.
    Rahayel S, Bocti C, Sevigny Dupont P, Joannette M, Lavallee MM, Nikelski J, et al. Subcortical amyloid load is associated with shape and volume in cognitively normal individuals. Hum Brain Mapp. 2019. doi: https://doi.org/10.1002/hbm.24680.
  29. 29.
    Ad-Dab’bagh Y, Lyttelton O, Muehlboeck JS, Lepage C, Einarson D, Mok K, et al. The CIVET image-processing environment: a fully automated comprehensive pipeline for anatomical neuroimaging research. In: Corbetta M, editor. Proceedings of the 12th annual meeting of the organization for human brain mapping. 2006.Google Scholar
  30. 30.
    Nikelski J, Chertkow H, Evans A. Running with the beagle: a multi-modal, integrative imaging pipeline specialized for the processing of elderly brains. Human Amyloid Imaging Conference. 2012 p. 80.Google Scholar
  31. 31.
    Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol. 2004;55:306–19.  https://doi.org/10.1002/ana.20009.CrossRefPubMedGoogle Scholar
  32. 32.
    Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15:273–89.  https://doi.org/10.1006/nimg.2001.0978.CrossRefGoogle Scholar
  33. 33.
    Reuter M, Schmansky NJ, Rosas HD, Fischl B. Within-subject template estimation for unbiased longitudinal image analysis. Neuroimage. 2012;61:1402–18.  https://doi.org/10.1016/j.neuroimage.2012.02.084.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage. 1999;9:179–94.  https://doi.org/10.1006/nimg.1998.0395.CrossRefGoogle Scholar
  35. 35.
    Reuter M, Rosas HD, Fischl B. Highly accurate inverse consistent registration: a robust approach. Neuroimage. 2010;53:1181–96.  https://doi.org/10.1016/j.neuroimage.2010.07.020.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Segonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, et al. A hybrid approach to the skull stripping problem in MRI. Neuroimage. 2004;22:1060–75.  https://doi.org/10.1016/j.neuroimage.2004.03.032.CrossRefPubMedGoogle Scholar
  37. 37.
    Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33:341–55.CrossRefGoogle Scholar
  38. 38.
    Fischl B, Salat DH, van der Kouwe AJ, Makris N, Segonne F, Quinn BT, et al. Sequence-independent segmentation of magnetic resonance images. Neuroimage. 2004;23(Suppl 1):S69–84.  https://doi.org/10.1016/j.neuroimage.2004.07.016.CrossRefPubMedGoogle Scholar
  39. 39.
    Sled JG, Zijdenbos AP, Evans AC. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging. 1998;17:87–97.  https://doi.org/10.1109/42.668698.CrossRefGoogle Scholar
  40. 40.
    Fischl B, Liu A, Dale AM. Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans Med Imaging. 2001;20:70–80.  https://doi.org/10.1109/42.906426.CrossRefPubMedGoogle Scholar
  41. 41.
    Segonne F, Pacheco J, Fischl B. Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Trans Med Imaging. 2007;26:518–29.  https://doi.org/10.1109/TMI.2006.887364.CrossRefPubMedGoogle Scholar
  42. 42.
    Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A. 2000;97:11050–5.  https://doi.org/10.1073/pnas.200033797.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Dale AM, Sereno MI. Improved localizadon of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach. J Cogn Neurosci. 1993;5:162–76.  https://doi.org/10.1162/jocn.1993.5.2.162.CrossRefPubMedGoogle Scholar
  44. 44.
    Fischl B, Sereno MI, Dale AM. Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. Neuroimage. 1999;9:195–207.  https://doi.org/10.1006/nimg.1998.0396.CrossRefGoogle Scholar
  45. 45.
    Fischl B, Sereno MI, Tootell RB, Dale AM. High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum Brain Mapp. 1999;8:272–84.CrossRefPubMedGoogle Scholar
  46. 46.
    Fischl B, van der Kouwe A, Destrieux C, Halgren E, Segonne F, Salat DH, et al. Automatically parcellating the human cerebral cortex. Cereb Cortex. 2004;14:11–22.CrossRefPubMedGoogle Scholar
  47. 47.
    Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31:968–80.  https://doi.org/10.1016/j.neuroimage.2006.01.021.CrossRefGoogle Scholar
  48. 48.
    Rosas HD, Liu AK, Hersch S, Glessner M, Ferrante RJ, Salat DH, et al. Regional and progressive thinning of the cortical ribbon in Huntington’s disease. Neurology. 2002;58:695–701.CrossRefPubMedGoogle Scholar
  49. 49.
    Kuperberg GR, Broome MR, McGuire PK, David AS, Eddy M, Ozawa F, et al. Regionally localized thinning of the cerebral cortex in schizophrenia. Arch Gen Psychiatry. 2003;60:878–88.  https://doi.org/10.1001/archpsyc.60.9.878.CrossRefPubMedGoogle Scholar
  50. 50.
    Salat DH, Buckner RL, Snyder AZ, Greve DN, Desikan RS, Busa E, et al. Thinning of the cerebral cortex in aging. Cereb Cortex. 2004;14:721–30.  https://doi.org/10.1093/cercor/bhh032.CrossRefGoogle Scholar
  51. 51.
    Im K, Lee JM, Lyttelton O, Kim SH, Evans AC, Kim SI. Brain size and cortical structure in the adult human brain. Cereb Cortex. 2008;18:2181–91.  https://doi.org/10.1093/cercor/bhm244.CrossRefPubMedGoogle Scholar
  52. 52.
    Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:1125–65.  https://doi.org/10.1152/jn.00338.2011.CrossRefPubMedGoogle Scholar
  53. 53.
    Hayes AF. Introduction to mediation, moderation, and conditional process analysis: a regression-based approach. New York: The Guilford Press; 2013.Google Scholar
  54. 54.
    Winkler AM, Ridgway GR, Webster MA, Smith SM, Nichols TE. Permutation inference for the general linear model. Neuroimage. 2014;92:381–97.  https://doi.org/10.1016/j.neuroimage.2014.01.060.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Williams J, Mackinnon DP. Resampling and distribution of the product methods for testing indirect effects in complex models. Struct Equ Modeling. 2008;15:23–51.  https://doi.org/10.1080/10705510701758166.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Tosun D, Schuff N, Truran-Sacrey D, Shaw LM, Trojanowski JQ, Aisen P, et al. Relations between brain tissue loss, CSF biomarkers, and the ApoE genetic profile: a longitudinal MRI study. Neurobiol Aging. 2010;31:1340–54.  https://doi.org/10.1016/j.neurobiolaging.2010.04.030.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Arenaza-Urquijo EM, Molinuevo JL, Sala-Llonch R, Sole-Padulles C, Balasa M, Bosch B, et al. Cognitive reserve proxies relate to gray matter loss in cognitively healthy elderly with abnormal cerebrospinal fluid amyloid-beta levels. J Alzheimers Dis. 2013;35:715–26.  https://doi.org/10.3233/JAD-121906.CrossRefPubMedGoogle Scholar
  58. 58.
    Raichle ME. The brain’s default mode network. Annu Rev Neurosci. 2015;38:433–47.  https://doi.org/10.1146/annurev-neuro-071013-014030.CrossRefPubMedGoogle Scholar
  59. 59.
    Dixon ML, De La Vega A, Mills C, Andrews-Hanna J, Spreng RN, Cole MW, et al. Heterogeneity within the frontoparietal control network and its relationship to the default and dorsal attention networks. Proc Natl Acad Sci U S A. 2018;115:E1598–E607.  https://doi.org/10.1073/pnas.1715766115.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Nava E, Roder B. Adaptation and maladaptation insights from brain plasticity. Prog Brain Res. 2011;191:177–94.  https://doi.org/10.1016/B978-0-444-53752-2.00005-9.CrossRefPubMedGoogle Scholar
  61. 61.
    Beach TG, Sue LI, Walker DG, Sabbagh MN, Serrano G, Dugger BN, et al. Striatal amyloid plaque density predicts Braak neurofibrillary stage and clinicopathological Alzheimer’s disease: implications for amyloid imaging. J Alzheimers Dis. 2012;28:869–76.  https://doi.org/10.3233/JAD-2011-111340.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Sepulcre J, Sabuncu MR, Becker A, Sperling R, Johnson KA. In vivo characterization of the early states of the amyloid-beta network. Brain. 2013;136:2239–52.  https://doi.org/10.1093/brain/awt146.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Fortea J, Sala-Llonch R, Bartres-Faz D, Bosch B, Llado A, Bargallo N, et al. Increased cortical thickness and caudate volume precede atrophy in PSEN1 mutation carriers. J Alzheimers Dis. 2010;22:909–22.  https://doi.org/10.3233/JAD-2010-100678.CrossRefPubMedGoogle Scholar
  64. 64.
    Spreng RN, Sepulcre J, Turner GR, Stevens WD, Schacter DL. Intrinsic architecture underlying the relations among the default, dorsal attention, and frontoparietal control networks of the human brain. J Cogn Neurosci. 2013;25:74–86.  https://doi.org/10.1162/jocn_a_00281.CrossRefPubMedGoogle Scholar
  65. 65.
    Sestieri C, Shulman GL, Corbetta M. The contribution of the human posterior parietal cortex to episodic memory. Nat Rev Neurosci. 2017;18:183–92.  https://doi.org/10.1038/nrn.2017.6.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Breukelaar IA, Antees C, Grieve SM, Foster SL, Gomes L, Williams LM, et al. Cognitive control network anatomy correlates with neurocognitive behavior: a longitudinal study. Hum Brain Mapp. 2017;38:631–43.  https://doi.org/10.1002/hbm.23401.CrossRefPubMedGoogle Scholar
  67. 67.
    Friederici AD, Gierhan SM. The language network. Curr Opin Neurobiol. 2013;23:250–4.  https://doi.org/10.1016/j.conb.2012.10.002.CrossRefPubMedGoogle Scholar
  68. 68.
    Kuznetsova KA, Maniega SM, Ritchie SJ, Cox SR, Storkey AJ, Starr JM, et al. Brain white matter structure and information processing speed in healthy older age. Brain Struct Funct. 2016;221:3223–35.  https://doi.org/10.1007/s00429-015-1097-5.CrossRefPubMedGoogle Scholar
  69. 69.
    Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD. Neurodegenerative diseases target large-scale human brain networks. Neuron. 2009;62:42–52.  https://doi.org/10.1016/j.neuron.2009.03.024.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Rakic P. Radial unit hypothesis of neocortical expansion. Novartis Found Symp. 2000;228:30–42 discussion −52.PubMedGoogle Scholar
  71. 71.
    Palaniyappan L, Liddle PF. Differential effects of surface area, gyrification and cortical thickness on voxel based morphometric deficits in schizophrenia. Neuroimage. 2012;60:693–9.  https://doi.org/10.1016/j.neuroimage.2011.12.058.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PsychologyUniversité de MontréalMontrealCanada
  2. 2.Research CentreInstitut universitaire de gériatrie de MontréalMontrealCanada
  3. 3.Department of NeurologyUniversité de SherbrookeSherbrookeCanada
  4. 4.Lady Davis Institute for Medical Research, Jewish General HospitalMcGill UniversityMontrealCanada
  5. 5.Department of Neurology and NeurosurgeryMcGill UniversityMontrealCanada

Personalised recommendations