Advertisement

AI-based applications in hybrid imaging: how to build smart and truly multi-parametric decision models for radiomics

  • Isabella Castiglioni
  • Francesca Gallivanone
  • Paolo SodaEmail author
  • Michele Avanzo
  • Joseph Stancanello
  • Marco Aiello
  • Matteo Interlenghi
  • Marco Salvatore
Review Article
  • 63 Downloads
Part of the following topical collections:
  1. Advanced Image Analyses (Radiomics and Artificial Intelligence)

Abstract

Introduction

The quantitative imaging features (radiomics) that can be obtained from the different modalities of current-generation hybrid imaging can give complementary information with regard to the tumour environment, as they measure different morphologic and functional imaging properties. These multi-parametric image descriptors can be combined with artificial intelligence applications into predictive models. It is now the time for hybrid PET/CT and PET/MRI to take the advantage offered by radiomics to assess the added clinical benefit of using multi-parametric models for the personalized diagnosis and prognosis of different disease phenotypes.

Objective

The aim of the paper is to provide an overview of current challenges and available solutions to translate radiomics into hybrid PET-CT and PET-MRI imaging for a smart and truly multi-parametric decision model.

Keywords

Radiomics Artificial intelligence Decision models Hybrid imaging PET/CT PET/MRI 

Notes

Compliance with ethical standards

Isabella Castiglioni declares that she has no conflict of interest. Francesca Gallivanone declares that she has no conflict of interest. Paolo Soda declares that he has no conflict of interest. Michele Avanzo declares that he has no conflict of interest. Joseph Stancanello discloses an interest in Oncoradiomics SA. Marco Aiello declares that he has no conflict of interest. Matteo Interlenghi declares that he has no conflict of interest. Marco Salvatore declares that he has no conflict of interest. This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Bettinardi V, Mancosu P, Danna M, Giovacchini G, Landoni C, Picchio M, et al. Two dimensional vs three-dimensional imaging in whole body oncologic PET/CT: a discovery–STE phantom and patient study. Q J Nucl Med Mol Imaging. 2007;51(3):214–23.PubMedGoogle Scholar
  2. 2.
    Bailey DL, Pichler BJ, Gückel B, Antoch G, Barthel H, Bhujwalla ZM, et al. Combined PET/MRI: global warming—summary report of the 6th International Workshop on PET/MRI, March 27–29, 2017, Tübingen, Germany. Mol Imaging Biol. 2018;20(1):4–20.  https://doi.org/10.1007/s11307-017-1123-5.CrossRefPubMedGoogle Scholar
  3. 3.
    Rizzo G, Castiglioni I, Russo G, Tana MG, Dell’Acqua F, Gilardi MC, et al. Using deconvolution to improve PET spatial resolution in OSEM iterative reconstruction. Meth Inf Med. 2007;46(3):231–5.Google Scholar
  4. 4.
    Gallivanone F, Canevari C, Gianolli G, Salvatore C, Della Rosa PA, Gilardi MC, et al. A partial volume effect correction tailored for 18F-FDG-PET oncological studies. Biomed Res Int. 2013;2013:780458.  https://doi.org/10.1155/2013/780458.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bettinardi V, Castiglioni I, De Bernardi E, Gilardi MC. PET quantification: strategies for partial volume correction. Clin Transl Imaging. 2014;2(3):199–218.  https://doi.org/10.1007/s40336-014-0066-y.
  6. 6.
    Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med. 2007;48(6):932–45.  https://doi.org/10.2967/jnumed.106.035774.CrossRefPubMedGoogle Scholar
  7. 7.
    Gerlinger M, Rowan AJ, Horswell S, Math M, Larkin J, Endesfelder D, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366(10):883–92.  https://doi.org/10.1056/NEJMoa1113205 Erratum in: N Engl J Med. 2012 Sep 6;367(10):976.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Aerts HJ, Rios-Velazquez E, Leijenaar RT, Parmar C, Grossmann P, Cavalho S, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006.  https://doi.org/10.1038/ncomms5006.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hastie T, Tibshirani R, Friedman J. The elements of statistical learning — data mining, inference, and prediction. 2nd ed. New York: Springer; 2008.Google Scholar
  10. 10.
    Segal E, Sirlin CB, Ooi C, Adler AS, Gollub J, Chen X, et al. Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotech. 2007;25(6):675–80.CrossRefGoogle Scholar
  11. 11.
    Leger S, Zwanenburg A, Pilz K, et al. A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling. Sci Rep. 2017;7:13206.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Parmar C, Grossmann P, Bussink J, et al. Machine learning methods for quantitative radiomic biomarkers. Sci Rep. 2015;5:13087.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Nanni L, Brahnam S, Salvatore C, Castiglioni I. Texture descriptors and voxels for the early diagnosis of Alzheimer's disease. Artif Intell Med. 2019;97:19–26.CrossRefPubMedGoogle Scholar
  14. 14.
    Mazo C, Alegre E, Trujillo M. Classification of cardiovascular tissues using LBP based descriptors and a cascade SVM. Comput Methods Prog Biomed. 2017;147:1–10.  https://doi.org/10.1016/j.cmpb.2017.06.003.CrossRefGoogle Scholar
  15. 15.
    Koster MJ, Matteson EL, Warrington KJ. Large-vessel giant cell arteritis: diagnosis, monitoring and management. Rheumatology (Oxford). 2018;57(suppl_2):ii32–42.  https://doi.org/10.1093/rheumatology/kex424.CrossRefGoogle Scholar
  16. 16.
    Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures. They are data. Radiology. 2016;278(2):151169.  https://doi.org/10.1148/radiol.2015151169.CrossRefGoogle Scholar
  17. 17.
    El Naqa I, Grigsby PW, Apte A, Kidd E, Donnelly E, Khullar D, et al. Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recogn. 2009;42(6):1162–71.CrossRefGoogle Scholar
  18. 18.
    S. Reuzé, A. Schernberg, F. Orlhac, R. Sun, C. Chargari, L. Dercle, E. Deutsch, I. Buvat, and C. Robert. Radiomics in nuclear medicine applied to radiation therapy: methods, pitfalls, and challenges. Int J Rad Oncology. 2018;102(4):1117–42.CrossRefGoogle Scholar
  19. 19.
    Zwanenburg A, Leger S, Vallières M, Löck S. Image biomarker standardisation initiative. 2018 [Current version v9 2019]. https://arxiv.org/pdf/1612.07003
  20. 20.
    Sakurai H, Asamura H, Miyaoka E, Yoshino I, Fujii Y, Nakanishi Y, et al. Differences in the prognosis of resected lung adenocarcinoma according to the histological subtype: a retrospective analysis of Japanese lung cancer registry data. Eur J Cardiothorac Surg. 2015;45:100–7.  https://doi.org/10.1093/ejcts/ezt284.CrossRefGoogle Scholar
  21. 21.
    Mann RM, Kuhl CK, Kinkel K, Boetes C. Breast MRI: guidelines from the European Society of Breast Imaging. Eur Radiol. 2008;18(7):1307–18.  https://doi.org/10.1007/s00330-008-0863-7.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kunkel M, Reichert TE, Benz P, Lehr HA, Jeong JH, Wieand S, et al. Overexpression of Glut-1 and increased glucose metabolism in tumors are associated with a poor prognosis in patients with oral squamous cell carcinoma. Cancer. 2003;97(4):1015–24.CrossRefPubMedGoogle Scholar
  23. 23.
    Basu S, Kwee TC, Gatenby R, Saboury B, Torigian DA, Alavi A. Evolving role of molecular imaging with PET in detecting and characterizing heterogeneity of cancer tissue at the primary and metastatic sites, a plausible explanation for failed attempts to cure malignant disorders. Eur J Nucl Med Mol Imaging. 2011;38:987–91.  https://doi.org/10.1007/s00259-011-1863-4.CrossRefPubMedGoogle Scholar
  24. 24.
    Tixier F, Groves AM, Goh V, Hatt M, Ingrand P, Le Rest CC, et al. Correlation of intra-tumor 18F-FDG uptake heterogeneity indices with perfusion CT derived parameters in colorectal cancer. PLoS One. 2014;9(6):e99567.  https://doi.org/10.1371/journal.pone.0099567.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Rockwell S, Dobrucki IT, Kim EY, Marrison ST, Vu VT. Hypoxia and radiation therapy: past history, ongoing research, and future promise. Curr Mol Med. 2009;9(4):442–58.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hatt M, Hanzouli H, Rest CCL, Visvikis D. Comparison of edge-preserving filters for unbiased quantification in 18F-FDG PET imaging. J Nucl Med. 2015;56:1828.CrossRefGoogle Scholar
  27. 27.
    Rizzo S, Botta F, Raimondi S, Origgi D, Fanciullo C, Morganti AG, et al. Radiomics: the facts and the challenges of image analysis. Eur Radiol Exp. 2018;2(1):36.  https://doi.org/10.1186/s41747-018-0068-z.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Win T, Miles KA, Janes SM, Ganeshan B, Shastry M, Endozo R, et al. Tumor heterogeneity and permeability as measured on the CT component of PET/CT predict survival in patients with nonsmall cell lung cancer. Clin Cancer Res. 2013;19:3591–9.  https://doi.org/10.1158/1078-0432.CCR-12-1307.CrossRefPubMedGoogle Scholar
  29. 29.
    Yoon SH, Park CM, Park SJ, Yoon J-H, Hahn S, Goo JM. Tumor heterogeneity in lung cancer: assessment with dynamic contrast-enhanced MR imaging. Radiology. 2016;280(3):940–8.  https://doi.org/10.1148/radiol.2016151367.CrossRefPubMedGoogle Scholar
  30. 30.
    Michallek F, Dewey M. Fractal analysis in radiological and nuclear medicine perfusion imaging: a systematic review. Eur Radiol. 2014;24:60–9.  https://doi.org/10.1007/s00330-013-2977-9.CrossRefPubMedGoogle Scholar
  31. 31.
    O’Sullivan F, Roy S, Eary J. A statistical measure of tissue heterogeneity with application to 3D PET sarcoma data. Biostatistics. 2003;4:433–48.CrossRefPubMedGoogle Scholar
  32. 32.
    Chalkidou A, O’Doherty MJ, Marsden PK. False discovery rates in PET and CT studies with texture features: a systematic review. PLoS One. 2015;10(5):e0124165.  https://doi.org/10.1371/journal.pone.0124165.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Maani R, Yang YH, Kaira S. Voxel-based texture analysis of the brain. Plos One. 2015;10(3):e0117759.  https://doi.org/10.1371/journal.pone.0117759.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Scalco E, Rizzo G. Texture analysis of medical images for radiotgerapy applications. Br J Radiol. 2017;90(1070):20160642.  https://doi.org/10.1259/bjr.20160642.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Fave X, Cook M, Frederick A, Zhang L, Yang J, Fried D, et al. Preliminary investigation into sources of uncertainty in quantitative imaging features. Comput Med Imaging Graph. 2015;44:54–61.  https://doi.org/10.1016/j.compmedimag.2015.04.006.CrossRefPubMedGoogle Scholar
  36. 36.
    Mackin D, Fave X, Zhang L, Fried D, Yang J, Taylor B, et al. Measuring computed tomography scanner variability of radiomics features. Investig Radiol. 2015;50(11):757–65.  https://doi.org/10.1097/RLI.0000000000000180.CrossRefGoogle Scholar
  37. 37.
    Orlhac F, Soussan M, Maisonobe JA, Garcia CA, Vanderlinden B, Buvat I. Tumor texture analysis in 18F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis. J Nucl Med. 2014;55(3):414–22.  https://doi.org/10.2967/jnumed.113.129858.CrossRefPubMedGoogle Scholar
  38. 38.
    Becker AS, Wagner MW, Wurnig MC, Boss A. Diffusion-weighted imaging of the abdomen: Impact of b-values on texture analysis features. NMR Biomed. 2017; 30(1).  https://doi.org/10.1002/nbm.3669.
  39. 39.
    Orlhac F, Nioche C, Soussan M, Buvat I. Understanding changes in tumor texture indices in PET: a comparison between visual assessment and index values in simulated and patient data. J Nucl Med. 2017;58(3):387–92.  https://doi.org/10.2967/jnumed.116.181859.CrossRefPubMedGoogle Scholar
  40. 40.
    Collewet G, Strzelecki M, Mariette F. Influence of MRI acquisition protocols and image intensity normalization methods on texture classification. Magn Reson Imaging. 2004;22(1):81–91.  https://doi.org/10.1016/j.mri.2003.09.001.CrossRefPubMedGoogle Scholar
  41. 41.
    Gallivanone F, Carne I, Interlenghi M, D'Ambrosio D, Baldi M, Fantinato D, et al. A method for manufacturing oncological phantoms for the quantification of 18F-FDG PET and DW-MRI studies. Contrast Media Mol Imaging. 2017;2017:3461684.  https://doi.org/10.1155/2017/3461684.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42(2):328–54.  https://doi.org/10.1007/s00259-014-2961-x.CrossRefPubMedGoogle Scholar
  43. 43.
    Sollini M, Cozzi L, Antunovic L, Chiti A, Kirienko M. PET Radiomics in NSCLC: state of the art and a proposal for harmonization of methodology. Sci Rep. 2017;7(1):358.  https://doi.org/10.1038/s41598-017-00426-y.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Orlhac F, Boughdad S, Philippe C, Stalla-Bourdillon H, Nioche C, Champion L, et al. A Postreconstruction harmonization method for multicenter radiomic studies in PET. J Nucl Med. 2018;59(8):1321–8.  https://doi.org/10.2967/jnumed.117.199935.CrossRefPubMedGoogle Scholar
  45. 45.
    Thie JA. Understanding the standardized uptake value, its methods, and implications for usage. J Nucl Med. 2004;45(9):1431–4.PubMedGoogle Scholar
  46. 46.
    Zhou W, Bartlett DJ, Diehn FE, Glazebrook KN, Kotsenas AL, Carter RE, Fletcher JG, McCollough CH, Leng S. Reduction of metal artifacts and improvement in dose efficiency using photon-counting detector computed tomography and tin filtration. Invest Radiol. 2018;54(4):204–11.Google Scholar
  47. 47.
    Vovk U, Pernus F, Likar B. A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans Med Imaging. 2007;26(3):405–21.CrossRefPubMedGoogle Scholar
  48. 48.
    Gallivanone F, Stefano A, Grosso E, Canevari C, Gianolli L, Messa C, et al. PVE correction in PET-CT whole-body oncological studies from PVE-affected images. IEEE Trans Nucl Sci. 2011;58(3):736–47.CrossRefGoogle Scholar
  49. 49.
    Strul D, Bendriem B. Robustness of anatomically guided pixel-by-pixel algorithms for partial volume effect correction in positron emission tomography. J Cereb Blood Flow Metab. 1999;19(5):547–59.CrossRefPubMedGoogle Scholar
  50. 50.
    Erlandsson K, Buvat I, Pretorius PH, Thomas BA, Hutton BF. A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology. Phys Med Biol. 2012;57(21):R119–59.  https://doi.org/10.1088/0031-9155/57/21/R119.CrossRefPubMedGoogle Scholar
  51. 51.
    Rousset O, Rahmim A, Alavi A, Zaidi H. Partial volume correction strategies in PET. PET Clin. 2007; 2(2):235–249.  https://doi.org/10.1016/j.cpet.2007.10.005.CrossRefPubMedGoogle Scholar
  52. 52.
    Zaidi H, Ruest T, Schoenahl F, Montandon ML. Comparative assessment of statistical brain MR image segmentation algorithms and their impact on partial volume correction in PET. Neuroimage. 2006;32(4):1591–607.CrossRefPubMedGoogle Scholar
  53. 53.
    Moore SC, Southekal S, Park MA, McQuaid SJ, Kijewski MF, Müller SP. Improved regional activity quantitation in nuclear medicine using a new approach to correct for tissue partial volume and spillover effects. IEEE Trans Med Imaging. 2012;31(2):405–16.  https://doi.org/10.1109/TMI.2011.2169981.CrossRefPubMedGoogle Scholar
  54. 54.
    Southekal S, McQuaid SJ, Kijewski MF, Moore SC. Evaluation of a method for projection-based tissue-activity estimation within small volumes of interest. Phys Med Biol. 2012;57(3):685–701.  https://doi.org/10.1088/0031-9155/57/3/685.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Yan J, Lim JC, Townsend DW. MRI-guided brain PET image filtering and partial volume correction. Phys Med Biol. 2015; 60(3):961–976.  https://doi.org/10.1088/0031-9155/60/3/961.CrossRefPubMedGoogle Scholar
  56. 56.
    Incoronato M, Aiello M, Infante T, Cavaliere C, Grimaldi AM, Mirabelli P, et al. Radiogenomic analysis of oncological data: a technical survey. Int J Mol Sci. 2017;18(4):e805.  https://doi.org/10.3390/ijms18040805.CrossRefPubMedGoogle Scholar
  57. 57.
    Foster B, Bagci U, Mansoor A, Xu Z, Mollura DJ. A review on segmentation of positron emission tomography images. Comput Biol Med. 2014;50:76–96.  https://doi.org/10.1016/j.compbiomed.2014.04.014.CrossRefPubMedGoogle Scholar
  58. 58.
    Zaidi H, Alavi A. Naqa. Novel quantitative PET techniques for clinical decision support in oncology. Semin Nucl Med. 2018;48(6):548–64.  https://doi.org/10.1053/j.semnuclmed.2018.07.003.CrossRefPubMedGoogle Scholar
  59. 59.
    Gallivanone F, Interlenghi M, Canervari C, Castiglioni I. A fully automatic, threshold-based segmentation method for the estimation of the metabolic tumor volume from PET images: validation on 3D printed anthropomorphic oncological lesions. J Instrum. 2016;11(1):C01022.CrossRefGoogle Scholar
  60. 60.
    Gallivanone F, Panzeri MM, Canevari C, Losio C, Gianolli L, De Cobelli F, et al. Biomarkers from in vivo molecular imaging of breast cancer: pretreatment 18F-FDG PET predicts patient prognosis, and pretreatment DWI-MR predicts response to neoadjuvant chemotherapy. MAGMA. 2017;30(4):359–73.  https://doi.org/10.1007/s10334-017-0610-7.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Veeraraghavan H, Dashevsky BZ, Onishi N, Sadinski M, Morris E, Deasy JO. Sutton appearance constrained semi-automatic segmentation from DCE-MRI is reproducible and feasible for breast cancer radiomics: a feasibility study. Sci Rep. 2018;8(1):4838.  https://doi.org/10.1038/s41598-018-22980-9.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Huang X, Sun W, Tseng TB, Li C, Qian W. Fast and fully-automated detection and segmentation of pulmonary nodules in thoracic CT scans using deep convolutional neural networks. Comput Med Imaging Graph. 2019;74:25–36.  https://doi.org/10.1016/j.compmedimag.2019.02.003.CrossRefPubMedGoogle Scholar
  63. 63.
    Ma Z, Wu X, Song Q, Luo Y, Wang Y, Zhou J. Automated nasopharyngeal carcinoma segmentation in magnetic resonance images by combination of convolutional neural networks and graph cut. Exp Ther Med. 2018;16(3):2511–21.  https://doi.org/10.3892/etm.2018.6478.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Haga A, Takahashi W, Aoki S, Nawa K, Yamashita H, Abe O, et al. Classification of early stage non-small cell lung cancers on computed tomographic images into histological types using radiomic features: interobserver delineation variability analysis. Radiol Phys Technol. 2018;11(1):27–35.  https://doi.org/10.1007/s12194-017-0433-2.CrossRefPubMedGoogle Scholar
  65. 65.
    Hatt M, Laurent B, Fayad H, Jaouen V, Visvikis D, Le Rest CC. Tumour functional sphericity from PET images: prognostic value in NSCLC and impact of delineation method. Eur J Nucl Med Mol Imaging. 2018;45(4):630–41.  https://doi.org/10.1007/s00259-017-3865-3.CrossRefPubMedGoogle Scholar
  66. 66.
    Huang Q, Lu L, Dercle L, Lichtenstein P, Li Y, Yin Q, et al. Interobserver variability in tumor contouring affects the use of radiomics to predict mutational status. J Med Imaging (Bellingham). 2018;5(1):011005.  https://doi.org/10.1117/1.JMI.5.1.011005.Google Scholar
  67. 67.
    Traverso A, Wee L, Dekker A, Gillies R. Repeatability and reproducibility of radiomic features: a systematic review. Int J Radiat Oncol Biol Phys. 2018;102(4):1143–58.  https://doi.org/10.1016/j.ijrobp.2018.05.053.CrossRefPubMedGoogle Scholar
  68. 68.
    Gallivanone F, Interlenghi M, D'Ambrosio D, Trifirò G, Castiglioni I. Parameters influencing PET imaging features: a phantom study with irregular and heterogeneous synthetic lesions. Contrast Media Mol Imaging. 2018;2018:5324517.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Wu W, Parmar C, Grossmann P, Quackenbush J, Lambin P, Bussink J, et al. Exploratory study to identify radiomics classifiers for lung cancer histology. Front Oncol. 2016;6:71.  https://doi.org/10.3389/fonc.2016.00071.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Monti S, Cavaliere C, Covello M, Nicolai E, Salvatore M, Aiello M. An evaluation of the benefits of simultaneous acquisition on PET/MR coregistration in head/neck imaging. J Healthc Eng. 2017;2017:2634389.  https://doi.org/10.1155/2017/2634389.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Lalush DS. Magnetic resonance–derived improvements in PET imaging. Magn Reson Imaging Clin N Am. 2017;25(2):257–72.  https://doi.org/10.1016/j.mric.2016.12.002.CrossRefPubMedGoogle Scholar
  72. 72.
    Manber R, Thielemans K, Hutton BF, Wan S, Fraioli F, Barnes A, et al. Clinical impact of respiratory motion correction in simultaneous PET/MR, using a joint PET/MR predictive motion model. J Nucl Med. 2018;59(9):1467–73.  https://doi.org/10.2967/jnumed.117.191460.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Fürst S, Grimm R, Hong I, Souvatzoglou M, Casey ME, Schwaiger M, et al. Motion correction strategies for integrated PET/MR. J Nucl Med. 2015;56(2):261–9.  https://doi.org/10.2967/jnumed.114.146787.CrossRefPubMedGoogle Scholar
  74. 74.
    Huang SY, Franc BL, Harnish RJ, Liu G, Mitra D, Copeland TP, et al. Exploration of PET and MRI radiomic features for decoding breast cancer phenotypes and prognosis. NPJ Breast Cancer. 2018;4:24.  https://doi.org/10.1038/s41523-018-0078-2.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Leijenaar RT, Nalbantov G, Carvalho S, van Elmpt WJ, Troost EG, Boellaard R, et al. The effect of SUV discretization in quantitative FDG-PET radiomics: the need for standardized methodology in tumor texture analysis. Sci Rep. 2015;5:11075.  https://doi.org/10.1038/srep11075.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Orlhac F, Soussan M, Chouahnia K, Martinod E, Buvat I. 18F-FDG PET-derived textural indices reflect tissue-specific uptake pattern in non-small cell lung cancer. PLoS One. 2015;10(12):e0145063.  https://doi.org/10.1371/journal.pone.0145063.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Lu L, Ehmke RC, Schwartz LH, Zhao B. Assessing agreement between radiomic features computed for multiple CT imaging settings. PLoS One. 2016;11(12):e0166550.  https://doi.org/10.1371/journal.pone.0166550.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Tixier F, Hatt M, Le Rest CC, Le Pogam A, Corcos L, Visvikis D. Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18F-FDG PET. J Nucl Med. 2012;53:693–700.  https://doi.org/10.2967/jnumed.111.099127.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Buvat I, Orlhac F, Soussan M. Tumor texture analysis in PET: where do we stand? J Nucl Med. 2015;56(11):1642–4.CrossRefPubMedGoogle Scholar
  80. 80.
    Besenyi Z, Ágoston G, Hemelein R, Annamária B, Nagy FT, Varga A, et al. Detection of myocardial inflammation by 18F-FDG-PET/CT in patients with systemic sclerosis without cardiac symptoms: a pilot study. Clin Exp Rheumatol. 2018.Google Scholar
  81. 81.
    Berti A, Della-Torre E, Gallivanone F, Canevari C, Milani R, Lanzillotta M, et al. Quantitative measurement of 18F-FDG PET/CT uptake reflects the expansion of circulating plasmablasts in IgG4-related disease. Rheumatology (Oxford). 2017;56(12):2084–92.  https://doi.org/10.1093/rheumatology/kex234.CrossRefGoogle Scholar
  82. 82.
    Mabey E, Rutherford A, Galloway J. Differentiating disease flare from infection: a common problem in rheumatology. Do 18F-FDG PET/CT scans and novel biomarkers hold the answer? Curr Rheumatol Rep. 2018;20(11):70.  https://doi.org/10.1007/s11926-018-0779-4.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Schwartz LH, Seymour L, Litière S, Ford R, Gwyther S, Mandrekar S, et al. RECIST 1.1 — standardisation and disease-specific adaptations: perspectives from the RECIST Working Group. Eur J Cancer. 2016;62:138–45.  https://doi.org/10.1016/j.ejca.2016.03.082.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50(Suppl):122S–50S.  https://doi.org/10.2967/jnumed.108.057307.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Vargas HA, Hötker AM, Goldman DA, Moskowitz CS, Gondo T, Matsumoto K, et al. Updated prostate imaging reporting and data system (PIRADS v2) recommendations for the detection of clinically significant prostate cancer using multiparametric MRI: critical evaluation using whole-mount pathology as standard of reference. Eur Radiol. 2016;26(6):1606–12.  https://doi.org/10.1007/s00330-015-4015-6.CrossRefPubMedGoogle Scholar
  86. 86.
    Carvalho S, Leijenaar RTH, Troost EGC, van Timmeren JE, Oberije C, van Elmpt W, et al. 18F-fluorodeoxyglucose positron-emission tomography (FDG-PET) — radiomics of metastatic lymph nodes and primary tumor in non-small cell lung cancer (NSCLC) — a prospective externally validated study. PLoS One. 2018;13(3):e0192859.  https://doi.org/10.1371/journal.pone.0192859.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Li K, Sun H, Lu Z, Xin J, Zhang L, Guo Y, et al. Value of [18F]FDG PET radiomic features and VEGF expression in predicting pelvic lymphatic metastasis and their potential relationship in early-stage cervical squamous cell carcinoma. Eur J Radiol. 2018;106:160–6.  https://doi.org/10.1016/j.ejrad.2018.07.024.CrossRefPubMedGoogle Scholar
  88. 88.
    De Bernardi E, Buda A, Guerra L, Vicini D, Elisei F, Landoni C, et al. Radiomics of the primary tumour as a tool to improve 18F-FDG-PET sensitivity in detecting nodal metastases in endometrial cancer. EJNMMI Res. 2018;8(1):86.  https://doi.org/10.1186/s13550-018-0441-1.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    van Helden EJ, Vacher YJL, van Wieringen WN, van Velden FHP, Verheul HMW, Hoekstra OS, et al. Radiomics analysis of pre-treatment [18F]FDG PET/CT for patients with metastatic colorectal cancer undergoing palliative systemic treatment. Eur J Nucl Med Mol Imaging. 2018;45(13):2307–17.  https://doi.org/10.1007/s00259-018-4100-6.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Parvez A, Tau N, Hussey D, Maganti M, Metser U. 18F-FDG PET/CT metabolic tumor parameters and radiomics features in aggressive non-Hodgkin's lymphoma as predictors of treatment outcome and survival. Ann Nucl Med. 2018.  https://doi.org/10.1007/s12149-018-1260-1.
  91. 91.
    Beukinga RJ, Hulshoff JB, Mul VEM, Noordzij W, Kats-Ugurlu G, Slart RHJA, et al. Prediction of response to neoadjuvant chemotherapy and radiation therapy with baseline and restaging 18F-FDG PET imaging biomarkers in patients with esophageal cancer. Radiology. 2018;287(3):983–92.  https://doi.org/10.1148/radiol.2018172229.CrossRefPubMedGoogle Scholar
  92. 92.
    Sohaib SA, Turner B, Hanson JA, Farquharson M, Oliver RT, Reznek RH. CT assessment of tumour response to treatment: comparison of linear, cross-sectional and volumetric measures of tumour size. Br J Radiol. 2000;73(875):1178–84.  https://doi.org/10.1259/bjr.73.875.11144795.CrossRefPubMedGoogle Scholar
  93. 93.
    Coroller TP, Grossmann P, Hou Y, Rios Velazquez E, Leijenaar RT, Hermann G, et al. CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother Oncol. 2015;114(3):345–50.  https://doi.org/10.1016/j.radonc.2015.02.015.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Sato Y, Yanagawa M, Hata A, Enchi Y, Kikuchi N, Honda O, et al. Volumetric analysis of the thymic epithelial tumors: correlation of tumor volume with the WHO classification and Masaoka staging. J Thorac Dis. 2018;10(10):5822–32.  https://doi.org/10.21037/jtd.2018.09.133.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Wang H, Schabath MB, Liu Y, Berglund AE, Bloom GC, Kim J, et al. Semiquantitative computed tomography characteristics for lung adenocarcinoma and their association with lung cancer survival. Clin Lung Cancer. 2015;16(6):e141–63.  https://doi.org/10.1016/j.cllc.2015.05.007.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Groheux D, Giacchetti S, Espié M, Rubello D, Moretti JL, Hindié E. Early monitoring of response to neoadjuvant chemotherapy in breast cancer with 18F-FDG PET/CT: defining a clinical aim. Eur J Nucl Med Mol Imaging. 2011;38(3):419–25.  https://doi.org/10.1007/s00259-010-1660-5.CrossRefPubMedGoogle Scholar
  97. 97.
    Groheux D, Giacchetti S, Moretti JL, Porcher R, Espié M, Lehmann-Che J, et al. Correlation of high 18F-FDG uptake to clinical, pathological and biological prognostic factors in breast cancer. Eur J Nucl Med Mol Imaging. 2011;38(3):426–35.  https://doi.org/10.1007/s00259-010-1640-9.CrossRefPubMedGoogle Scholar
  98. 98.
    Gallivanone F, Canevari C, Sassi I, Zuber V, Marassi A, Gianolli L, et al. Partial volume corrected 18F-FDG PET mean standardized uptake value correlates with prognostic factors in breast cancer. Q J Nucl Med Mol Imaging. 2014;58(4):424–39.PubMedGoogle Scholar
  99. 99.
    Giganti F, De Cobelli F, Canevari C, Orsenigo E, Gallivanone F, Esposito A, et al. Response to chemotherapy in gastric adenocarcinoma with diffusion-weighted MRI and (18) F-FDG-PET/CT: correlation of apparent diffusion coefficient and partial volume corrected standardized uptake value with histological tumor regression grade. J Magn Reson Imaging. 2014;40(5):1147–57.  https://doi.org/10.1002/jmri.24464.CrossRefPubMedGoogle Scholar
  100. 100.
    Picchio M, Kirienko M, Mapelli P, Dell'Oca I, Villa E, Gallivanone F, et al. Predictive value of pre-therapy (18)F-FDG PET/CT for the outcome of (18)F-FDG PET-guided radiotherapy in patients with head and neck cancer. Eur J Nucl Med Mol Imaging. 2014;41(1):21–31.  https://doi.org/10.1007/s00259-013-2528-2.CrossRefPubMedGoogle Scholar
  101. 101.
    Inglese M, Cavaliere C, Monti S, Forte E, Incoronato M, Nicolai E, et al. A multi-parametric PET/MRI study of breast cancer: evaluation of DCE-MRI pharmacokinetic models and correlation with diffusion and functional parameters. NMR Biomed. 2019; 32(1):e4026.  https://doi.org/10.1002/nbm.4026.
  102. 102.
    Vallières M, Freeman CR, Skamene SR, El Naqa I. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol. 2015;60(14):5471–96.  https://doi.org/10.1088/0031-9155/60/14/5471.CrossRefPubMedGoogle Scholar
  103. 103.
    Lv W, Yuan Q, Wang Q, Ma J, Feng Q, Chen W, Rahmim A, Lu L. Radiomics analysis of PET and CT components of PET/CT imaging integrated with clinical parameters: application to prognosis for nasopharyngeal carcinoma. Mol Imaging Biol. 2019.  https://doi.org/10.1007/s11307-018-01304-3.
  104. 104.
    Lin G, Keshari KR, Park JM. Cancer metabolism and tumor heterogeneity: imaging perspectives using MR imaging and spectroscopy. Contrast Media Mol Imaging. 2017;2017:6053879.  https://doi.org/10.1155/2017/6053879.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Crowe W, Wang L, Zhang Z, Varagic J, Bourland JD, Chan MD, et al. MRI evaluation of the effects of whole brain radiotherapy on breast cancer brain metastasis. Int J Radiat Biol. 2018;30:1–27.  https://doi.org/10.1080/09553002.2019.Google Scholar
  106. 106.
    Syed AK, Woodall R, Whisenant JG, Yankeelov TE, Sorace AG. Characterizing trastuzumab-induced alterations in Intratumoral heterogeneity with quantitative imaging and immunohistochemistry in HER2+ breast cancer. Neoplasia. 2018;21(1):17–29.  https://doi.org/10.1016/j.neo.2018.10.008.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Sun NN, Liu C, Ge XL, Wang J. Dynamic contrast-enhanced MRI for advanced esophageal cancer response assessment after concurrent chemoradiotherapy. Diagn Interv Radiol. 2018;24(4):195–202.  https://doi.org/10.5152/dir.2018.17369.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Salvaggio G, Calamia M, Purpura P, Bartolotta TV, Picone D, Dispensa N, et al. Role of apparent diffusion coefficient values in prostate diseases characterization on diffusion-weighted magnetic resonance imaging. Minerva Urol Nefrol. 2018;71(2):154–60.  https://doi.org/10.23736/S0393-2249.18.03065-5.PubMedGoogle Scholar
  109. 109.
    Oda T, Sue M, Sasaki Y, Ogura I. Diffusion-weighted magnetic resonance imaging in oral and maxillofacial lesions: preliminary study on diagnostic ability of apparent diffusion coefficient maps. Oral Radiol. 2018;34(3):224–8.  https://doi.org/10.1007/s11282-017-0303-y.CrossRefPubMedGoogle Scholar
  110. 110.
    Li QW, Qiu B, Wang B, Wang DL, Yin SH, Yang H, et al. Prediction of pathologic responders to neoadjuvant chemoradiotherapy by diffusion-weighted magnetic resonance imaging in locally advanced esophageal squamous cell carcinoma: a prospective study. Dis Esophagus. 2018; 31(2).  https://doi.org/10.1093/dote/dox121.
  111. 111.
    Hamstra DA, Rehemtulla A, Ross BD. Diffusion magnetic resonance imaging: a biomarker for treatment response in oncology. J Clin Oncol. 2007;25(26):4104–9.  https://doi.org/10.1200/JCO.2007.11.9610.CrossRefPubMedGoogle Scholar
  112. 112.
    Arponen O, Sudah M, Masarwah A, Taina M, Rautiainen S, Könönen M, et al. Diffusion-weighted imaging in 3.0 tesla breast MRI: diagnostic performance and tumor characterization using small subregions vs. whole tumor regions of interest. PLoS One. 2015;10(10):e0138702.  https://doi.org/10.1371/journal.pone.0141833.CrossRefPubMedGoogle Scholar
  113. 113.
    Merhemic Z, Imsirovic B, Bilalovic N, Stojanov D, Boban J, Thurnher MM. Apparent diffusion coefficient reproducibility in brain tumors measured on 1.5 and 3 T clinical scanners: a pilot study. Eur J Radiol. 2018;108:249–53.  https://doi.org/10.1016/j.ejrad.2018.10.010.CrossRefPubMedGoogle Scholar
  114. 114.
    Shukla-Dave A, Obuchowski NA, Chenevert TL, Jambawalikar S, Schwartz LH, Malyarenko D, et al. Quantitative imaging biomarkers alliance (QIBA) recommendations for improved precision of DWI and DCE-MRI derived biomarkers in multicenter oncology trials. J Magn Reson Imaging. 2018;49(7):e101-e121.  https://doi.org/10.1002/jmri.2651.CrossRefPubMedGoogle Scholar
  115. 115.
    Rana L, Sood D, Chauhan R, Shukla R, Gurnal P, Nautiyal H, et al. MR imaging of hypoxic ischemic encephalopathy - distribution patterns and ADC value correlations. Eur J Radiol Open. 2018;5:215–20.  https://doi.org/10.1016/j.ejro.2018.08.001.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Zhu MJ, Wang Y, Li HJ, Yang M, Mo XM, Cheng R, et al. Brain alteration in neonates with congenital heart disease using apparent diffusion coefficient histograms. Zhonghua Yi Xue Za Zhi. 2018;98(39):3162–5.  https://doi.org/10.3760/cma.j.issn.0376-2491.2018.39.007.PubMedGoogle Scholar
  117. 117.
    Seyithanoğlu MH, Abdallah A, Dündar TT, Kitiş S, Aralaşmak A, Gündağ Papaker M, et al. Investigation of brain impairment using diffusion-weighted and diffusion tensor magnetic resonance imaging in experienced healthy divers. Med Sci Monit. 2018;24:8279–89.  https://doi.org/10.12659/MSM.911475.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Li Y, Jiang J, Shen T, Wu P, Zuo C. Radiomics features as predictors to distinguish fast and slow progression of mild cognitive impairment to Alzheimer's disease. Conf Proc IEEE Eng Med Biol Soc. 2018;2018:127–30.  https://doi.org/10.1109/EMBC.2018.8512273.PubMedGoogle Scholar
  119. 119.
    Chitalia RD, Kontos D. Role of texture analysis in breast MRI as a cancer biomarker: a review. J Magn Reson Imaging. 2018;49(4):927–938.  https://doi.org/10.1002/jmri.26556.CrossRefPubMedGoogle Scholar
  120. 120.
    Sah BR, Owczarczyk K, Siddique M, Cook GJR, Goh V. Radiomics in esophageal and gastric cancer. Abdom Radiol (NY). 2018;44(6):2048-2058.  https://doi.org/10.1007/s00261-018-1724-8.CrossRefGoogle Scholar
  121. 121.
    Yang F, Ford JC, Dogan N, Padgett KR, Breto AL, et al. Magnetic resonance imaging (MRI)-based radiomics for prostate cancer radiotherapy. Transl Androl Urol. 2018;7(3):445–58.  https://doi.org/10.21037/tau.2018.06.05.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Zhang X, Xu X, Tian Q, Li B, Wu Y, Yang Z, et al. Radiomics assessment of bladder cancer grade using texture features from diffusion-weighted imaging. J Magn Reson Imaging. 2017;46(5):1281–8.  https://doi.org/10.1002/jmri.25669.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Rozenberg R, Thornhill RE, Flood TA, Hakim SW, Lim C, Schieda N. Whole-tumor quantitative apparent diffusion coefficient histogram and texture analysis to predict Gleason score upgrading in intermediate-risk 3 + 4 = 7 prostate cancer. AJR Am J Roentgenol. 2016;206(4):775–82.  https://doi.org/10.2214/AJR.15.15462.CrossRefPubMedGoogle Scholar
  124. 124.
    Nketiah G, Elschot M, Kim E, Teruel JR, Scheenen TW, Bathen TF, et al. T2-weighted MRI-derived textural features reflect prostate cancer aggressiveness: preliminary results. Eur Radiol. 2017;27(7):3050–9.  https://doi.org/10.1007/s00330-016-4663-1.CrossRefPubMedGoogle Scholar
  125. 125.
    Sankar V, Kumar D, Clausi DA, Taylor GW, Wong A. SISC: end-to-end interpretable discovery radiomics-driven lung cancer prediction via stacked interpretable sequencing cells. https://arxiv.org/pdf/1901.04641
  126. 126.
    Pietikäinen M, Zhao G. Two decades of local binary patterns: a survey. In: Bingham E, Kaski S, Laaksonen J, Lampinen J (eds.) Advances in independent component analysis and learning machines. London: Academic; 2015. p. 175–210.Google Scholar
  127. 127.
    Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, et al. Computational radiomics system to decode the radiographic phenotype. Cancer Res. 2017;77(21):e104–7.  https://doi.org/10.1158/0008-5472.CAN-17-0339.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Ravì D, Wong C, Deligianni F, Berthelot M, Andreu-Perez J, Lo B, et al. Deep learning for health informatics. IEEE J Biomed Health Inform. 2016;21(1):4–21.CrossRefPubMedGoogle Scholar
  129. 129.
    Sharif Razavian A, Azizpour H, Sullivan J, Carlsson S. (2014). CNN features off-the-shelf: an astounding baseline for recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2014. p. 806–13).Google Scholar
  130. 130.
    Kawahara J, BenTaieb A, Hamarneh G. Deep features to classify skin lesions. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI); 2016. p. 1397–1400).Google Scholar
  131. 131.
    Merone M, Sansone C, Soda P. A computer-aided diagnosis system for HEp-2 fluorescence intensity classification. Artificial Intelligence in Medicine. 2019;97:71–78.CrossRefPubMedGoogle Scholar
  132. 132.
    Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn. 2011;3:1–122.CrossRefGoogle Scholar
  133. 133.
    Karr AF, Lin X, Sanil AP, Reiter JP. Secure regression on distributed databases. J Comput Graph Stat. 2005;14:263–79.  https://doi.org/10.1198/106186005X47714.CrossRefGoogle Scholar
  134. 134.
    Karr AF, Lin X, Sanil AP, Reiter JP. Privacy-preserving analysis of vertically partitioned data using secure matrix products. J Off Stat. 2009;25:125.Google Scholar
  135. 135.
    Sanil AP, Karr AF, Lin X, Reiter JP. Privacy preserving regression modelling via distributed computation. In: Proc Tenth ACM SIGKDD Int Conf Knowl Discov Data Min ACM; 2004. p. 677–82.Google Scholar
  136. 136.
    Chen R, Sivakumar K, Kargupta H. Learning Bayesian network structure from distributed data. In: Barbara D, Kamath C (eds.) Proceedings of the 2003 SIAM International Conference on Data Mining (SDM 2003), San Francisco CA; 2003. p. 284–8.CrossRefGoogle Scholar
  137. 137.
    Wright R, Yang Z. Privacy-preserving Bayesian network structure computation on distributed heterogeneous data. In: Proc Tenth ACM SIGKDD Int Conf Knowl Discov Data Min. New York, NY, USA: ACM; 2004. p. 713–8.  https://doi.org/10.1145/1014052.1014145.
  138. 138.
    Yang Z, Wright RN. Improved privacy-preserving Bayesian network parameter learning on vertically partitioned data. 21st. Int Conf Data Eng Workshop. 2005;2005:1196.  https://doi.org/10.1109/ICDE.2005.230.Google Scholar
  139. 139.
    Meng D, Sivakumar K, Kargupta H. Privacy-sensitive Bayesian network parameter learning. Data Min 2004 ICDM04 Fourth IEEE Int Conf On IEEE. 2004;2004:487–90.Google Scholar
  140. 140.
    Jochems A, Deist Timo M, van Soest J, Eble M, Bulens P, Coucke P, et al. Distributed learning: developing a predictive model based on data from multiple hospitals without data leaving the hospital — a real life proof of concept. Radiother Oncol. 2016;121:459–67.CrossRefPubMedGoogle Scholar
  141. 141.
    Jayasurya K, Fung G, Yu S, Dehing-Oberije C, De Ruysscher D, Hope A, et al. Comparison of Bayesian network and support vector machine models for twoyear survival prediction in lung cancer patients treated with radiotherapy. Med Phys. 2010;37:1401–7.CrossRefPubMedGoogle Scholar
  142. 142.
    Lualdi M, Fasano M. Statistical analysis of proteomics data: a review on feature selection. J Proteomics. 2018;198:18-26.  https://doi.org/10.1016/j.jprot.2018.12.004.
  143. 143.
    Leijenaar RT, Carvalho S, Velazquez ER, van Elmpt WJ, Parmar C, Hoekstra OS, et al. Stability of FDG-PET Radiomics features: an integrated analysis of test–retest and inter-observer variability. Acta Oncol. 2013;52(7):1391–7.  https://doi.org/10.3109/0284186X.2013.812798.
  144. 144.
    O'Connor JP, Aboagye EO, Adams JE, Aerts HJ, Barrington SF, Beer AJ, et al. Imaging biomarker roadmap for cancer studies. Nat Rev Clin Oncol. 2017;14(3):169–86.  https://doi.org/10.1038/nrclinonc.2016.162.CrossRefPubMedGoogle Scholar
  145. 145.
    Aerts HJ. The potential of radiomic-based phenotyping in precision medicine: a review. JAMA Oncol. 2016;2(12):1636–42.  https://doi.org/10.1001/jamaoncol.2016.2631.CrossRefPubMedGoogle Scholar
  146. 146.
    Antunovic L, Gallivanone F, Sollini M, Sagona A, Invento A, Manfrinato G, et al. [18F]FDG PET/CT features for the molecular characterization of primary breast tumors. Eur J Nucl Med Mol Imaging. 2017;44(12):1945–54.  https://doi.org/10.1007/s00259-017-3770-9.CrossRefPubMedGoogle Scholar
  147. 147.
    El Naqa I, Li R, Murphy MJ. Machine learning in radiation oncology: theory and applications. SpringerLink; 2015.Google Scholar
  148. 148.
    Huang SS. Supervised feature selection: a tutorial. Artif Intell Res. 2015;4(2):22–37.  https://doi.org/10.5430/air.v4n2p22.CrossRefGoogle Scholar
  149. 149.
    Yoon HJ, Kim Y, Chung J, Kim BS. Predicting neo-adjuvant chemotherapy response and progression-free survival of locally advanced breast cancer using textural features of intratumoral heterogeneity on F-18 FDG PET/CT and diffusion-weighted MR imaging. Breast J. 2018;25(3):373–80.CrossRefPubMedGoogle Scholar
  150. 150.
    Choi JW, Lee D, Hyun SH, Han M, Kim JH, Lee SJ. Intratumoural heterogeneity measured using FDG PET and MRI is associated with tumour–stroma ratio and clinical outcome in head and neck squamous cell carcinoma. Clin.Radiol. 2017;72:482–9.CrossRefPubMedGoogle Scholar
  151. 151.
    Fave X, Mackin D, Yang J, Zhang J, Fried D, Balter P, et al. Can radiomics features be reproducibly measured from CBCT images for patients with non-small cell lung cancer? Med.Phys. 2015;42:6784–97.CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Antunes J, Viswanath S, Rusu M, Valls L, Hoimes C, Avril N, et al. Radiomics analysis on FLT-PET/MRI for characterization of early treatment response in renal cell carcinoma: a proof-of-concept study. Transl.Oncol. 2016;9:155–62.CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data mining, inference, and prediction. Heidelberg: Springer; 2009CrossRefGoogle Scholar
  154. 154.
    Fawcett T. ROC graphs: notes and practical considerations for researchers. Mach Learn. 2004;31(1):1–38.Google Scholar
  155. 155.
    Efron B, Tibshirani RJ. An introduction to the bootstrap. New York: Chapman & Hall/CRC;1994.Google Scholar
  156. 156.
    Efron B, Tibshirani R. Improvements on cross-validation: the .632+ bootstrap method. J Am Stat Assoc. 1997;92(438):548–60.Google Scholar
  157. 157.
    Hawkins DM, Basak SC, Mills D. Assessing model fit by cross-validation. J Chem Inf Comput Sci. 2003;43(2):579–86.CrossRefPubMedGoogle Scholar
  158. 158.
    Raschka S. Model evaluation, model selection, and algorithm selection in machine learning. arXiv:1811.12808. 2018.Google Scholar
  159. 159.
    Vallieres M, Laberge S, Diamant A, El Naqa I. Enhancement of multimodality texture-based prediction models via optimization of PET and MR image acquisition protocols: a proof of concept. Phys.Med.Biol. 2017;62:8536–65.CrossRefPubMedGoogle Scholar
  160. 160.
    Metz S, Ganter C, Lorenzen S, van Marwick S, Herrmann K, Lordick F, et al. Phenotyping of tumor biology in patients by multimodality multiparametric imaging: relationship of microcirculation, alphavbeta3 expression, and glucose metabolism. J Nucl Med. 2010;51:1691–8.CrossRefPubMedGoogle Scholar
  161. 161.
    Soda P. A multi-objective optimisation approach for class imbalance learning. Pattern Recogn. 2011;44(8):1801–10.CrossRefGoogle Scholar
  162. 162.
    Provost FJ, Fawcett T, Kohavi R. The case against accuracy estimation for comparing induction algorithms. ICML. 1998;98:445–53.Google Scholar
  163. 163.
    Efron B. Estimating the error rate of a prediction rule: improvement on cross-validation. J Am Stat Assoc. 1983;78(382):316–31.CrossRefGoogle Scholar
  164. 164.
    Varma S, Simon R. Bias in error estimation when using cross-validation for model selection. BMC Bioinformatics. 2006;7(1):91.CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Bengio Y, Grandvalet Y. No unbiased estimator of the variance of k-fold cross-validation. J Mach Learn Res. 2004;5:1089–105.Google Scholar
  166. 166.
    Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. Int Joint Conf Artif Intell. 1995;14(12):1137–43.Google Scholar
  167. 167.
    Molinaro AM, Simon R, Pfeiffer RM. Prediction error estimation: a comparison of resampling methods. Bioinformatics. 2005;21(15):3301–7.CrossRefPubMedGoogle Scholar
  168. 168.
    Refaeilzadeh P, Tang L, Liu H. On comparison of feature selection algorithms. In: Proceedings of AAAI Workshop on Evaluation Methods for Machine Learning II; 2007. p. 34–9.Google Scholar
  169. 169.
    Avanzo M, Stancanello J, El Naqa I. Beyond imaging: the promise of radiomics. Phys.Med. 2017;38:122–39.  https://doi.org/10.1016/j.ejmp.2017.05.071.CrossRefPubMedGoogle Scholar
  170. 170.
    Jain AK, Duin RPW, Mao J. Statistical pattern recognition: a review. IEEE Trans Pattern Anal Mach Intell. 2000;22(1):4–38.CrossRefGoogle Scholar
  171. 171.
    Lohmann P, Kocher M, Ceccon G, Bauer EK, Stoffels G, Viswanathan S, et al. Combined FET PET/MRI radiomics differentiates radiation injury from recurrent brain metastasis. Neuroimage Clin. 2018;20:537–42.CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Vaidya M, Creach KM, Frye J, Dehdashti F, Bradley JD, El Naqa I. Combined PET/CT image characteristics for radiotherapy tumor response in lung cancer. Radiother Oncol. 2012;102(2):239–45.CrossRefPubMedGoogle Scholar
  173. 173.
    El Naqa I, Suneja G, Lindsay PE, Hope AJ, Alaly JR, Vicic M, et al. Dose response explorer: an integrated open-source tool for exploring and modelling radiotherapy dose-volume outcome relationships. Phys Med Biol. 2006;51:5719–35.CrossRefPubMedGoogle Scholar
  174. 174.
    Lucia F, Visvikis D, Desseroit MC, Miranda O, Malhaire JP, Robin P, et al. Prediction of outcome using pretreatment (18)F-FDG PET/CT and MRI radiomics in locally advanced cervical cancer treated with chemoradiotherapy. Eur J Nucl Med Mol Imaging. 2018;45:768–86.CrossRefPubMedGoogle Scholar
  175. 175.
    Yin Q, Hung SC, Rathmell WK, Shen L, Wang L, Lin W, et al. Integrative radiomics expression predicts molecular subtypes of primary clear cell renal cell carcinoma. Clin Radiol. 2018;73:782–91.CrossRefPubMedGoogle Scholar
  176. 176.
    Parmar C, Leijenaar RTH, Grossmann P, Velazquez ER, Bussink J, Rietveld D, et al. Radiomic feature clusters and prognostic signatures specific for lung and head & neck cancer. Sci Rep. 2015;5:11044.CrossRefPubMedPubMedCentralGoogle Scholar
  177. 177.
    Huang SY, Franc BL, Harnish RJ, Liu G, Mitra D, Copeland TP, et al. Exploration of PET and MRI radiomic features for decoding breast cancer phenotypes and prognosis. NPJ Breast Cancer. 2018;4:24.CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Vallieres M, Freeman CR, Skamene SR, El Naqa I. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med .Biol. 2015;60:5471–96.Google Scholar
  179. 179.
    Vriens D, Disselhorst JA, Oyen WJ, de Geus-Oei LF, Visser EP. Quantitative assessment of heterogeneity in tumor metabolism using FDG-PET. Int J Radiat Oncol Biol Phys. 2012;82:e725–31.CrossRefPubMedGoogle Scholar
  180. 180.
    Crispin-Ortuzar M, Apte A, Grkovski M, Oh JH, Lee NY, Schoder H, et al. Predicting hypoxia status using a combination of contrast-enhanced computed tomography and [(18)F]-Fluorodeoxyglucose positron emission tomography radiomics features. Radiother Oncol. 2018;127:36–42.CrossRefPubMedGoogle Scholar
  181. 181.
    Yosinski J, Clune J, Nguyen A, Fuchs T, Lipson H. Understanding neural networks through deep visualization. https://arxiv.org/abs/1506.06579
  182. 182.
    Ganeshan B, Abaleke S, Young RCD, Chatwin CR, Miles KA. Texture analysis of non-small cell lung cancer on unenhanced computed tomography: initial evidence for a relationship with tumour glucose metabolism and stage. Cancer Imaging. 2010;10(1):137–43.  https://doi.org/10.1102/1470-7330.2010.0021.CrossRefPubMedPubMedCentralGoogle Scholar
  183. 183.
    Strzelecki M, Szczypinski P, Materka A, Klepaczko A. A software tool for automatic classification and segmentation of 2D/3D medical image. Nucl Instr Meth Phys Res A. 2013;702:137–40.  https://doi.org/10.1016/j.nima.2012.09.006.CrossRefGoogle Scholar
  184. 184.
    Szczypinski P, Strzelecki M, Materka A, Klepaczko A. MaZda—A software package for image texture analysis. Comput Methods Prog Biomed. 2009;94(1):66–76.  https://doi.org/10.1016/j.cmpb.2008.08.005.CrossRefGoogle Scholar
  185. 185.
    Szczypinski P, Strzelecki M, Materka A. MaZda — a software for texture analysis. Proc. of ISITC 2007, November 23–23, 2007, Republic of Korea. 2007;2007:245–9.Google Scholar
  186. 186.
    Nioche C, Orlhac F, Boughdad S, Reuzé S, Goya-Outi J, Robert C, et al. LIFEx: a freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity. Cancer Res. 2018;78(16):4786–9.  https://doi.org/10.1158/0008-5472.CAN-18-0125.CrossRefPubMedGoogle Scholar
  187. 187.
    Schaer R, Dicente Cid Y, Alkim E, John S, Rubin DL, Depeursinge A. Web-based tools for exploring the potential of quantitative imaging biomarkers in radiology: intensity and texture analysis on the ePAD platform. In: Biomedical texture analysis. London: Academic; 2017. p. 379–410.  https://doi.org/10.1016/B978-0-12-812133-7.00013-2.
  188. 188.
    van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, et al. Computational radiomics system to decode the radiographic phenotype. Cancer Res. 2017;77(21):e104–7.  https://doi.org/10.1158/0008-5472.CAN-17-0339.CrossRefPubMedPubMedCentralGoogle Scholar
  189. 189.
    Dicente Cid Y, Castelli J, Schaer R, Scher N, Pomoni A, Prior O et al. QuantImage: an online tool for high-throughput 3D radiomics feature extraction in PET-CT. In: Biomedical texture analysis. London: Academic; 2017. p. 349–77.  https://doi.org/10.1016/B978-0-12-812133-7.00012-0.
  190. 190.
    Zhang L, Fried DV, Fave XJ, Hunter LA, Yang J, Court LE. IBEX: an open infrastructure software platform to facilitate collaborative work in radiomics. Med Phys. 2015;42(3):1341–53.  https://doi.org/10.1118/1.4908210.CrossRefPubMedPubMedCentralGoogle Scholar
  191. 191.
    3D Slicer — an open source software platform for medical image informatics, image processing, and three-dimensional visualization. https://www.slicer.org/.
  192. 192.
    Hatt M, Tixier F, Pierce L, Kinahan PE, Le Rest CC, Visvikis D. Characterization of PET/CT images using texture analysis: the past, the present… any future? Eur J Nucl Med Mol Imaging. 2017;44(1):151–65.CrossRefPubMedGoogle Scholar
  193. 193.
    Feedback Medical. https://fbkmed.com/
  194. 194.
  195. 195.
    Quantib: AI in radiology. https://www.quantib.com/
  196. 196.
  197. 197.
  198. 198.
  199. 199.
  200. 200.
  201. 201.
  202. 202.
    Regge D, Mazzetti S, Giannini V, Bracco C, Stasi M. Big data in oncologic imaging. Radiol Med. 2017;122(6):458–63.  https://doi.org/10.1007/s11547-016-0687-5.CrossRefPubMedGoogle Scholar
  203. 203.
    European Society of Radiology (ESR). ESR position paper on imaging biobanks. Insights imaging. 2015;6(4):403–10.  https://doi.org/10.1007/s13244-015-0409-x.CrossRefGoogle Scholar
  204. 204.
    Neri E, Regge D. Imaging biobanks in oncology: European perspective. Future Oncol. 2017;13(5):433–41.  https://doi.org/10.2217/fon-2016-0239.CrossRefPubMedGoogle Scholar
  205. 205.
    TheCancer Imaging Archive. http://www.cancerimagingarchive.net
  206. 206.
  207. 207.
    German National Cohort (GNC) Consortium. The German National Cohort: aims, study design and organization. Eur J Epidemiol. 2014;29(5):371–82.  https://doi.org/10.1007/s10654-014-9890-7.CrossRefGoogle Scholar
  208. 208.
    Boyd S. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn. 2010;3(1):1–122.Google Scholar
  209. 209.
    Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong JCC, van Timmeren J, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14(12):749–62.CrossRefPubMedGoogle Scholar
  210. 210.
    Clarke LP, Nordstrom RJ, Zhang H, Tandon P, Zhang Y, Redmond G. et al. The Quantitative Imaging Network: NCI’s historical perspective and planned goals. Transl Oncol. 2014;7(1):1–4.CrossRefPubMedPubMedCentralGoogle Scholar
  211. 211.
    Cheng HT, Koc L, Harmsen J, Shaked T, Chandra T, Aradhye H, Anil R. Wide & deep learning for recommender systems. In: Workshop on Deep Learning for Recommender Systems; 2016. p. 7–10Google Scholar
  212. 212.
    Gonzalez ME, Dinelle K, Vafai N, Heffernan N, McKenzie J, Appel-Cresswell S, et al. Novel spatial analysis method for PET images using 3D moment invariants: applications to Parkinson’s disease. Neuroimage. 2013;68:11–21.  https://doi.org/10.1016/j.neuroimage.2012.11.055.CrossRefPubMedGoogle Scholar
  213. 213.
    van Velden FH, Cheebsumon P, Yaqub M, Smit EF, Hoekstra OS, Lammertsma AA, et al. Evaluation of a cumulative SUV-volume histogram method for parameterizing heterogeneous intratumoural FDG uptake in non-small cell lung cancer PET studies. Eur J Nucl Med Mol Imaging. 2011;38:1636–47.  https://doi.org/10.1007/s00259-011-1845-6.CrossRefPubMedPubMedCentralGoogle Scholar
  214. 214.
    Chawla NV, Bowyer KW, Hall LO, Philip Kegelmeyer W. SMOTE: synthetic minority over-sampling technique. J Artif Intell Res. 2002;16:321–57.CrossRefGoogle Scholar
  215. 215.
    Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis. MedImage Anal. 2017;42:60–88.Google Scholar
  216. 216.
    LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.CrossRefPubMedGoogle Scholar
  217. 217.
    Teramoto A, Fujita H, Yamamuro O, Tamaki T. Automated detection of pulmonary nodules in PET/CT images: ensemble false-positive reduction using a convolutional neural network technique. Med.Phys. 2016;43:2821–7.CrossRefPubMedGoogle Scholar
  218. 218.
    Hosny, et al. Deep learning for lung cancer prognostication: a retrospective multi-cohort radiomics study. PLoS Med. 2018;15(11):e1002711.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Molecular Imaging and PhysiologyNational Research Council (IBFM-CNR)SegrateItaly
  2. 2.Unit of Computer Systems and Bioinformatics, Department of EngineeringUniversità Campus Bio-Medico di RomaRomeItaly
  3. 3.Medical PhysicsCentro di Riferimento Oncologico IRCCS AvianoAvianoItaly
  4. 4.Radiologia e Diagnostica per ImmaginiCentro Diagnostico ItalianoMilanItaly
  5. 5.IRCCS SDNIstituto di Ricerca Diagnostica e NucleareNaplesItaly

Personalised recommendations