Advertisement

Nigrostriatal dopamine transporter availability, and its metabolic and clinical correlates in Parkinson’s disease patients with impulse control disorders

  • I. Navalpotro-Gomez
  • R. Dacosta-Aguayo
  • F. Molinet-Dronda
  • A. Martin-Bastida
  • A. Botas-Peñin
  • H. Jimenez-Urbieta
  • M. Delgado-Alvarado
  • B. Gago
  • A. Quiroga-Varela
  • Maria C. Rodriguez-OrozEmail author
Original Article
Part of the following topical collections:
  1. Neurology

Abstract

Purpose

Previous studies in patients with Parkinson’s disease (PD) and impulse control disorders (ICDs) have produced heterogeneous results regarding striatal dopamine transporter (DaT) binding and activity in the mesocorticolimbic network. Our aim here was to study the relationship between striatal DaT availability and cortical metabolism, as well as motor, behavioural and cognitive features of PD patients with ICD.

Methods

In a group of PD patients with ICD (PD-ICD, n = 16) and 16 matched PD patients without ICD (PD-noICD, n = 16), DaT single-photon emission computed tomography (SPECT) imaging (DaTSCAN) was used to study DaT availability in predefined striatal volumes of interest (VOIs): putamen, caudate nucleus and ventral striatum (VS). In addition, the specific association of striatal DaT binding with cortical limbic and associative metabolic activity was evaluated by 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in PD-ICD patients and investigated using statistical parametric mapping (SPM8). Finally, associations between DaT availability and motor, behavioural and cognitive features were assessed.

Results

PD-ICD patients had a significantly lower DaT density in the VS than PD-noICD patients, which was inversely associated with ICD severity. Lower DaT availability in the VS was associated with lower FDG uptake in several cortical areas belonging to the limbic and associative circuits, and in other regions involved in reward and inhibition processes (p < 0.0001 uncorrected; k > 50 voxels). No significant results were observed using a higher conservative threshold (p < 0.05; FDR corrected). PD-ICD patients also displayed impairment in interference and attentional Stroop Task execution, and more anxiety, all associated with reduced DaT availability in the VS and caudate nucleus.

Conclusions

ICDs in PD patients are related to reduced DaT binding in the VS, which accounts for dysfunction in a complex cortico-subcortical network that involves areas of the mesolimbic and mesocortical systems, being associated with reward evaluation, salience attribution and inhibitory control processes.

Keywords

Parkinson’s disease Impulse control disorders Dopamine transporter Cerebral metabolism Cognition 

Notes

Author contributions

M.C.R.-O. and I.N.-G. designed and organized the study; I.N.-G, R.D.-A. and M.C.R.-O. collected the data; M.C.R.-O. supervised the study; A.B.-P., F.M.-D. and I.N.-G. performed the statistical analysis; I.N.-G and M.C.R.-O. interpreted the results of the analysis with substantial contribution from all the authors; I.N.-G. and F.M.-D. drafted the manuscript, to which all the authors contributed with revisions.

Funding sources

This study was funded by the Carlos III Institute of Health (PI11/02109) and by the ERA-Neuron program (PIM2010ERN-00733). In addition, Dr. Navalpotro-Gomez held a Rio Hortega 2016 grant (CM16/00033) from the Carlos III Institute of Health.

Compliance with ethical standards

Conflict of interest

I.N.-G. received honoraria for travel and accommodation to attend scientific meetings from Zambon. R.D.-A., F.M.-D., H.J.-U, B.G. and A.Q.-V. have no disclosures to declare. A.M.-B received honoraria for travel and accommodation from Zambon and Bial. M.C.R.-O. received honoraria for lectures, travel and accommodation to attend scientific meetings from Abbvie, Zambon, Bial and Boston Scientific, and she received financial support for her research from national and local government funding agencies in Spain (Institute of Health Carlos III, Basque Country Local Government, and CIBERNED). M.D.-A. received honoraria for travel and accommodation to attend scientific meetings from UCB and Zambon. None of these bodies influenced the content of the manuscript or the decision to publish in any way.

Ethical approval

All the procedures carried out involving human participants were in accordance with the ethical standards of the Gipuzkoa Clinical Research Ethics Committee, and with the principles of the 1964 Declaration of Helsinki and its later amendments, or comparable ethical standards.

Informed consent

Informed consent was obtained from all the participants prior to their inclusion in the study.

Supplementary material

259_2019_4396_Fig4_ESM.png (457 kb)
Supplementary Fig. 1

Location of the custom-defined caudate nucleus (green), putamen (red) and VS (blue), and the posterior reference (yellow). VOIs drawn in the stereotaxic space on coronal (A) and axial (B) sections of an MRI scan. (PNG 456 kb)

259_2019_4396_MOESM1_ESM.tif (4.1 mb)
High-resolution image (TIF 4161 kb)
259_2019_4396_MOESM2_ESM.docx (33 kb)
Supplementary Table 1 Characteristics of the ICDs in PD patients. (DOCX 33 kb) (DOCX 33 kb)
259_2019_4396_MOESM3_ESM.docx (15 kb)
Supplementary Table 2 Correlation between DaT density and regional FDG uptake in PD-ICD patients (anatomical locations, spatial extents of significant clusters, Talairach coordinates and maximal z-scores). (DOCX 14 kb)
259_2019_4396_MOESM4_ESM.docx (36 kb)
ESM 1 (DOCX 36 kb)

References

  1. 1.
    Haber SN, Fudge JL, McFarland NR. Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci. 2000;20:2369–82.CrossRefGoogle Scholar
  2. 2.
    Haber SN. The place of dopamine in the cortico-basal ganglia circuit. Neuroscience. 2014;282:248–57.CrossRefGoogle Scholar
  3. 3.
    Seibyl JP, Marek KL, Quinlan D, Sheff K, Zoghbi S, Zea-Ponce Y, et al. Decreased single-photon emission computed tomographic [123I]beta-CIT striatal uptake correlates with symptom severity in Parkinson’s disease. Ann Neurol. 1995;38:589–98.CrossRefGoogle Scholar
  4. 4.
    Santangelo G, Vitale C, Picillo M, Cuoco S, Moccia M, Pezzella D, et al. Apathy and striatal dopamine transporter levels in de-novo, untreated Parkinson’s disease patients. Parkinsonism Relat Disord. 2015;21:489–93.CrossRefGoogle Scholar
  5. 5.
    Thobois S, Prange S, Sgambato-Faure V, Tremblay L, Broussolle E. Imaging the etiology of apathy, anxiety, and depression in Parkinson’s disease: implication for treatment. Curr Neurol Neurosci Rep. 2017;17:76.CrossRefGoogle Scholar
  6. 6.
    Son HJ, Jeong YJ, Yoon HJ, Kim JW, Choi GE, Park JH, et al.Parkinson disease-related cortical and striatal cognitive patterns in dual time F-18 FP CIT: evidence for neural correlates between the caudate and the frontal lobe. Q J Nucl Med Mol Imaging. 2017.  https://doi.org/10.23736/S1824-4785.17.02976-4.
  7. 7.
    Weintraub D, Koester J, Potenza MN, Siderowf AD, Stacy M, Voon V, et al. Impulse control disorders in Parkinson disease: a cross-sectional study of 3090 patients. Arch Neurol. 2010;67:589–95.CrossRefGoogle Scholar
  8. 8.
    Ray NJ, Strafella AP. Imaging impulse control disorders in Parkinson’s disease and their relationship to addiction. J Neural Transm (Vienna). 2013;120:659–64.CrossRefGoogle Scholar
  9. 9.
    Cilia R, Ko JH, Cho SS, van Eimeren T, Marotta G, Pellecchia G, et al. Reduced dopamine transporter density in the ventral striatum of patients with Parkinson’s disease and pathological gambling. Neurobiol Dis. 2010;39:98–104.CrossRefGoogle Scholar
  10. 10.
    Joutsa J, Martikainen K, Niemelä S, Johansson J, Forsback S, Rinne JO, et al. Increased medial orbitofrontal [18F]fluorodopa uptake in parkinsonian impulse control disorders. Mov Disord. 2012;27:778–82.CrossRefGoogle Scholar
  11. 11.
    Vriend C, Nordbeck AH, Booij J, van der Werf YD, Pattij T, Voorn P, et al. Reduced dopamine transporter binding predates impulse control disorders in Parkinson’s disease: reduced DaT BR predates ICD in PD. Mov Disord. 2014;29:904–11.CrossRefGoogle Scholar
  12. 12.
    Cilia R, Siri C, Marotta G, Isaias IU, De Gaspari D, Canesi M, et al. Functional abnormalities underlying pathological gambling in Parkinson disease. Arch Neurol. 2008;65:1604–11.CrossRefGoogle Scholar
  13. 13.
    van Eimeren T, Pellecchia G, Cilia R, Ballanger B, Steeves TDL, Houle S, et al. Drug-induced deactivation of inhibitory networks predicts pathological gambling in PD. Neurology. 2010;75:1711–6.CrossRefGoogle Scholar
  14. 14.
    Voon V, Gao J, Brezing C, Symmonds M, Ekanayake V, Fernandez H, et al. Dopamine agonists and risk: impulse control disorders in Parkinson’s; disease. Brain. 2011;134:1438–46.CrossRefGoogle Scholar
  15. 15.
    Djamshidian A, O’Sullivan SS, Lees A, Averbeck BB. Stroop test performance in impulsive and non impulsive patients with Parkinson’s disease. Parkinsonism Relat Disord. 2011;17:212–4.CrossRefGoogle Scholar
  16. 16.
    Weintraub D, Hoops S, Shea JA, Lyons KE, Pahwa R, Driver-Dunckley ED, et al. Validation of the questionnaire for impulsive-compulsive disorders in Parkinson’s disease. Mov Disord. 2009;24:1461–7.CrossRefGoogle Scholar
  17. 17.
    Weintraub D, Mamikonyan E, Papay K, Shea JA, Xie SX, Siderowf A. Questionnaire for impulsive-compulsive disorders in Parkinson’s disease-rating scale. Mov Disord. 2012;27:242–7.CrossRefGoogle Scholar
  18. 18.
    Emre M, Aarsland D, Brown R, Burn DJ, Duyckaerts C, Mizuno Y, et al. Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov Disord. 2007;22:1689–707 quiz 1837.CrossRefGoogle Scholar
  19. 19.
    Litvan I, Goldman JG, Tröster AI, Schmand BA, Weintraub D, Petersen RC, et al. Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society task force guidelines. Mov Disord. 2012;27:349–56.CrossRefGoogle Scholar
  20. 20.
    Tomlinson CL, Stowe R, Patel S, Rick C, Gray R, Clarke CE. Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov Disord. 2010;25:2649–53.CrossRefGoogle Scholar
  21. 21.
    Bechara A, Damasio AR, Damasio H, Anderson SW. Insensitivity to future consequences following damage to human prefrontal cortex. Cognition. 1994;50:7–15.CrossRefGoogle Scholar
  22. 22.
    Comtat C, Kinahan PE, Fessler JA, Beyer T, Townsend DW, Defrise M, et al. Clinically feasible reconstruction of 3D whole-body PET/CT data using blurred anatomical labels. Phys Med Biol. 2002;47:1–20.CrossRefGoogle Scholar
  23. 23.
    Thomas BA, Erlandsson K, Modat M, Thurfjell L, Vandenberghe R, Ourselin S, et al. The importance of appropriate partial volume correction for PET quantification in Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2011;38:1104–19.CrossRefGoogle Scholar
  24. 24.
    Tziortzi AC, Searle GE, Tzimopoulou S, Salinas C, Beaver JD, Jenkinson M, et al. Imaging dopamine receptors in humans with [11C]-(+)-PHNO: dissection of D3 signal and anatomy. NeuroImage. 2011;54:264–77.CrossRefGoogle Scholar
  25. 25.
    Haber SN, Knutson B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology. 2010;35:4–26.CrossRefGoogle Scholar
  26. 26.
    Scherfler C, Nocker M. Dopamine transporter SPECT: how to remove subjectivity? Mov Disord. 2009;24(Suppl 2):S721–4.CrossRefGoogle Scholar
  27. 27.
    Scherfler C, Seppi K, Donnemiller E, Goebel G, Brenneis C, Virgolini I, et al. Voxel-wise analysis of [123I]beta-CIT SPECT differentiates the Parkinson variant of multiple system atrophy from idiopathic Parkinson’s disease. Brain J Neurol. 2005;128:1605–12.CrossRefGoogle Scholar
  28. 28.
    Garcia-Garcia D, Clavero P, Gasca Salas C, Lamet I, Arbizu J, Gonzalez-Redondo R, et al. Posterior parietooccipital hypometabolism may differentiate mild cognitive impairment from dementia in Parkinson’s disease. Eur J Nucl Med Mol Imaging. 2012;39:1767–77.CrossRefGoogle Scholar
  29. 29.
    Bohnen NI, Koeppe RA, Minoshima S, Giordani B, Albin RL, Frey KA, et al. Cerebral glucose metabolic features of Parkinson disease and incident dementia: longitudinal study. J Nucl Med. 2011;52:848–55.CrossRefGoogle Scholar
  30. 30.
    Minoshima S, Frey KA, Foster NL, Kuhl DE. Preserved pontine glucose metabolism in Alzheimer disease: a reference region for functional brain image (PET) analysis. J Comput Assist Tomogr. 1995;19:541–7.CrossRefGoogle Scholar
  31. 31.
    Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, Rainey L, et al. Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp. 2000;10:120–31.CrossRefGoogle Scholar
  32. 32.
    Pirker W. Correlation of dopamine transporter imaging with parkinsonian motor handicap: how close is it? Mov Disord. 2003;18(Suppl 7):S43–51.CrossRefGoogle Scholar
  33. 33.
    Varrone A, Dickson JC, Tossici-Bolt L, Sera T, Asenbaum S, Booij J, et al. European multicentre database of healthy controls for [123I]FP-CIT SPECT (ENC-DAT): age-related effects, gender differences and evaluation of different methods of analysis. Eur J Nucl Med Mol Imaging. 2013;40:213–27.CrossRefGoogle Scholar
  34. 34.
    Voon V, Rizos A, Chakravartty R, Mulholland N, Robinson S, Howell NA, et al. Impulse control disorders in Parkinson’s disease: decreased striatal dopamine transporter levels. J Neurol Neurosurg Psychiatry. 2014;85:148–52.CrossRefGoogle Scholar
  35. 35.
    Smith KM, Xie SX, Weintraub D. Incident impulse control disorder symptoms and dopamine transporter imaging in Parkinson disease. J Neurol Neurosurg Psychiatry. 2016;87:864–70.CrossRefGoogle Scholar
  36. 36.
    Premi E, Pilotto A, Garibotto V, Bigni B, Turrone R, Alberici A, et al. Impulse control disorder in PD: a lateralized monoaminergic frontostriatal disconnection syndrome? Parkinsonism Relat Disord. 2016;30:62–6.CrossRefGoogle Scholar
  37. 37.
    Everitt BJ. Neural and psychological mechanisms underlying compulsive drug seeking habits and drug memories - indications for novel treatments of addiction. Eur J Neurosci. 2014;40:2163–82.CrossRefGoogle Scholar
  38. 38.
    Reber J, Feinstein JS, O’Doherty JP, Liljeholm M, Adolphs R, Tranel D. Selective impairment of goal-directed decision-making following lesions to the human ventromedial prefrontal cortex. Brain. 2017;140:1743–56.CrossRefGoogle Scholar
  39. 39.
    Verger A, Klesse E, Chawki MB, Witjas T, Azulay JP, Eusebio A, et al. Brain PET substrate of impulse control disorders in Parkinson’s disease: a metabolic connectivity study. Hum Brain Mapp. 2018;39(8):3178–86.  https://doi.org/10.1002/hbm.24068.CrossRefGoogle Scholar
  40. 40.
    Criaud M, Boulinguez P. Have we been asking the right questions when assessing response inhibition in go/no-go tasks with fMRI? A meta-analysis and critical review. Neurosci Biobehav Rev. 2013;37:11–23.CrossRefGoogle Scholar
  41. 41.
    Djamshidian A, Jha A, O’Sullivan SS, Silveira-Moriyama L, Jacobson C, Brown P, et al. Risk and learning in impulsive and nonimpulsive patients with Parkinson’s disease. Mov Disord. 2010;25:2203–10.CrossRefGoogle Scholar
  42. 42.
    Voon V, Reynolds B, Brezing C, Gallea C, Skaljic M, Ekanayake V, et al. Impulsive choice and response in dopamine agonist-related impulse control behaviors. Psychopharmacology. 2010;207:645–59.CrossRefGoogle Scholar
  43. 43.
    Santangelo G, Raimo S, Barone P. The relationship between impulse control disorders and cognitive dysfunctions in Parkinson’s disease: a meta-analysis. Neurosci Biobehav Rev. 2017;77:129–47.CrossRefGoogle Scholar
  44. 44.
    Mack J, Okai D, Brown RG, Askey-Jones S, Chaudhuri KR, Martin A, et al. The role of self-awareness and cognitive dysfunction in Parkinson’s disease with and without impulse-control disorder. J Neuropsychiatr Clin Neurosci. 2013;25:141–9.CrossRefGoogle Scholar
  45. 45.
    Vitale C, Santangelo G, Trojano L, Verde F, Rocco M, Grossi D, et al. Comparative neuropsychological profile of pathological gambling, hypersexuality, and compulsive eating in Parkinson’s disease. Mov Disord. 2011;26:830–6.CrossRefGoogle Scholar
  46. 46.
    Bentivoglio AR, Baldonero E, Ricciardi L, De Nigris F, Daniele A. Neuropsychological features of patients with Parkinson’s disease and impulse control disorders. Neurol Sci. 2013;34:1207–13.CrossRefGoogle Scholar
  47. 47.
    Sheth SA, Mian MK, Patel SR, Asaad WF, Williams ZM, Dougherty DD, et al. Human dorsal anterior cingulate cortex neurons mediate ongoing behavioural adaptation. Nature. 2012;488:218–21.CrossRefGoogle Scholar
  48. 48.
    Schroeder U, Kuehler A, Haslinger B, Erhard P, Fogel W, Tronnier VM, et al. Subthalamic nucleus stimulation affects striato-anterior cingulate cortex circuit in a response conflict task: a PET study. Brain J Neurol. 2002;125:1995–2004.CrossRefGoogle Scholar
  49. 49.
    Pineau F, Roze E, Lacomblez L, Bonnet A-M, Vidailhet M, Czernecki V, et al. Executive functioning and risk-taking behavior in Parkinson’s disease patients with impulse control disorders. J Neural Transm (Vienna). 2016;123:573–81.CrossRefGoogle Scholar
  50. 50.
    Biars JW, Johnson NL, Nespeca M, Busch RM, Kubu CS, Floden DP. Iowa gambling task performance in Parkinson disease patients with impulse control disorders. Arch Clin Neuropsychol. 2019;34(3):310–8.  https://doi.org/10.1093/arclin/acy036.
  51. 51.
    Rossi M, Gerschcovich ER, De Achaval D, Perez-Lloret S, Cerquetti D, Cammarota A, et al. Decision-making in Parkinson’s disease patients with and without pathological gambling: decision-making in PD with pathological gambling. Eur J Neurol. 2010;17:97–102.CrossRefGoogle Scholar
  52. 52.
    Martini A, Dal Lago D, Edelstyn NMJ, Grange JA, Tamburin S. Impulse control disorder in Parkinson’s disease: a meta-analysis of cognitive, affective, and motivational correlates. Front Neurol. 2018;9:654.CrossRefGoogle Scholar
  53. 53.
    Erro R, Pappatà S, Amboni M, Vicidomini C, Longo K, Santangelo G, et al. Anxiety is associated with striatal dopamine transporter availability in newly diagnosed untreated Parkinson’s disease patients. Parkinsonism Relat Disord. 2012;18:1034–8.CrossRefGoogle Scholar
  54. 54.
    Picillo M, Santangelo G, Erro R, Cozzolino A, Amboni M, Vitale C, et al. Association between dopaminergic dysfunction and anxiety in de novo Parkinson’s disease. Parkinsonism Relat Disord. 2017;37:106–10.CrossRefGoogle Scholar
  55. 55.
    Weintraub D, Newberg AB, Cary MS, Siderowf AD, Moberg PJ, Kleiner-Fisman G, et al. Striatal dopamine transporter imaging correlates with anxiety and depression symptoms in Parkinson’s disease. J Nucl Med. 2005;46:227–32.Google Scholar
  56. 56.
    Moriyama TS, Felicio AC, Chagas MHN, Tardelli VS, Ferraz HB, Tumas V, et al. Increased dopamine transporter density in Parkinson’s disease patients with social anxiety disorder. J Neurol Sci. 2011;310:53–7.CrossRefGoogle Scholar
  57. 57.
    Leentjens AFG, Dujardin K, Marsh L, Martinez-Martin P, Richard IH, Starkstein SE. Anxiety and motor fluctuations in Parkinson’s disease: a cross-sectional observational study. Parkinsonism Relat Disord. 2012;18:1084–8.CrossRefGoogle Scholar
  58. 58.
    Morrish PK, Sawle GV, Brooks DJ. An [18F]dopa-PET and clinical study of the rate of progression in Parkinson’s disease. Brain J Neurol. 1996;119(Pt 2):585–91.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • I. Navalpotro-Gomez
    • 1
    • 2
  • R. Dacosta-Aguayo
    • 1
    • 2
  • F. Molinet-Dronda
    • 3
  • A. Martin-Bastida
    • 4
  • A. Botas-Peñin
    • 5
  • H. Jimenez-Urbieta
    • 1
    • 2
  • M. Delgado-Alvarado
    • 1
    • 2
    • 6
  • B. Gago
    • 1
    • 2
  • A. Quiroga-Varela
    • 1
    • 2
    • 7
  • Maria C. Rodriguez-Oroz
    • 2
    • 4
    • 7
    • 8
    • 9
    Email author
  1. 1.Neurodegenerative Disorders AreaBiodonostia Health Research InstituteSan SebastianSpain
  2. 2.Network Center for Biomedical Research in Neurodegenerative DiseasesCIBERNEDMadridSpain
  3. 3.MicroPET Research Unit, Center for Applied Medical ResearchUniversidad de NavarraPamplonaSpain
  4. 4.Department of Neurology, Clínica Universidad de NavarraUniversidad de NavarraPamplonaSpain
  5. 5.Department of Biomedical Engineering, TecnunUniversidad de NavarraPamplonaSpain
  6. 6.Neurology DepartmentSierrallana HospitalTorrelavegaSpain
  7. 7.Neuroscience Area, Center for Applied Medical Research (CIMA)Universidad de NavarraPamplonaSpain
  8. 8.Ikerbasque (Basque Foundation of Science)BilbaoSpain
  9. 9.Basque Center on CognitionBrain and Language (BCBL)San SebastianSpain

Personalised recommendations