Connectomics and molecular imaging in neurodegeneration

  • Gérard N. BischofEmail author
  • Michael Ewers
  • Nicolai Franzmeier
  • Michel J. Grothe
  • Merle Hoenig
  • Ece Kocagoncu
  • Julia Neitzel
  • James B Rowe
  • Antonio Strafella
  • Alexander Drzezga
  • Thilo van Eimeren
  • on behalf of the MINC faculty
Review Article
Part of the following topical collections:
  1. Advanced Image Analyses (Radiomics and Artificial Intelligence)


Our understanding on human neurodegenerative disease was previously limited to clinical data and inferences about the underlying pathology based on histopathological examination. Animal models and in vitro experiments have provided evidence for a cell-autonomous and a non-cell-autonomous mechanism for the accumulation of neuropathology. Combining modern neuroimaging tools to identify distinct neural networks (connectomics) with target-specific positron emission tomography (PET) tracers is an emerging and vibrant field of research with the potential to examine the contributions of cell-autonomous and non-cell-autonomous mechanisms to the spread of pathology. The evidence provided here suggests that both cell-autonomous and non-cell-autonomous processes relate to the observed in vivo characteristics of protein pathology and neurodegeneration across the disease spectrum. We propose a synergistic model of cell-autonomous and non-cell-autonomous accounts that integrates the most critical factors (i.e., protein strain, susceptible cell feature and connectome) contributing to the development of neuronal dysfunction and in turn produces the observed clinical phenotypes. We believe that a timely and longitudinal pursuit of such research programs will greatly advance our understanding of the complex mechanisms driving human neurodegenerative diseases.


Multimodal Imaging Proteinpathology Functional Connectivity Pathophysiological Spreading Selective Vulnerability 



Faculty of the Multimodal Imaging in Neurodegeneration Cologne (MINC) symposium


The Molecular Imaging of Neurodegeneration Cologne (MINC) Symposium was partly funded by the Deutsche Forschungsgemeinschaft (DFG) awarded to Dr. Thilo van Eimeren (EI 892/5–1). The Deutsche Forschungsgemeinschaft (DFG) also awarded funding to Dr. Alexander Drzezga (DR 442/91).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest in relation to this article.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Supplementary material

259_2019_4394_MOESM1_ESM.docx (20 kb)
ESM 1 (DOCX 20 kb)
259_2019_4394_MOESM2_ESM.docx (24 kb)
ESM 2 (DOCX 24 kb)


  1. 1.
    Bischof GN, Endepols H, van Eimeren T, Drzezga A. Tau-imaging in neurodegeneration. Methods. 2017;130:114–23.CrossRefGoogle Scholar
  2. 2.
    Hammes J, Bischof GN, Drzezga A. Molecular imaging in early diagnosis, differential diagnosis and follow-up of patients with neurodegenerative diseases. Clin Transl Imaging. 2017;5:465–71.CrossRefGoogle Scholar
  3. 3.
    Teipel S, Drzezga A, Grothe MJ, Barthel H, Chételat G, Schuff N, et al. Multimodal imaging in Alzheimer’s disease: validity and usefulness for early detection. Lancet Neurol. 2015;14:1037–53.CrossRefGoogle Scholar
  4. 4.
    Strafella AP, Bohnen NI, Perlmutter JS, Eidelberg D, Pavese N, Van Eimeren T, et al. Molecular imaging to track Parkinson’s disease and atypical parkinsonisms: new imaging frontiers. Mov Disord. 2017;32:181–92.CrossRefGoogle Scholar
  5. 5.
    Barthel H, Sabri O. Clinical use and utility of amyloid imaging. J Nucl Med. 2017;58:1711–7.CrossRefGoogle Scholar
  6. 6.
    Saint-Aubert L, Lemoine L, Chiotis K, Leuzy A, Rodriguez-Vieitez E, Nordberg A. Tau PET imaging: present and future directions. Mol Neurodegen [Internet] 2017 [cited 2017 Mar 31];12. Available from:
  7. 7.
    Passamonti L, Vázquez Rodríguez P, Hong YT, Allinson KSJ, Williamson D, Borchert RJ, et al. 18F-AV-1451 positron emission tomography in Alzheimer’s disease and progressive supranuclear palsy. Brain. 2017.Google Scholar
  8. 8.
    Boche D, Gerhard A, Rodriguez-Vieitez E. Prospects and challenges of imaging neuroinflammation beyond TSPO in Alzheimer’s disease. Eur. J. Nucl. Med. Mol. Imaging. 2019 (In press).Google Scholar
  9. 9.
    Grothe M, Heinsen H, Teipel SJ. Atrophy of the cholinergic basal forebrain over the adult age range and in early stages of Alzheimer’s disease. Biol Psychiatry. 2012;71:805–13.CrossRefGoogle Scholar
  10. 10.
    Grothe MJ, Ewers M, Krause B, Heinsen H, Teipel SJ, Alzheimer’s Disease Neuroimaging Initiative. Basal forebrain atrophy and cortical amyloid deposition in nondemented elderly subjects. Alzheimers Dement. 2014;10:S344–53.CrossRefGoogle Scholar
  11. 11.
    Richter N, Beckers N, Onur OA, Dietlein M, Tittgemeyer M, Kracht L, et al. Effect of cholinergic treatment depends on cholinergic integrity in early Alzheimer’s disease. Brain. 2018;141:903–15.CrossRefGoogle Scholar
  12. 12.
    Sabri O, Meyer PM, Gräf S, Hesse S, Wilke S, Becker G-A, et al. Cognitive correlates of α4β2 nicotinic acetylcholine receptors in mild Alzheimer’s dementia. Brain. 2018;141:1840–54.CrossRefGoogle Scholar
  13. 13.
    Kocagoncu E, Quinn A, Firouzian A, Cooper E, Greve A, Gunn R, et al. Tau pathology in early Alzheimer’s disease disrupts selective neurophysiological networks dynamics. bioRxiv. 2019:524355.Google Scholar
  14. 14.
    Hoenig MC, Bischof GN, Seemiller J, Hammes J, Kukolja J, Onur ÖA, et al. Networks of tau distribution in Alzheimer’s disease. Brain. 2018.Google Scholar
  15. 15.
    Grothe MJ, Sepulcre J, Gonzalez-Escamilla G, Jelistratova I, Schöll M, Hansson O, et al. Molecular properties underlying regional vulnerability to Alzheimer’s disease pathology. Brain. 2018;141:2755–71.Google Scholar
  16. 16.
    Grothe MJ, Teipel SJ, Alzheimer’s Disease Neuroimaging Initiative. Spatial patterns of atrophy, hypometabolism, and amyloid deposition in Alzheimer’s disease correspond to dissociable functional brain networks. Hum Brain Mapp. 2016;37:35–53.CrossRefGoogle Scholar
  17. 17.
    Drzezga A. The network degeneration hypothesis: spread of neurodegenerative patterns along neuronal brain networks. J Nucl Med. 2018;59:1645–8.CrossRefGoogle Scholar
  18. 18.
    Chételat G, Villemagne VL, Bourgeat P, Pike KE, Jones G, Ames D, et al. Relationship between atrophy and beta-amyloid deposition in Alzheimer disease. Ann Neurol. 2010;67:317–24.Google Scholar
  19. 19.
    Myers N, Pasquini L, Göttler J, Grimmer T, Koch K, Ortner M, et al. Within-patient correspondence of amyloid-β and intrinsic network connectivity in Alzheimer’s disease. Brain. 2014;137:2052–64.CrossRefGoogle Scholar
  20. 20.
    Drzezga A, Becker JA, Van Dijk KRA, Sreenivasan A, Talukdar T, Sullivan C, et al. Neuronal dysfunction and disconnection of cortical hubs in non-demented subjects with elevated amyloid burden. Brain. 2011;134:1635–46.CrossRefGoogle Scholar
  21. 21.
    Koch K, Myers NE, Göttler J, Pasquini L, Grimmer T, Förster S, et al. Disrupted intrinsic networks link amyloid-β pathology and impaired cognition in prodromal Alzheimer’s disease. Cereb Cortex. 2015;25:4678–88.CrossRefGoogle Scholar
  22. 22.
    Jones DT, Graff-Radford J, Lowe VJ, Wiste HJ, Gunter JL, Senjem ML, et al. Tau, amyloid, and cascading network failure across the Alzheimer’s disease spectrum. Cortex. 2017;97:143–59.CrossRefGoogle Scholar
  23. 23.
    Cope TE, Rittman T, Borchert RJ, Jones PS, Vatansever D, Allinson K, et al. Tau burden and the functional connectome in Alzheimer’s disease and progressive supranuclear palsy. Brain. 2018;141:550–67.CrossRefGoogle Scholar
  24. 24.
    Franzmeier N, Rubinski A, Neitzel J, Kim Y, Damm A, Na DL, et al. Functional connectivity associated with tau levels in ageing, Alzheimer’s, and small vessel disease. Brain. 2019.Google Scholar
  25. 25.
    Neitzel J, Franzmeier N, Rubinski A, Ewers M. Left frontal connectivity attenuates the adverse effect of entorhinal tau pathology on memory. Neurology. 2019; in press.Google Scholar
  26. 26.
    Rabin JS, Perea RD, Buckley RF, Neal TE, Buckner RL, Johnson KA, et al. Global White matter diffusion characteristics predict longitudinal cognitive change independently of amyloid status in clinically Normal older adults. Cereb Cortex. 2019;29:1251–62.CrossRefGoogle Scholar
  27. 27.
    Strain JF, Smith RX, Beaumont H, Roe CM, Gordon BA, Mishra S, et al. Loss of white matter integrity reflects tau accumulation in Alzheimer disease defined regions. Neurology. 2018;91:e313–8.CrossRefGoogle Scholar
  28. 28.
    Jacobs HIL, Hedden T, Schultz AP, Sepulcre J, Perea RD, Amariglio RE, et al. Structural tract alterations predict downstream tau accumulation in amyloid-positive older individuals. Nat Neurosci. 2018;21:424–31.CrossRefGoogle Scholar
  29. 29.
    Zempel H, Mandelkow E. Lost after translation: missorting of tau protein and consequences for Alzheimer disease. Trends Neurosci. 2014;37:721–32.CrossRefGoogle Scholar
  30. 30.
    Hammes J, Theis H, Giehl K, Hoenig MC, Greuel A, Tittgemeyer M, et al. Dopamine metabolism of the nucleus accumbens and fronto-striatal connectivity modulate impulse control. Brain. 2019;142:733–43.CrossRefGoogle Scholar
  31. 31.
    Strafella AP. Mesolimbic dopamine and anterior cingulate cortex connectivity changes lead to impulsive behaviour in Parkinson’s disease. Brain. 2019;142:496–8.CrossRefGoogle Scholar
  32. 32.
    Gargouri F, Gallea C, Mongin M, Pyatigorskaya N, Valabregue R, Ewenczyk C, et al. Multimodal magnetic resonance imaging investigation of basal forebrain damage and cognitive deficits in Parkinson’s disease. Mov Disord. 2019;34:516–25.Google Scholar
  33. 33.
    Tahmasian M, Eickhoff SB, Giehl K, Schwartz F, Herz DM, Drzezga A, et al. Resting-state functional reorganization in Parkinson’s disease: an activation likelihood estimation meta-analysis. Cortex. 2017;92:119–38.CrossRefGoogle Scholar
  34. 34.
    Lang S, Hanganu A, Gan LS, Kibreab M, Auclair-Ouellet N, Alrazi T, et al. Network basis of the dysexecutive and posterior cortical cognitive profiles in Parkinson’s disease. Mov Disord. 2019.Google Scholar
  35. 35.
    Tessitore A, De Micco R, Giordano A, di Nardo F, Caiazzo G, Siciliano M, et al. Intrinsic brain connectivity predicts impulse control disorders in patients with Parkinson’s disease. Mov Disord. 2017;32:1710–9.CrossRefGoogle Scholar
  36. 36.
    Horn A, Reich M, Vorwerk J, Li N, Wenzel G, Fang Q, et al. Connectivity predicts deep brain stimulation outcome in Parkinson disease. Ann Neurol. 2017;82:67–78.CrossRefGoogle Scholar
  37. 37.
    Sepulcre J, Grothe MJ, d’Oleire Uquillas F, Ortiz-Terán L, Diez I, Yang H-S, et al. Neurogenetic contributions to amyloid beta and tau spreading in the human cortex. Nat Med. 2018;24:1910–8.CrossRefGoogle Scholar
  38. 38.
    Rittman T, Rubinov M, Vértes PE, Patel AX, Ginestet CE, Ghosh BCP, et al. Regional expression of the MAPT gene is associated with loss of hubs in brain networks and cognitive impairment in Parkinson disease and progressive supranuclear palsy. Neurobiol Aging. 2016;48:153–60.CrossRefGoogle Scholar
  39. 39.
    Freeze B, Acosta D, Pandya S, Zhao Y, Raj A. Regional expression of genes mediating trans-synaptic alpha-synuclein transfer predicts regional atrophy in Parkinson disease. Neuroimage Clin. 2018;18:456–66.CrossRefGoogle Scholar
  40. 40.
    Zeighami Y, Ulla M, Iturria-Medina Y, Dadar M, Zhang Y, KM-H L, et al. Network structure of brain atrophy in de novo Parkinson’s disease. Elife. 2015;4.Google Scholar
  41. 41.
    Yang H-S, Yu L, White CC, Chibnik LB, Chhatwal JP, Sperling RA, et al. Evaluation of TDP-43 proteinopathy and hippocampal sclerosis in relation to APOE ε4 haplotype status: a community-based cohort study. Lancet Neurol. 2018;17:773–81.CrossRefGoogle Scholar
  42. 42.
    van Eimeren T, Antonini A, Berg D, Bohnen N, Ceravolo R, Drzezga A, et al. Neuroimaging biomarkers for clinical trials in atypical parkinsonian disorders: proposal for a neuroimaging biomarker utility system. Alzheimers Dement (Amst). 2019;11:301–9.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Gérard N. Bischof
    • 1
    • 2
    Email author
  • Michael Ewers
    • 3
  • Nicolai Franzmeier
    • 3
  • Michel J. Grothe
    • 4
  • Merle Hoenig
    • 1
    • 5
  • Ece Kocagoncu
    • 5
  • Julia Neitzel
    • 3
  • James B Rowe
    • 6
    • 7
  • Antonio Strafella
    • 8
    • 9
    • 10
    • 11
    • 12
  • Alexander Drzezga
    • 1
    • 5
    • 13
  • Thilo van Eimeren
    • 1
    • 12
    • 14
  • on behalf of the MINC faculty
  1. 1.Multimodal Neuroimaging Group, Department of Nuclear MedicineUniversity Hospital CologneCologneGermany
  2. 2.Faculty of Mathematics and Natural SciencesUniversity of CologneCologneGermany
  3. 3.Institute for Stroke and Dementia Research, Klinikum der Universität MünchenLudwig-Maximilians-Universität LMUMunichGermany
  4. 4.German Center for Neurodegenerative Diseases (DZNE)RostockGermany
  5. 5.Molecular Organization of the Brain, Institute of Neuroscience and Medicine (INM-2)Research Center JülichJülichGermany
  6. 6.Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
  7. 7.Medical Research Council Cognition and Brain Sciences UnitCambridgeUK
  8. 8.Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental HealthUniversity of TorontoTorontoCanada
  9. 9.Division of Brain, Imaging and Behaviour - Systems NeuroscienceUniversity of TorontoTorontoCanada
  10. 10.Krembil Research Institute, UHNUniversity of TorontoTorontoCanada
  11. 11.Institute of Medical ScienceUniversity of TorontoTorontoCanada
  12. 12.Morton and Gloria Shulman Movement Disorder Unit & E.J. Safra Parkinson Disease Program, Neurology Division, Department of Medicine, Toronto Western Hospital, UHNUniversity of TorontoTorontoCanada
  13. 13.German Center for Neurodegenerative Diseases (DZNE)BonnGermany
  14. 14.Department of NeurologyUniversity Hospital CologneCologneGermany

Personalised recommendations