Advertisement

Obligatory role of endoplasmic reticulum in brain FDG uptake

  • Vanessa Cossu
  • Cecilia Marini
  • Patrizia Piccioli
  • Anna Rocchi
  • Silvia Bruno
  • Anna Maria Orengo
  • Laura Emionite
  • Matteo Bauckneht
  • Federica Grillo
  • Selene Capitanio
  • Enrica Balza
  • Nikola Yosifov
  • Patrizia Castellani
  • Giacomo Caviglia
  • Isabella Panfoli
  • Silvia Morbelli
  • Silvia Ravera
  • Fabio Benfenati
  • Gianmario SambucetiEmail author
Original Article
  • 66 Downloads

Abstract

Purpose

The endoplasmic reticulum (ER) contains hexose-6P-dehydrogenase (H6PD). This enzyme competes with glucose-6P-phosphatase for processing a variety of phosphorylated hexoses including 2DG-6P. The present study aimed to verify whether this ER glucose-processing machinery contributes to brain FDG uptake.

Methods

Effect of the H6PD inhibitor metformin on brain 18F-FDG accumulation was studied, in vivo, by microPET imaging. These data were complemented with the in vitro estimation of the lumped constant (LC). Finally, reticular accumulation of the fluorescent 2DG analogue 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose (2NBDG) and its response to metformin was studied by confocal microscopy in cultured neurons and astrocytes.

Results

Metformin halved brain 18F-FDG accumulation without altering whole body tracer clearance. Ex vivo, this same response faced the doubling of both glucose consumption and lactate release. The consequent fall in LC was not explained by any change in expression or activity of its theoretical determinants (GLUTs, hexokinases, glucose-6P-phosphatase), while it agreed with the drug-induced inhibition of H6PD function. In vitro, 2NBDG accumulation selectively involved the ER lumen and correlated with H6PD activity being higher in neurons than in astrocytes, despite a lower glucose consumption.

Conclusions

The activity of the reticular enzyme H6PD profoundly contributes to brain 18F-FDG uptake. These data challenge the current dogma linking 2DG/FDG uptake to the glycolytic rate and introduce a new model to explain the link between 18-FDG uptake and neuronal activity.

Keywords

Brain imaging PET/CT FDG H6PD Endoplasmic reticulum Glucose metabolism 

Notes

Acknowledgements

The authors are indebted with Proff. Antonio De Flora, Alessandro Morelli and Alberto Pupi for the enthusiastic support and criticisms.

Funding

This study was funded by the program “Ricerca Corrente,” line “Guest-Cancer Interactions,” by Compagnia di San Paolo (project ID Prot.: 2015.AAI4110.U4917).

Compliance with ethical standards

Ethics approval

All procedures involving animals were performed in respect of the current National and International regulations and were reviewed and approved by the Licensing and Animal Welfare Body of the IRCCS Ospedale Policlinico San Martino, Genoa, Italy and by the Italian Ministry of Health.

Conflict of interests

No author has any conflict of interest to declare.

Supplementary material

259_2018_4254_MOESM1_ESM.docx (21 kb)
ESM 1 (DOCX 20 kb)
259_2018_4254_MOESM2_ESM.pdf (368 kb)
ESM 2 (PDF 368 kb)

References

  1. 1.
    Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, et al. The 14C-deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977;28:897–916.CrossRefGoogle Scholar
  2. 2.
    Varrone A, Asenbaum S, Vander-Borght T, Booij J, Nobili F, Någren K, et al. EANM procedure guidelines for PET brain imaging using [18F]-FDG. Eur J Nucl Med Mol Imaging. 2009;36:2103–10.CrossRefGoogle Scholar
  3. 3.
    Sols A. Substrate specificity of brain hexokinase. J Biol Chem. 1954;210:581–95.PubMedGoogle Scholar
  4. 4.
    Bachelard HS. Specificity and kinetic properties of monosaccharide uptake into Guinea pig cerebral cortex in vitro. J Neurochem. 1971;18:213–22.CrossRefGoogle Scholar
  5. 5.
    Dienel GA, Cruz NF, Sokoloff L, Driscoll BF. Determination of glucose utilization rates in cultured astrocytes and neurons with [14C] deoxyglucose: progress, pitfalls, and discovery of intracellular glucose compartmentation. Neurochem Res. 2017;42:50–63.CrossRefGoogle Scholar
  6. 6.
    Kanazawa Y, Yamane H, Shinohara S, Kuribayashi S, Momozono Y, Yamato Y, et al. 2-Deoxy-2-Fluoro-D-glucose as a functional probe for NMR: the unique metabolism beyond its 6-phosphate. J Neurochem. 1996;66:2113–20.CrossRefGoogle Scholar
  7. 7.
    Dienel GA, Cruz NF. Synthesis of deoxyglucose-1-phosphate, deoxyglucose1,6-biphosphate, and other metabolites of 2-deoxy-D-[14C]glucose in rat brain in vivo: influence of time and tissue glucose level. J Neurochem. 1993;60:2217–31.CrossRefGoogle Scholar
  8. 8.
    Southworth R, Parry CR, Parkes HG, Medina RA, Garlick PB. Tissue-specific differences in 2-fluoro-2-deoxyglucose metabolism beyond FDG-6-P: a 19 F NMR spectroscopy study in the rat. NMR Biomed. 2003;16(8):494–502.CrossRefGoogle Scholar
  9. 9.
    Marini C, Ravera S, Buschiazzo A, Bianchi G, Orengo AM, Bruno S, et al. Discovery of a novel glucose metabolism in cancer: the role of endoplasmic reticulum beyond glycolysis and pentose phosphate shunt. Sci Rep. 2016;6:25092.CrossRefGoogle Scholar
  10. 10.
    Senesi S, Csala M, Marcolongo P, Fulceri R, Mandl J, Banhegyi G, et al. Hexose-6-phosphate dehydrogenase in the endoplasmic reticulum. Biol Chem. 2010;391:1–8.CrossRefGoogle Scholar
  11. 11.
    Kulkarnit P, Hodgson E. Mouse liver microsomal hexose-6-phosphate dehydrogenase. Biochem Pharmacol. 1982;31:1131–7.CrossRefGoogle Scholar
  12. 12.
    Moreira PI. Metformin in the diabetic brain: friend or foe? Ann Transl Med. 2014;2:2–4.Google Scholar
  13. 13.
    Correia S, Carvalho C, Santos MS, Proença T, Nunes E, Duarte AI, et al. Metformin protects the brain against the oxidative imbalance promoted by type 2 diabetes. Med Chem. 2008;4:358–64.CrossRefGoogle Scholar
  14. 14.
    Blumrich EM, Dringen R. Metformin accelerates glycolytic lactate production in cultured primary cerebellar granule neurons. Neurochem Res. 2017:1–12.  https://doi.org/10.1007/s11064-017-2346-1.
  15. 15.
    Westhaus A, Maria E, Dringen R. The antidiabetic drug metformin stimulates glycolytic lactate production in cultured primary rat astrocytes. Neurochem Res. 2015;123:1–16.Google Scholar
  16. 16.
    Buschiazzo A, Cossu V, Bauckneht M, Orengo A, Piccioli P, Emionite L, et al. Effect of starvation on brain glucose metabolism and 18F-2-fluoro-2- deoxyglucose uptake: an experimental in-vivo and ex-vivo study. EJNMMI Res. 2018.  https://doi.org/10.1186/s13550-018-0398-0.
  17. 17.
    Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab. 1983;3:1–7.CrossRefGoogle Scholar
  18. 18.
    Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T, et al. The 18F-fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res. 1979;44(1):127–37.CrossRefGoogle Scholar
  19. 19.
    Graham MM, Muzi M, Spence AM, O'Sullivan F, Lewellen TK, Link JM, et al. The FDG lumped constant in normal human brain. J Nucl Med. 2002;43:1157–67.PubMedGoogle Scholar
  20. 20.
    Noll T, Mühlensiepen H, Engels R, Hamacher K, Papaspyrou M, Langen KJ, et al. A cell-culture reactor for the on-line evaluation of radiopharmaceuticals: evaluation of the lumped constant of FDG in human glioma cells. J Nucl Med. 2000;41:556–64.PubMedGoogle Scholar
  21. 21.
    Suda S, Shinohara M, Miyaoka M, Lucignani G, Kennedy C, Sokoloff L. The lumped constant of the deoxyglucose method in hypoglycemia: effects of moderate hypoglycemia on local cerebral glucose utilization in the rat. J Cereb Blood Flow Metab. 1990;10:499–509.CrossRefGoogle Scholar
  22. 22.
    Blomqvist G, Seitz RJ, Sjögren I, Halldin C, Stone-Elander S, Widén L, et al. Regional cerebral oxidative and total glucose consumption during rest and activation studied with positron emission tomography. Acta Physiol Scand. 1994;151:29–43.CrossRefGoogle Scholar
  23. 23.
    Costes SV, Daelemans D, Cho EH, Dobbin Z, Pavlakis G, Lockett S. Automatic and quantitative measurement of protein-protein colocalization in live cells. Biophys J. 2004;86:3993–4003.CrossRefGoogle Scholar
  24. 24.
    Fiske CH, Subbarow Y. The colorimetric determination of phosphorus. J Biol Chem. 1925;66:375–400.Google Scholar
  25. 25.
    Cura AJ, Carruthers A. Role of monosaccharide transport proteins in carbohydrate assimilation , distribution, metabolism , and homeostasis. Compr Physiol. 2012;2:863–914.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Guionie O, Clottes E, Stafford K, Burchell A. Identification and characterisation of a new human glucose-6-phosphatase isoform. FEBS Lett. 2003;551:159–64.CrossRefGoogle Scholar
  27. 27.
    Muzi M, Freeman SD, Burrows RC, Wiseman RW, Link JM, Krohn KA, et al. Kinetic characterization of hexokinase isoenzymes from glioma cells: implications for FDG imaging of human brain tumors. Nucl Med Biol. 2001;28:107–16.CrossRefGoogle Scholar
  28. 28.
    Zou C, Wang Y, Shen Z. 2-NBDG as a fluorescent indicator for direct glucose uptake measurement. J Biochem Biophys Methods. 2005;64:207–15.CrossRefGoogle Scholar
  29. 29.
    Sokoloff L. Relation between physiological function and energy metabolism in the central nervous system. J Neurochem. 1977;29:13–26.CrossRefGoogle Scholar
  30. 30.
    Van Schaftingen E, Gerin I. The glucose-6-phosphatase system. Biochem J. 2002;532:513–32.CrossRefGoogle Scholar
  31. 31.
    Caracó C, Aloj L, Chen LY, Chou JY, Eckelman WC. Cellular release of [18F]2-Fluoro-2-deoxyglucose as a function of the glucose-6-phosphatase enzyme system. J Biol Chem. 2000;275:18489–94.CrossRefGoogle Scholar
  32. 32.
    Pellerin L, Magistretti PJ. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Neurobiology. 1994;91:10625–9.Google Scholar
  33. 33.
    Dienel GA. Review lack of appropriate stoichiometry: strong evidence against an energetically important astrocyte–neuron lactate shuttle in brain. J Neurosci Res. 2017;95:2103–25.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Vanessa Cossu
    • 1
  • Cecilia Marini
    • 1
    • 2
  • Patrizia Piccioli
    • 3
  • Anna Rocchi
    • 4
  • Silvia Bruno
    • 5
  • Anna Maria Orengo
    • 1
  • Laura Emionite
    • 6
  • Matteo Bauckneht
    • 1
    • 7
  • Federica Grillo
    • 8
  • Selene Capitanio
    • 1
  • Enrica Balza
    • 3
  • Nikola Yosifov
    • 1
  • Patrizia Castellani
    • 3
  • Giacomo Caviglia
    • 9
  • Isabella Panfoli
    • 10
  • Silvia Morbelli
    • 1
    • 7
  • Silvia Ravera
    • 5
  • Fabio Benfenati
    • 4
    • 11
  • Gianmario Sambuceti
    • 1
    • 2
    Email author return OK on get
  1. 1.Nuclear MedicineIRCCS Ospedale Policlinico San MartinoGenoaItaly
  2. 2.CNR Institute of Molecular Bioimaging and Physiology (IBFM)MilanItaly
  3. 3.Cell Biology UnitIRCCS Ospedale Policlinico San MartinoGenoaItaly
  4. 4.Center for Synaptic Neuroscience and TechnologyItalian Institute of Technology (IIT)GenoaItaly
  5. 5.Department of Experimental MedicineUniversity of GenoaGenoaItaly
  6. 6.Animal FacilityIRCCS Ospedale Policlinico San MartinoGenoaItaly
  7. 7.Department of Health ScienceUniversity of GenoaGenoaItaly
  8. 8.Department of Integrated Surgical and Diagnostic Sciences (DISC)University of GenoaGenoaItaly
  9. 9.Department of Mathematics (DIMA)University of GenoaGenoaItaly
  10. 10.Department of Pharmacy, Section of BiochemistryUniversity of GenoaGenoaItaly
  11. 11.Department of Experimental Medicine, Section of PhysiologyUniversity of GenoaGenoaItaly

Personalised recommendations