Advertisement

Predicting locally advanced rectal cancer response to neoadjuvant therapy with 18F-FDG PET and MRI radiomics features

  • V. GianniniEmail author
  • S. Mazzetti
  • I. Bertotto
  • C. Chiarenza
  • S. Cauda
  • E. Delmastro
  • C. Bracco
  • A. Di Dia
  • F. Leone
  • E. Medico
  • A. Pisacane
  • D. Ribero
  • M. Stasi
  • D. Regge
Original Article

Abstract

Purpose

Pathological complete response (pCR) following neoadjuvant chemoradiotherapy or radiotherapy in locally advanced rectal cancer (LARC) is reached in approximately 15–30% of cases, therefore it would be useful to assess if pretreatment of 18F-FDG PET/CT and/or MRI texture features can reliably predict response to neoadjuvant therapy in LARC.

Methods

Fifty-two patients were dichotomized as responder (pR+) or non-responder (pR-) according to their pathological tumor regression grade (TRG) as follows: 22 as pR+ (nine with TRG = 1, 13 with TRG = 2) and 30 as pR- (16 with TRG = 3, 13 with TRG = 4 and 1 with TRG = 5). First-order parameters and 21 second-order texture parameters derived from the Gray-Level Co-Occurrence matrix were extracted from semi-automatically segmented tumors on T2w MRI, ADC maps, and PET/CT acquisitions. The role of each texture feature in predicting pR+ was assessed with monoparametric and multiparametric models.

Results

In the mono-parametric approach, PET homogeneity reached the maximum AUC (0.77; sensitivity = 72.7% and specificity = 76.7%), while PET glycolytic volume and ADC dissimilarity reached the highest sensitivity (both 90.9%). In the multiparametric analysis, a logistic regression model containing six second-order texture features (five from PET and one from T2w MRI) yields the highest predictivity in distinguish between pR+ and pR- patients (AUC = 0.86; sensitivity = 86%, and specificity = 83% at the Youden index).

Conclusions

If preliminary results of this study are confirmed, pretreatment PET and MRI could be useful to personalize patient treatment, e.g., avoiding toxicity of neoadjuvant therapy in patients predicted pR-.

Keywords

Locally advanced rectal cancer 18F-FDG PET/CT imaging Magnetic resonance imaging Texture features Prediction of treatment response Radiomics 

Notes

Funding

This work was funded by “AIRC 5xmille Special Program Molecular Clinical Oncology - Ref. 9970” and “FPRC 5xmille 2013 Ministero Salute”.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Siegel R, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67:7–30.CrossRefGoogle Scholar
  2. 2.
    NCCN Clinical Practice Guidelines in Oncology: Rectal Cancer, Version 1.2016. (2016). NCCN.org. Accessed 11 Jan 2019.
  3. 3.
    Sauer R, Becker H, Hohenberger W, et al. Preoperative versus postoperative chemoradiotherapy for rectal cancer. N Engl J Med. 2004;351(17):1731–40.CrossRefGoogle Scholar
  4. 4.
    Li Y, Wang J, Ma X, Tan L, Yan Y, Xue C, et al. A review of neoadjuvant chemoradiotherapy for locally advanced rectal cancer. Int J Biol Sci. 2016;12(8):1022–31.CrossRefGoogle Scholar
  5. 5.
    Maas M, Nelemans PJ, Valentini V, et al. Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: a pooled analysis of individual patient data. Lancet Oncol. 2010;11:835–44.CrossRefGoogle Scholar
  6. 6.
    Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, et al. Radiomics: extracting more information from medical images using advanced. Eur J Cancer. 2012;48(4):441–6.CrossRefGoogle Scholar
  7. 7.
    Diehn M, Nardini C, Wang DS, McGovern S, Jayaraman M, Liang Y, et al. Identification of noninvasive imaging surrogates for brain tumor gene-expression modules. Proc Natl Acad Sci U S A. 2008;105(13):5213–8.CrossRefGoogle Scholar
  8. 8.
    Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative. Nat Commun. 2014;5:4006.CrossRefGoogle Scholar
  9. 9.
    Coroller TP, Grossmann P, Hou Y, Rios Velazquez E, Leijenaar RT, Hermann G, et al. CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother Oncol. 2015;114(3):345–50.CrossRefGoogle Scholar
  10. 10.
    Jalil O, Afaq A, Ganeshan B, Patel UB, Boone D, Endozo R, et al. Magnetic resonance based texture parameters as potential imaging biomarkers for predicting long-term survival in locally advanced rectal cancer treated by chemoradiotherapy. Color Dis. 2017;19(4):349–62.CrossRefGoogle Scholar
  11. 11.
    Liu L, Liu Y, Xu L, Li Z, Lv H, Dong N, et al. Application of texture analysis based on apparent diffusion coefficient maps in discriminating different stages of rectal cancer. J Magn Reson Imaging. 2017a;45(6):1798–808.CrossRefGoogle Scholar
  12. 12.
    De Cecco CN, Ganeshan B, Ciolina M, Rengo M, Meinel FG, Musio D, et al. Texture analysis as imaging biomarker of tumoral response to neoadjuvant chemoradiotherapy in rectal cancer patients studied with 3-T magnetic resonance. Investig Radiol. 2015;50(4):239–45.CrossRefGoogle Scholar
  13. 13.
    Cusumano D, Dinapoli N, Boldrini L, Chiloiro G, Gatta R, Masciocchi C, et al. Fractal-based radiomic approach to predict complete pathological response after chemo-radiotherapy in rectal cancer. Radiol Med. 2017;123:286.CrossRefGoogle Scholar
  14. 14.
    Lovinfosse P, Polus M, Van Daele D, Martinive P, Daenen F, Hatt M, et al. FDG PET/CT radiomics for predicting the outcome of locally advanced rectal cancer. Eur J Nucl Med Mol Imaging. 2018;45(3):365–75.Google Scholar
  15. 15.
    Bundschuh R, Dinges J, Neumann L, Seyfried M, Zsótér N, Papp L, et al. Textural parameters of tumor heterogeneity in 18F-FDG PET/CT for therapy response assessment and prognosis in patients with locally advanced rectal cancer. J Nucl Med. 2014;55(6):891–7.CrossRefGoogle Scholar
  16. 16.
    Vallières M, Freeman CR, Skamene SR, El Naqa I. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol. 2015;60(14):5471–96.CrossRefGoogle Scholar
  17. 17.
    Mandard A, Dalibard F, Mandard JC, Marnay J, Henry-Amar M, Petiot JF, et al. Pathologic assessment of tumor regression after preoperative chemoradiotherapy of esophageal carcinoma. Clinicopathol Correl Cancer. 1994;73(11):2680–6.Google Scholar
  18. 18.
    Engels B, De Paoli A, Cattari G, Munoz F, Vagge S, Norkus D, et al. Preoperative radiotherapy with a simultaneous integrated boost compared to chemoradiation therapy for T3-4 rectal cancer: interim analysis of a multicentric randomized trial. Int J Radiat Oncol Biol Phys. 2014;90(1):S22–3.CrossRefGoogle Scholar
  19. 19.
    Boellaard R, O’Doherty MJ, Weber WA, Mottaghy FM, Lonsdale MN, Stroobants SG, et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging. 2010;37(1):181–200.CrossRefGoogle Scholar
  20. 20.
    Johnson HJ, McCormick M, Ibanez L. The ITK software guide. 3rd ed. New York: Kitware Inc.; 2013.Google Scholar
  21. 21.
    Brambilla M, Matheoud R, Basile C, Bracco C, Castiglioni I, Cavedon C, et al. An adaptive thresholding method for BTV estimation incorporating PET reconstruction parameters: a multicenter study of the robustness and the reliability. Comput Math Methods Med. 2015;2015:571473.CrossRefGoogle Scholar
  22. 22.
    Cook GJR, Azad G, Owczarczyk K, Siddique M, Goh V. Challenges and promises of PET radiomics. Int J Radiat Oncol Biol Phys. 2018;102(4):1083–9.CrossRefGoogle Scholar
  23. 23.
    Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3:32–5.CrossRefGoogle Scholar
  24. 24.
    Chizi B, Maimon O. Dimension reduction and feature selection. In: Maimon O, Rokach L, editors. Data mining and knowledge discovery handbook. Boston: Springer; 2005. p. 93–111.CrossRefGoogle Scholar
  25. 25.
    Soh L, Tsatsoulis C. Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices. IEEE Trans Geosci Remote Sens. 1999;37(2):780–95.CrossRefGoogle Scholar
  26. 26.
    Haralick RM, Shanmugam K. Textural features for image classification. IEEE Trans Syst Man Cybern. 1973;SMC-3:610–21.CrossRefGoogle Scholar
  27. 27.
    Clausi DA. An analysis of co-occurrence texture statistics as a function of grey level quantization. Can J Remote Sens. 2002;28(1):45–62.CrossRefGoogle Scholar
  28. 28.
    Dinapoli N, Barbaro B, Gatta R, Chiloiro G, Casà C, Masciochi C, et al. Magnetic resonance, vendor-independent, intensity histogram analysis predicting. Int J Radiat Oncol Biol Phys. 2018;102:765.CrossRefGoogle Scholar
  29. 29.
    Ng F, Kozarski R, Ganeshan B, Goh V. Assessment of tumor heterogeneity by CT texture analysis: can the largest cross-sectional area be used as an alternative to whole tumor analysis? Eur J Radiol. 2013;82(2):342–8.CrossRefGoogle Scholar
  30. 30.
    Liu Y, Liu S, Qu F, Li Q, Cheng R, Ye Z. Tumor heterogeneity assessed by texture analysis on contrast-enhanced CT in lung adenocarcinoma: association with pathologic grade. Oncotarget. 2017b;8(32):53664–74.Google Scholar
  31. 31.
    Lubner MG, Stabo N, Lubner SJ, del Rio AM, Song C, Halberg RB, et al. CT textural analysis of hepatic metastatic colorectal cancer: pre-treatment tumor heterogeneity correlates with pathology and clinical outcomes. Abdom Imaging. 2015;40(7):2331–7.CrossRefGoogle Scholar
  32. 32.
    Shen C, Liu Z, Guan M, Song J, Lian Y, Wang S, et al. 2D and 3D CT radiomics features prognostic performance comparison in non-small cell lung cancer. Transl Oncol. 2017;10(6):886–94.CrossRefGoogle Scholar
  33. 33.
    Henderson S, Purdie C, Michie C, Evans A, Lerski R, Johnston M, et al. Interim heterogeneity changes measured using entropy texture features on T2-weighted MRI at 3.0 T are associated with pathological response to neoadjuvant chemotherapy in primary breast cancer. Eur Radiol. 2017;27(11):4602–11.CrossRefGoogle Scholar
  34. 34.
    Giannini V, Mazzetti S, Marmo A, Montemurro F, Regge D, Martincich L. A computer-aided diagnosis (CAD) scheme for pretreatment prediction of pathological response to neoadjuvant therapy using dynamic contrast-enhanced MRI texture features. Br J Radiol. 2017;90(1077):20170269.CrossRefGoogle Scholar
  35. 35.
    Vignati A, Mazzetti S, Giannini V, Russo F, Bollito E, Porpiglia F, et al. Texture features on T2-weighted magnetic resonance imaging: new potential biomarkers for prostate cancer aggressiveness. Phys Med Biol. 2015;60(7):2685–701.CrossRefGoogle Scholar
  36. 36.
    Skogen K, Schulz A, Dormagen JB, Ganeshan B, Helseth E, Server A. Diagnostic performance of texture analysis on MRI in grading cerebral gliomas. Eur J Radiol. 2016;85(4):824–9.CrossRefGoogle Scholar
  37. 37.
    Ganeshan B, Skogen K, Pressney I, Coutroubis D, Miles K. Tumour heterogeneity in oesophageal cancer assessed by CT texture analysis: preliminary evidence of an association with tumour metabolism, stage, and survival. Clin Radiol. 2012;67(2):157–64.CrossRefGoogle Scholar
  38. 38.
    Ganeshan B, Burnand K, Young R, Chatwin C, Miles K. Dynamic contrast-enhanced texture analysis of the liver: initial assessment in colorectal cancer. Investig Radiol. 2011;46(3):160–8.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • V. Giannini
    • 1
    • 2
    Email author
  • S. Mazzetti
    • 1
    • 2
  • I. Bertotto
    • 1
  • C. Chiarenza
    • 1
  • S. Cauda
    • 3
  • E. Delmastro
    • 4
  • C. Bracco
    • 5
  • A. Di Dia
    • 5
  • F. Leone
    • 6
  • E. Medico
    • 7
  • A. Pisacane
    • 8
  • D. Ribero
    • 9
  • M. Stasi
    • 5
  • D. Regge
    • 1
    • 2
  1. 1.Imaging UnitCandiolo Cancer Institute, FPO-IRCCSCandioloItaly
  2. 2.Department of Surgical SciencesUniversity of TurinTurinItaly
  3. 3.Nuclear Medicine UnitCandiolo Cancer Institute, FPO-IRCCSCandioloItaly
  4. 4.Radiation Therapy UnitCandiolo Cancer Institute, FPO-IRCCSCandioloItaly
  5. 5.Medical Physics UnitCandiolo Cancer Institute, FPO-IRCCSCandioloItaly
  6. 6.Medical Oncology UnitCandiolo Cancer Institute, FPO-IRCCSCandioloItaly
  7. 7.Laboratory of OncogenomicsCandiolo Cancer Institute, FPO-IRCCSCandioloItaly
  8. 8.Pathology UnitCandiolo Cancer Institute, FPO-IRCCSCandioloItaly
  9. 9.Hepatobilio-Pancreatic and Colorectal Surgery UnitCandiolo Cancer Institute, FPO-IRCCSCandioloItaly

Personalised recommendations