Advertisement

Osteoid osteoma: multimodality imaging with focus on hybrid imaging

  • Ujwal Bhure
  • Justus E. Roos
  • Klaus StrobelEmail author
Review Article
  • 285 Downloads

Abstract

Osteoid osteoma is a painful, benign, osteoblastic lesion that occurs in younger patients and affects the extremities or the axial skeleton. While plain film findings may suggest the diagnosis, in complex anatomical regions such as the spine, pelvis, wrist and foot advanced imaging modalities are often required. A typical nidus surrounded by sclerosis or cortical thickening characterizes osteoid osteoma on plain radiography and CT. MR is the cross-sectional imaging modality of choice for most musculoskeletal disorders. Unfortunately, extensive accompanying bone marrow oedema, soft-tissue alterations, difficulty detecting the nidus, and lesion locations close to a joint (with reactive arthritis) may make a confident diagnosis of osteoid osteoma by MR imaging difficult. Hybrid imaging with bone-seeking tracers such as SPECT/CT with 99mTc-labelled bisphosphonates or PET/CT with 18F-labelled sodium fluoride (18F-NaF) combines high radionuclide uptake with morphological details and provides accurate diagnosis of osteoid osteoma and additional information for treatment planning. FDG is not the recommended PET tracer because osteoid osteoma is normally FDG-negative, although some osteoid osteomas may show increased FDG uptake. Osteoblastoma, Brodie’s abscess and stress fractures may mimic osteoid osteoma on imaging and clinical presentation. Once identified as the pain generator, destruction of the osteoid osteoma nidus by ablation or resection techniques usually leads to complete healing. Image-guided drill excision and radiofrequency ablation are widely used interventions. We review the presentation of osteoid osteoma across all imaging modalities, with special focus on hybrid imaging techniques.

Keywords

Osteoid osteoma Hybrid imaging SPECT/CT MR PET/CT Bone scintigraphy 

Notes

Acknowledgments

Figure 12: Image courtesy of Dr. Alessio Imperiale, Nuclear Medicine, University Hospital Strasbourg, France.

Figure 13: Image courtesy of Dr. Joachim Müller, Nuclear Medicine, Cantonal Hospital St. Gallen, Switzerland.

Figures 7 and 9: Image design courtesy of Lutz Lehmann, Luzerner Kantonsspital, Luzern, Switzerland.

Authors’ contributions

All authors contributed in a significant way to the content and revision of this manuscript. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflicts of interest

None.

Ethical approval and consent to participate

Not applicable.

Consent to publication

Not applicable.

References

  1. 1.
    Bergstrand H. Uber eine eigenartige, wahrscheinlich bisher nicht beschriebene osteoblastiche krankheit in den langen knochen der hand und des fusses. Acta Radiol. 1930;11:596–613.Google Scholar
  2. 2.
    Jaffe H. Osteoid osteoma: a benign osteoblastic tumor composed of osteoid and atypical bone. Arch Surg. 1935;31:709–28.Google Scholar
  3. 3.
    Klein MH, Shankman S. Osteoid osteoma: radiologic and pathologic correlation. Skelet Radiol. 1992;21:23–31.Google Scholar
  4. 4.
    Loizaga JM, Calvo M, Lopez BF, Martinez TFJ, Perez VJ. Osteoblastoma and osteoid osteoma: clinical and morphological features of 162 cases. Pathol Res Pract. 1993;189:33–41.Google Scholar
  5. 5.
    Steiner GC. Ultrastructure of osteoid osteoma. Hum Pathol. 1976;7:309–25.Google Scholar
  6. 6.
    Kayser F, Resnick D, Haghighi P, Pereira E, Greenway G, Schweitzer M, et al. Evidence of the subperiosteal origin of osteoid osteomas in tubular bones: analysis by CT and MR imaging. AJR Am J Roentgenol. 1998;170:609–14.Google Scholar
  7. 7.
    Chai JW, Hong SH, Choi JY, Koh YH, Lee JW, Choi JA, et al. Radiologic diagnosis of osteoid osteoma: from simple to challenging findings. Radiographics. 2010;30(3):737–49.  https://doi.org/10.1148/rg.303095120.Google Scholar
  8. 8.
    Iyer RS, Chapman T, Chew FS. Pediatric bone imaging: diagnostic imaging of osteoid osteoma. AJR Am J Roentgenol. 2012;198(5):1039–52.  https://doi.org/10.2214/AJR.10.7313.Google Scholar
  9. 9.
    Kransdorf MJ, Stull MA, Gilkey FW, Moser RP Jr. Osteoid osteoma. Radiographics. 1991;11(4):671–96.  https://doi.org/10.1148/radiographics.11.4.1887121.Google Scholar
  10. 10.
    Kneisl JS, Simon MA. Medical management compared with operative treatment for osteoid-osteoma. J Bone Joint Surg Am. 1992;74:179–85.Google Scholar
  11. 11.
    Laurence N, Epelman M, Markowitz RI, Jaimes C, Jaramillo D, Chauvin NA. Osteoid osteomas: a pain in the night diagnosis. Pediatr Radiol. 2012;42(12):1490–501.  https://doi.org/10.1007/s00247-012-2495-y.Google Scholar
  12. 12.
    Lee EH, Shafi M, Hui JH. Osteoid osteoma: a current review. J Pediatr Orthop. 2006;26(5):695–700.  https://doi.org/10.1097/01.bpo.0000233807.80046.7c.Google Scholar
  13. 13.
    Swee RG, McLeod RA, Beabout JW. Osteoid osteoma. Detection, diagnosis, and localization. Radiology. 1979;130:117–23.Google Scholar
  14. 14.
    Ebrahim FS, Jacobson JA, Lin J, Housner JA, Hayes CW, Resnick D. Intraarticular osteoid osteoma: sonographic findings in three patients with radiographic, CT, and MR imaging correlation. AJR Am J Roentgenol. 2001;177:1391–5.Google Scholar
  15. 15.
    Gil S, Marco SF, Arenas J, Irurzun J, Agullo T, Alonso S, et al. Doppler duplex color localization of osteoid osteomas. Skelet Radiol. 1999;28:107–10.Google Scholar
  16. 16.
    Helms CA, Hattner RS, Vogler JB. Osteoid osteoma: radionuclide diagnosis. Radiology. 1984;151:779–84.Google Scholar
  17. 17.
    Lindbom A, Lindvall N, Soderberg G, Spjut H. Angiography in osteoid osteoma. Acta Radiol. 1960;54:327–33.Google Scholar
  18. 18.
    von Kalle T, Langendorfer M, Fernandez FF, Winkler P. Combined dynamic contrast-enhancement and serial 3D-subtraction analysis in magnetic resonance imaging of osteoid osteomas. Eur Radiol. 2009;19(10):2508–17.  https://doi.org/10.1007/s00330-009-1430-6.Google Scholar
  19. 19.
    Greco F, Tamburrelli F, Ciabattoni G. Prostaglandins in osteoid osteoma. Int Orthop. 1991;15:35–7.Google Scholar
  20. 20.
    Mungo DV, Zhang X, O’Keefe RJ. COX-1 and COX-2 expression in osteoid osteomas. J Orthop Res. 2002;20:159–62.Google Scholar
  21. 21.
    Gautschi M, Strobel K, Schoniger R, Pfeiffer D, Schmid L. A special case of monoarthritis of the elbow. Z Rheumatol. 2017;76(7):636–9.  https://doi.org/10.1007/s00393-017-0359-4.Google Scholar
  22. 22.
    Basu S, Basu P, Dowell J. Painless osteoid osteoma in a metacarpal. J Hand Surg Br. 1999;24:133–4.Google Scholar
  23. 23.
    Ekmekci P, Bostanci S, Erdogan N, Akcaboy B, Guergey E. A painless subungual osteoid osteoma. Dermatol Surg. 2001;27:764–5.Google Scholar
  24. 24.
    Papathanassiou ZG, Megas P, Petsas T, Papachristou DJ, Nilas J, Siablis D. Osteoid osteoma: diagnosis and treatment. Orthopedics. 2008;31(11):1118.Google Scholar
  25. 25.
    Edeiken J, DePalma AF, Hodes PJ. Osteoid osteoma. (Roentgenographic emphasis). Clin Orthop Relat Res. 1966;49:201–6.Google Scholar
  26. 26.
    Graham GN, Browne H. Primary bony tumors of the pediatric spine. Yale J Biol Med. 2001;74(1):1–8.Google Scholar
  27. 27.
    Healey JH, Ghelman B. Osteoid osteoma and osteoblastoma. Current concepts and recent advances. Clin Orthop Relat Res. 1986;204:76–85.Google Scholar
  28. 28.
    Ghanem I. The management of osteoid osteoma: updates and controversies. Curr Opin Pediatr. 2006;18(1):36–41.  https://doi.org/10.1097/01.mop.0000193277.47119.15.Google Scholar
  29. 29.
    Gamba JL, Martinez S, Apple J, Harrelson JM, Nunley JA. Computed tomography of axial skeletal osteoid osteomas. AJR Am J Roentgenol. 1984;142(4):769–72.  https://doi.org/10.2214/ajr.142.4.769.Google Scholar
  30. 30.
    Harish S, Saifuddin A. Imaging features of spinal osteoid osteoma with emphasis on MRI findings. Eur Radiol. 2005;15(12):2396–403.  https://doi.org/10.1007/s00330-005-2816-8.Google Scholar
  31. 31.
    Jordan RW, Koc T, Chapman AW, Taylor HP. Osteoid osteoma of the foot and ankle – a systematic review. Foot Ankle Surg. 2015;21(4):228–34.  https://doi.org/10.1016/j.fas.2015.04.005.Google Scholar
  32. 32.
    Athwal GS, Pichora DR, Ellis RE, Rudan JF. A computer-assisted guidance technique for the localization and excision of osteoid osteoma. Orthopedics. 2004;27(2):195–7.Google Scholar
  33. 33.
    Liu PT, Kujak JL, Roberts CC, de Chadarevian JP. The vascular groove sign: a new CT finding associated with osteoid osteomas. AJR Am J Roentgenol. 2011;196(1):168–73.  https://doi.org/10.2214/AJR.10.4534.Google Scholar
  34. 34.
    Levine E, Neff JR. Dynamic computed tomography scanning of benign bone lesions: preliminary results. Skelet Radiol. 1983;9(4):238–45.Google Scholar
  35. 35.
    McGrath BE, Bush CH, Nelson TE, Scarborough MT. Evaluation of suspected osteoid osteoma. Clin Orthop Relat Res. 1996;327:247–52.Google Scholar
  36. 36.
    Assoun J, Richardi G, Railhac JJ, Baunin C, Fajadet P, Giron J, et al. Osteoid osteoma: MR imaging versus CT. Radiology. 1994;191(1):217–23.  https://doi.org/10.1148/radiology.191.1.8134575.Google Scholar
  37. 37.
    Davies M, Cassar-Pullicino VN, Davies AM, McCall IW, Tyrrell PN. The diagnostic accuracy of MR imaging in osteoid osteoma. Skelet Radiol. 2002;31(10):559–69.  https://doi.org/10.1007/s00256-002-0546-4.Google Scholar
  38. 38.
    Zanetti M, Eberhard SM, Exner GU, von Hochstetter A, Hodler J. Magnetic resonance tomography in osteoid osteoma: more confusion than benefit?. Praxis (Bern 1994). 1997;86(11):432–6.Google Scholar
  39. 39.
    Liu PT, Chivers FS, Roberts CC, Schultz CJ, Beauchamp CP. Imaging of osteoid osteoma with dynamic gadolinium-enhanced MR imaging. Radiology. 2003;227(3):691–700.  https://doi.org/10.1148/radiol.2273020111.Google Scholar
  40. 40.
    Wells RG, Miller JH, Sty JR. Scintigraphic patterns in osteoid osteoma and spondylolysis. Clin Nucl Med. 1987;12(1):39–44.Google Scholar
  41. 41.
    Park JH, Pahk K, Kim S, Lee SH, Song SH, Choe JG. Radionuclide imaging in the diagnosis of osteoid osteoma. Oncol Lett. 2015;10(2):1131–4.  https://doi.org/10.3892/ol.2015.3258.Google Scholar
  42. 42.
    Helms CA. Osteoid osteoma. The double density sign. Clin Orthop Relat Res. 1987;222:167–73.Google Scholar
  43. 43.
    Roach PJ, Connolly LP, Zurakowski D, Treves ST. Osteoid osteoma: comparative utility of high-resolution planar and pinhole magnification scintigraphy. Pediatr Radiol. 1996;26(3):222–5.Google Scholar
  44. 44.
    Banzo I, Montero A, Uriarte I, Vallina NK, Hernandez A, Guede C, et al. Localization by bone SPET of osteoid osteoma in the vertebral lamina. Rev Esp Med Nucl. 1999;18(1):47–9.Google Scholar
  45. 45.
    Ryan PJ, Fogelman I. Bone SPECT in osteoid osteoma of the vertebral lamina. Clin Nucl Med. 1994;19(2):144–5.Google Scholar
  46. 46.
    Hasegawa BH, Wong KH, Iwata K, Barber WC, Hwang AB, Sakdinawat AE, et al. Dual-modality imaging of cancer with SPECT/CT. Technol Cancer Res Treat. 2002;1(6):449–58.  https://doi.org/10.1177/153303460200100605.Google Scholar
  47. 47.
    Mariani G, Bruselli L, Kuwert T, Kim EE, Flotats A, Israel O, et al. A review on the clinical uses of SPECT/CT. Eur J Nucl Med Mol Imaging. 2010;37(10):1959–85.  https://doi.org/10.1007/s00259-010-1390-8.Google Scholar
  48. 48.
    Farid K, El-Deeb G, Caillat Vigneron N. SPECT-CT improves scintigraphic accuracy of osteoid osteoma diagnosis. Clin Nucl Med. 2010;35(3):170–1.  https://doi.org/10.1097/RLU.0b013e3181cc648f.Google Scholar
  49. 49.
    Sharma P, Mukherjee A, Karunanithi S, Nadarajah J, Gamanagatti S, Khan SA, et al. 99mTc-methylene diphosphonate SPECT/CT as the one-stop imaging modality for the diagnosis of osteoid osteoma. Nucl Med Commun. 2014;35(8):876–83.  https://doi.org/10.1097/MNM.0000000000000134.Google Scholar
  50. 50.
    Squier SB, Lewis JI, Accurso JM, Jain MK. (99m)Tc-methylene diphosphonate single-photon emission computed tomography/computed tomography improves the diagnostic accuracy of osteoid osteoma. Indian J Nucl Med. 2016;31(4):298–300.  https://doi.org/10.4103/0972-3919.187459.Google Scholar
  51. 51.
    Beheshti M, Mottaghy FM, Payche F, Behrendt FFF, Van den Wyngaert T, Fogelman I, et al. (18)F-NaF PET/CT: EANM procedure guidelines for bone imaging. Eur J Nucl Med Mol Imaging. 2015;42(11):1767–77.  https://doi.org/10.1007/s00259-015-3138-y.Google Scholar
  52. 52.
    Segall G, Delbeke D, Stabin MG, Even-Sapir E, Fair J, Sajdak R, et al. SNM practice guideline for sodium 18F-fluoride PET/CT bone scans 1.0. J Nucl Med. 2010;51(11):1813–20.  https://doi.org/10.2967/jnumed.110.082263.Google Scholar
  53. 53.
    Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med. 2006;47(2):287–97.Google Scholar
  54. 54.
    Shen CT, Qiu ZL, Han TT, Luo QY. Performance of 18F-fluoride PET or PET/CT for the detection of bone metastases: a meta-analysis. Clin Nucl Med. 2015;40(2):103–10.  https://doi.org/10.1097/RLU.0000000000000592.Google Scholar
  55. 55.
    Strobel K, Fischer DR, Tamborrini G, Kyburz D, Stumpe KD, Hesselmann RG, et al. 18F-fluoride PET/CT for detection of sacroiliitis in ankylosing spondylitis. Eur J Nucl Med Mol Imaging. 2010;37(9):1760–5.  https://doi.org/10.1007/s00259-010-1464-7.Google Scholar
  56. 56.
    Fischer DR, Maquieira GJ, Espinosa N, Zanetti M, Hesselmann R, Johayem A, et al. Therapeutic impact of [(18)F]fluoride positron-emission tomography/computed tomography on patients with unclear foot pain. Skelet Radiol. 2010;39(10):987–97.  https://doi.org/10.1007/s00256-010-0875-7.Google Scholar
  57. 57.
    Drubach LA, Johnston PR, Newton AW, Perez-Rossello JM, Grant FD, Kleinman PK. Skeletal trauma in child abuse: detection with 18F-NaF PET. Radiology. 2010;255(1):173–81.  https://doi.org/10.1148/radiol.09091368.Google Scholar
  58. 58.
    Dasa V, Adbel-Nabi H, Anders MJ, Mihalko WM. F-18 fluoride positron emission tomography of the hip for osteonecrosis. Clin Orthop Relat Res. 2008;466(5):1081–6.  https://doi.org/10.1007/s11999-008-0219-2.Google Scholar
  59. 59.
    Dua SG, Purandare NC, Shah S, Rangarajan V. F-18 fluoride PET/CT in the detection of radiation-induced pelvic insufficiency fractures. Clin Nucl Med. 2011;36(10):e146–9.  https://doi.org/10.1097/RLU.0b013e31821a293b.Google Scholar
  60. 60.
    Brenner W, Vernon C, Conrad EU, Eary JF. Assessment of the metabolic activity of bone grafts with (18)F-fluoride PET. Eur J Nucl Med Mol Imaging. 2004;31(9):1291–8.  https://doi.org/10.1007/s00259-004-1568-z.Google Scholar
  61. 61.
    Grant FD. (18)F-fluoride PET and PET/CT in children and young adults. PET Clin. 2014;9(3):287–97.  https://doi.org/10.1016/j.cpet.2014.03.004.Google Scholar
  62. 62.
    Strobel K, Vali R. (18)F NaF PET/CT versus conventional bone scanning in the assessment of benign bone disease. PET Clin. 2012;7(3):249–61.  https://doi.org/10.1016/j.cpet.2012.04.007.Google Scholar
  63. 63.
    Even-Sapir E, Mishani E, Flusser G, Metser U. 18F-fluoride positron emission tomography and positron emission tomography/computed tomography. Semin Nucl Med. 2007;37(6):462–9.  https://doi.org/10.1053/j.semnuclmed.2007.07.002.Google Scholar
  64. 64.
    Lim CH, Park YH, Lee SY, Chung SK. F-18 FDG uptake in the nidus of an osteoid osteoma. Clin Nucl Med. 2007;32(8):628–30.  https://doi.org/10.1097/RLU.0b013e3180a1acf3.Google Scholar
  65. 65.
    Imperiale A, Moser T, Ben-Sellem D, Mertz L, Gangi A, Constantinesco A. Osteoblastoma and osteoid osteoma: morphofunctional characterization by MRI and dynamic F-18 FDG PET/CT before and after radiofrequency ablation. Clin Nucl Med. 2009;34(3):184–8.  https://doi.org/10.1097/RLU.0b013e3181966de6.Google Scholar
  66. 66.
    Aoki J, Watanabe H, Shinozaki T, Takagishi K, Ishijima H, Oya N, et al. FDG PET of primary benign and malignant bone tumors: standardized uptake value in 52 lesions. Radiology. 2001;219(3):774–7.  https://doi.org/10.1148/radiology.219.3.r01ma08774.Google Scholar
  67. 67.
    Strobel K, Hany TF, Exner GU. PET/CT of a Brodie abscess. Clin Nucl Med. 2006;31(4):210.  https://doi.org/10.1097/01.rlu.0000204125.79919.44.Google Scholar
  68. 68.
    Hudson TM, Hawkins IF Jr. Radiological evaluation of chondroblastoma. Radiology. 1981;139(1):1–10.  https://doi.org/10.1148/radiology.139.1.7208908.Google Scholar
  69. 69.
    Atesok KI, Alman BA, Schemitsch EH, Peyser A, Mankin H. Osteoid osteoma and osteoblastoma. J Am Acad Orthop Surg. 2011;19(11):678–89.Google Scholar
  70. 70.
    Moberg E. The natural course of osteoid osteoma. J Bone Joint Surg Am. 1951;33 A(1):166–70.Google Scholar
  71. 71.
    Goto T, Shinoda Y, Okuma T, Ogura K, Tsuda Y, Yamakawa K, et al. Administration of nonsteroidal anti-inflammatory drugs accelerates spontaneous healing of osteoid osteoma. Arch Orthop Trauma Surg. 2011;131(5):619–25.  https://doi.org/10.1007/s00402-010-1179-z.Google Scholar
  72. 72.
    Rosenthal DI, Hornicek FJ, Torriani M, Gebhardt MC, Mankin HJ. Osteoid osteoma: percutaneous treatment with radiofrequency energy. Radiology. 2003;229(1):171–5.  https://doi.org/10.1148/radiol.2291021053.Google Scholar
  73. 73.
    Lindner NJ, Ozaki T, Roedl R, Gosheger G, Winkelmann W, Wortler K. Percutaneous radiofrequency ablation in osteoid osteoma. J Bone Joint Surg Br. 2001;83(3):391–6.Google Scholar
  74. 74.
    Rosenthal DI, Springfield DS, Gebhardt MC, Rosenberg AE, Mankin HJ. Osteoid osteoma: percutaneous radio-frequency ablation. Radiology. 1995;197(2):451–4.  https://doi.org/10.1148/radiology.197.2.7480692.Google Scholar
  75. 75.
    Sans N, Galy-Fourcade D, Assoun J, Jarlaud T, Chiavassa H, Bonnevialle P, et al. Osteoid osteoma: CT-guided percutaneous resection and follow-up in 38 patients. Radiology. 1999;212(3):687–92.  https://doi.org/10.1148/radiology.212.3.r99se06687.Google Scholar
  76. 76.
    Woertler K, Vestring T, Boettner F, Winkelmann W, Heindel W, Lindner N. Osteoid osteoma: CT-guided percutaneous radiofrequency ablation and follow-up in 47 patients. J Vasc Interv Radiol. 2001;12(6):717–22.Google Scholar
  77. 77.
    Kostrzewa M, Diezler P, Michaely H, Rathmann N, Attenberger UI, Schoenberg SO, et al. Microwave ablation of osteoid osteomas using dynamic MR imaging for early treatment assessment: preliminary experience. J Vasc Interv Radiol. 2014;25(1):106–11.  https://doi.org/10.1016/j.jvir.2013.09.009.Google Scholar
  78. 78.
    Napoli A, Bazzocchi A, Scipione R, Anzidei M, Saba L, Ghanouni P, et al. Noninvasive therapy for osteoid osteoma: a prospective developmental study with MR imaging-guided high-intensity focused ultrasound. Radiology. 2017;285(1):186–96.  https://doi.org/10.1148/radiol.2017162680.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Radiology and Nuclear MedicineCantonal Hospital LucerneLucerneSwitzerland

Personalised recommendations