Advertisement

Value of early evaluation of treatment response using 18F-FDG PET/CT parameters and the Epstein-Barr virus DNA load for prediction of outcome in patients with primary nasopharyngeal carcinoma

  • Yu-Hung Chen
  • Kai-Ping Chang
  • Sung-Chao Chu
  • Tzu-Chen Yen
  • Ling-Yi Wang
  • Joseph Tung-Chieh Chang
  • Cheng-Lung Hsu
  • Shu-Hang Ng
  • Shu-Hsin Liu
  • Sheng-Chieh ChanEmail author
Original Article
  • 175 Downloads

Abstract

Purpose

To determine the value of early evaluation of response to concurrent chemoradiotherapy (CCRT) using 18F-FDG PET-derived parameters and the Epstein-Barr virus (EBV) DNA titre in outcome prediction in patients with primary nasopharyngeal carcinoma (NPC).

Methods

Sixty patients with primary NPC were prospectively enrolled. All patients underwent 18F-FDG PET/CT before and during CCRT. The plasma EBV DNA titre was measured along with the PET/CT-derived parameters. Changes in EBV DNA titre and PET/CT-derived parameters during CCRT were analysed in relation to response to treatment, recurrence-free survival (RFS) and overall survival (OS).

Results

A total lesion glycolysis (TLG) reduction ratio of ≤0.6 and a detectable EBV DNA titre during CCRT were predictors of an unfavourable response to treatment, RFS and OS. In multivariate analysis, a TLG reduction ratio of ≤0.6 predicted incomplete remission (p = 0.002) and decreased RFS (p = 0.003). The proportion of patients with a TLG reduction ratio of >0.6 who achieved a complete response was more than twice that of patients with a TLG reduction ratio of ≤0.6. A detectable EBV DNA titre, a TLG reduction ratio of ≤0.6 and older age were independently associated with a poorer OS (p = 0.037, 0.009 and 0.016, respectively). A scoring system was developed based on these independent predictors of OS. Patients with a score of 1 and 2/3 had poorer survival outcomes than those with a score of 0 (hazard ratio 4.756, p = 0.074, and hazard ratio 18.973, p = 0.001, respectively). This scoring system appeared to be superior to the traditional TNM staging system (p < 0.001 versus p = 0.175).

Conclusion

Early evaluation of response to CCRT using 18F-FDG PET-derived parameters and the EBV DNA titre can predict outcome in patients with primary NPC. A combination of interim PET parameters and the EBV DNA titre enables better stratification of patients into subgroups with different survival rates.

Keywords

Nasopharyngeal carcinoma 18F-FDG PET Epstein-Barr virus Treatment response Prognosis Head and neck cancer 

Notes

Acknowledgments

We acknowledge the support of the Taiwan Ministry of Science and Technology and the Chang Gung Memorial Hospital

Funding

This study was partially supported by the Taiwan Ministry of Science and Technology (grants NSC 100-2314-B-182A-053, NSC 101-2314-B-182A-079, NSC 102-2314-B-182A-096, and NSC 104-2314-B-182A-084-MY3) and the Chang Gung Memorial Hospital (grant CMRPG 2E0191~3).

Compliance with ethical standards

Conflicts of interest

None.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the principles of the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. All patients whose data are included in this manuscript signed a written informed consent.

Informed consent

Informed consent was obtained from all the study participants.

Supplementary material

259_2018_4172_MOESM1_ESM.docx (619 kb)
ESM 1 (DOCX 619 kb)
259_2018_4172_MOESM2_ESM.docx (20 kb)
ESM 2 (DOCX 19.6 kb)
259_2018_4172_MOESM3_ESM.docx (125 kb)
ESM 3 (DOCX 125 kb)
259_2018_4172_MOESM4_ESM.docx (18 kb)
ESM 4 (DOCX 17.6 kb)
259_2018_4172_MOESM5_ESM.docx (17 kb)
ESM 5 (DOCX 17.3 kb)
259_2018_4172_MOESM6_ESM.docx (411 kb)
ESM 6 (DOCX 410 kb)

References

  1. 1.
    Brennan B. Nasopharyngeal carcinoma. Orphanet J Rare Dis. 2006;1:23.CrossRefGoogle Scholar
  2. 2.
    Chua MLK, Wee JTS, Hui EP, Chan ATC. Nasopharyngeal carcinoma. Lancet. 2016;387:1012–24.CrossRefGoogle Scholar
  3. 3.
    Cao SM, Simons MJ, Qian CN. The prevalence and prevention of nasopharyngeal carcinoma in China. Chin J Cancer. 2011;30:114–9.CrossRefGoogle Scholar
  4. 4.
    Wee CW, Keam B, Heo DS, Sung MW, Won TB, Wu HG. Locoregionally advanced nasopharyngeal carcinoma treated with intensity-modulated radiotherapy plus concurrent weekly cisplatin with or without neoadjuvant chemotherapy. Radiat Oncol J. 2015;33:98–108.CrossRefGoogle Scholar
  5. 5.
    Wei WI, Sham JST. Nasopharyngeal carcinoma. Lancet. 2005;365:2041–54.CrossRefGoogle Scholar
  6. 6.
    Blanchard P, Lee A, Marguet S, Leclercq J, Ng WT, Ma J, et al. Chemotherapy and radiotherapy in nasopharyngeal carcinoma: an update of the MAC-NPC meta-analysis. Lancet Oncol. 2015;16:645–55.CrossRefGoogle Scholar
  7. 7.
    Liu LT, Tang LQ, Chen QY, Zhang L, Guo SS, Guo L, et al. The prognostic value of plasma Epstein-Barr viral DNA and tumor response to neoadjuvant chemotherapy in advanced-stage nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys. 2015;93:862–9.CrossRefGoogle Scholar
  8. 8.
    Chen WH, Tang LQ, Guo SS, Chen QY, Zhang L, Liu LT, et al. Prognostic value of plasma Epstein-Barr virus DNA for local and regionally advanced nasopharyngeal carcinoma treated with cisplatin-based concurrent chemoradiotherapy in intensity-modulated radiotherapy era. Medicine (Baltimore). 2016;95:e2642.CrossRefGoogle Scholar
  9. 9.
    Lee VH, Kwong DL, Leung TW, Choi CW, Lam KO, Sze CK, et al. Post-radiation plasma Epstein-Barr virus DNA and local clinical remission after radical intensity-modulated radiation therapy for nasopharyngeal carcinoma. Clin Oncol ® Coll Radiol). 2016;28:42–9.CrossRefGoogle Scholar
  10. 10.
    Kim KY, Le QT, Yom SS, Ng RHW, Chan KCA, Bratman SV, et al. Clinical utility of Epstein-Barr virus DNA testing in the treatment of nasopharyngeal carcinoma patients. Int J Radiat Oncol Biol Phys. 2017;98:996–1001.CrossRefGoogle Scholar
  11. 11.
    Lee VH, Kwong DL, Leung TW, Choi CW, Lai V, Ng L, et al. Prognostication of serial post-intensity-modulated radiation therapy undetectable plasma EBV DNA for nasopharyngeal carcinoma. Oncotarget. 2017;8:5292–308.Google Scholar
  12. 12.
    Chung MK, Jeong HS, Park SG, Jang JY, Son YI, Choi JY, et al. Metabolic tumor volume of [18F]-fluorodeoxyglucose positron emission tomography/computed tomography predicts short-term outcome to radiotherapy with or without chemotherapy in pharyngeal cancer. Clin Cancer Res. 2009;15:5861–8.CrossRefGoogle Scholar
  13. 13.
    Chang KP, Tsang NM, Liao CT, Hsu CL, Chung MJ, Lo CW, et al. Prognostic significance of 18F-FDG PET parameters and plasma Epstein-Barr virus DNA load in patients with nasopharyngeal carcinoma. J Nucl Med. 2012;53:21–8.CrossRefGoogle Scholar
  14. 14.
    Chan SC, Hsu CL, Yen TC, Ng SH, Liao CT, Wang HM. The role of 18F-FDG PET/CT metabolic tumour volume in predicting survival in patients with metastatic nasopharyngeal carcinoma. Oral Oncol. 2013;49:71–8.CrossRefGoogle Scholar
  15. 15.
    Chan SC, Kuo WH, Wang HM, Chang JT, Lin CY, Ng SH, et al. Prognostic implications of post-therapy (18)F-FDG PET in patients with locoregionally advanced nasopharyngeal carcinoma treated with chemoradiotherapy. Ann Nucl Med. 2013;27:710–9.CrossRefGoogle Scholar
  16. 16.
    Paidpally V, Chirindel A, Chung CH, Richmon J, Koch W, Quon H, et al. FDG volumetric parameters and survival outcomes after definitive chemoradiotherapy in patients with recurrent head and neck squamous cell carcinoma. AJR Am J Roentgenol. 2014;203:W139–45.CrossRefGoogle Scholar
  17. 17.
    Lin J, Xie G, Liao G, Wang B, Yan M, Li H, et al. Prognostic value of 18F-FDG-PET/CT in patients with nasopharyngeal carcinoma: a systematic review and meta-analysis. Oncotarget. 2017;8:33884–96.Google Scholar
  18. 18.
    Yen RF, Chen TH, Ting LL, Tzen KY, Pan MH, Hong RL. Early restaging whole-body (18)F-FDG PET during induction chemotherapy predicts clinical outcome in patients with locoregionally advanced nasopharyngeal carcinoma. Eur J Nucl Med Mol Imaging. 2005;32:1152–9.CrossRefGoogle Scholar
  19. 19.
    Chang MC, Chen JH, Liang JA, Yang KT, Cheng KY, Kao CH. Accuracy of whole-body FDG-PET and FDG-PET/CT in M staging of nasopharyngeal carcinoma: a systematic review and meta-analysis. Eur J Radiol. 2013;82:366–73.CrossRefGoogle Scholar
  20. 20.
    Vellayappan BA, Soon YY, Earnest A, Zhang Q, Koh WY, Tham IW, et al. Accuracy of (18)F-flurodeoxyglucose-positron emission tomography/computed tomography in the staging of newly diagnosed nasopharyngeal carcinoma: a systematic review and meta-analysis. Radiol Oncol. 2014;48:331–8.CrossRefGoogle Scholar
  21. 21.
    Liu TB, Zheng ZH, Pan J, Pan LL, Chen LH. Prognostic role of plasma Epstein-Barr virus DNA load for nasopharyngeal carcinoma: a meta-analysis. Clin Invest Med. 2017;40:E1–E12.CrossRefGoogle Scholar
  22. 22.
    Yoon HI, Kim KH, Lee J, Roh YH, Yun M, Cho BC, et al. The clinical usefulness of (18)F-fluorodeoxyglucose positron emission tomography (PET) to predict oncologic outcomes and PET-based radiotherapeutic considerations in locally advanced nasopharyngeal carcinoma. Cancer Res Treat. 2016;48:928–41.CrossRefGoogle Scholar
  23. 23.
    Xie P, Yue JB, Zhao HX, Sun XD, Kong L, Fu Z, et al. Prognostic value of 18F-FDG PET-CT metabolic index for nasopharyngeal carcinoma. J Cancer Res Clin Oncol. 2010;136:883–9.CrossRefGoogle Scholar
  24. 24.
    Huang Y, Feng M, He Q, Yin J, Xu P, Jiang Q, et al. Prognostic value of pretreatment 18F-FDG PET-CT for nasopharyngeal carcinoma patients. Medicine (Baltimore). 2017;96:e6721.CrossRefGoogle Scholar
  25. 25.
    Lin Q, Yang RS, Sun L, Li YM, Wang LC, Dai MM, et al. Serial (18)F-FDG PET-CT imaging during radiotherapy for nasopharyngeal carcinoma: a prospective clinical study. Zhonghua Zhong Liu Za Zhi. 2012;34:356–9.Google Scholar
  26. 26.
    Qi S, Zhongyi Y, Yingjian Z, Chaosu H. 18F-FLT and 18F-FDG PET/CT in predicting response to chemoradiotherapy in nasopharyngeal carcinoma: preliminary results. Sci Rep. 2017;7:40552.CrossRefGoogle Scholar
  27. 27.
    Lin P, Min M, Lee M, Holloway L, Forstner D, Bray V, et al. Prognostic utility of (18)F-FDG PET-CT performed prior to and during primary radiotherapy for nasopharyngeal carcinoma: index node is a useful prognostic imaging biomarker site. Radiother Oncol. 2016;120:87–91.CrossRefGoogle Scholar
  28. 28.
    Leung SF, Chan KC, Ma BB, Hui EP, Mo F, Chow KC, et al. Plasma Epstein-Barr viral DNA load at midpoint of radiotherapy course predicts outcome in advanced-stage nasopharyngeal carcinoma. Ann Oncol. 2014;25:1204–8.CrossRefGoogle Scholar
  29. 29.
    He SS, Wang Y, Bao Y, Cai XY, Yang XL, Chen DM, et al. Dynamic changes in plasma Epstein-Barr virus DNA load during treatment have prognostic value in nasopharyngeal carcinoma: a retrospective study. Cancer Med. 2018;7:1110–7.CrossRefGoogle Scholar
  30. 30.
    Prayongrat A, Chakkabat C, Kannarunimit D, Hansasuta P, Lertbutsayanukul C. Prevalence and significance of plasma Epstein-Barr virus DNA level in nasopharyngeal carcinoma. J Radiat Res. 2017;58:509–16.CrossRefGoogle Scholar
  31. 31.
    Paleri V, Mehanna H, Wight RG. TNM classification of malignant tumours 7th edition: what’s new for head and neck? Clin Otolaryngol. 2010;35:270–2.CrossRefGoogle Scholar
  32. 32.
    Wang HM, Wang CS, Chen JS, Chen IH, Liao CT, Chang TC. Cisplatin, tegafur, and leucovorin: a moderately effective and minimally toxic outpatient neoadjuvant chemotherapy for locally advanced squamous cell carcinoma of the head and neck. Cancer. 2002;94:2989–95.CrossRefGoogle Scholar
  33. 33.
    Chang KP, Chang YT, Wu CC, Liu YL, Chen MC, Tsang NM, et al. Multiplexed immunobead-based profiling of cytokine markers for detection of nasopharyngeal carcinoma and prognosis of patient survival. Head Neck. 2011;33:886–97.CrossRefGoogle Scholar
  34. 34.
    Chan SC, Chang KP, Fang YD, Tsang NM, Ng SH, Hsu CL, et al. Tumor heterogeneity measured on F-18 fluorodeoxyglucose positron emission tomography/computed tomography combined with plasma Epstein-Barr virus load predicts prognosis in patients with primary nasopharyngeal carcinoma. Laryngoscope. 2017;127:E22–8.CrossRefGoogle Scholar
  35. 35.
    Lee AW, Tung SY, Chua DT, Ngan RK, Chappell R, Tung R, et al. Randomized trial of radiotherapy plus concurrent-adjuvant chemotherapy vs radiotherapy alone for regionally advanced nasopharyngeal carcinoma. J Natl Cancer Inst. 2010;102:1188–98.CrossRefGoogle Scholar
  36. 36.
    Lin JC, Jan JS, Hsu CY, Liang WM, Jiang RS, Wang WY. Phase III study of concurrent chemoradiotherapy versus radiotherapy alone for advanced nasopharyngeal carcinoma: positive effect on overall and progression-free survival. J Clin Oncol. 2003;21:631–7.CrossRefGoogle Scholar
  37. 37.
    Wee J, Tan EH, Tai BC, Wong HB, Leong SS, Tan T, et al. Randomized trial of radiotherapy versus concurrent chemoradiotherapy followed by adjuvant chemotherapy in patients with American Joint Committee on Cancer/International Union Against Cancer stage III and IV nasopharyngeal cancer of the endemic variety. J Clin Oncol. 2005;23:6730–8.CrossRefGoogle Scholar
  38. 38.
    Wu X, Huang PY, Peng PJ, Lu LX, Han F, Wu SX, et al. Long-term follow-up of a phase III study comparing radiotherapy with or without weekly oxaliplatin for locoregionally advanced nasopharyngeal carcinoma. Ann Oncol. 2013;24:2131–6.CrossRefGoogle Scholar
  39. 39.
    Ma B, Hui EP, King A, Leung SF, Kam MK, Mo F, et al. Prospective evaluation of plasma Epstein-Barr virus DNA clearance and fluorodeoxyglucose positron emission scan in assessing early response to chemotherapy in patients with advanced or recurrent nasopharyngeal carcinoma. Br J Cancer. 2018;118:1051–5.CrossRefGoogle Scholar
  40. 40.
    Peng H, Chen L, Li WF, Guo R, Mao YP, Zhang Y, et al. Tumor response to neoadjuvant chemotherapy predicts long-term survival outcomes in patients with locoregionally advanced nasopharyngeal carcinoma: a secondary analysis of a randomized phase 3 clinical trial. Cancer. 2017;123:1643–52.CrossRefGoogle Scholar
  41. 41.
    Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32:3059–68.CrossRefGoogle Scholar
  42. 42.
    Yoon DH, Cho Y, Kim SY, Nam SY, Choi SH, Roh JL, et al. Usefulness of interim FDG-PET after induction chemotherapy in patients with locally advanced squamous cell carcinoma of the head and neck receiving sequential induction chemotherapy followed by concurrent chemoradiotherapy. Int J Radiat Oncol Biol Phys. 2011;81:118–25.CrossRefGoogle Scholar
  43. 43.
    Wong KH, Panek R, Welsh L, McQuaid D, Dunlop A, Riddell A, et al. The predictive value of early assessment after 1 cycle of induction chemotherapy with 18F-FDG PET/CT and diffusion-weighted MRI for response to radical chemoradiotherapy in head and neck squamous cell carcinoma. J Nucl Med. 2016;57:1843–50.CrossRefGoogle Scholar
  44. 44.
    Koizumi T, Fukushima T, Gomi D, Kobayashi T, Sekiguchi N, Mamiya K, et al. Correlation of early PET findings with tumor response to molecular targeted agents in patients with advanced driver-mutated non-small cell lung cancer. Med Oncol. 2017;34:169.CrossRefGoogle Scholar
  45. 45.
    Lin C, Itti E, Haioun C, Petegnief Y, Luciani A, Dupuis J, et al. Early 18F-FDG PET for prediction of prognosis in patients with diffuse large B-cell lymphoma: SUV-based assessment versus visual analysis. J Nucl Med. 2007;48:1626–32.CrossRefGoogle Scholar
  46. 46.
    Rossi C, Kanoun S, Berriolo-Riedinger A, Dygai-Cochet I, Humbert O, Legouge C, et al. Interim 18F-FDG PET SUVmax reduction is superior to visual analysis in predicting outcome early in Hodgkin lymphoma patients. J Nucl Med. 2014;55:569–73.CrossRefGoogle Scholar
  47. 47.
    Gallamini A, Zwarthoed C. Interim FDG-PET imaging in lymphoma. Semin Nucl Med. 2018;48:17–27.CrossRefGoogle Scholar
  48. 48.
    Findlay JM, Bradley KM, Wang LM, Franklin JM, Teoh EJ, Gleeson FV, et al. Predicting pathologic response of esophageal cancer to neoadjuvant chemotherapy: the implications of metabolic nodal response for personalized therapy. J Nucl Med. 2017;58:266–75.CrossRefGoogle Scholar
  49. 49.
    Kim SJ, Koo PJ, Chang S. Predictive value of repeated F-18 FDG PET/CT parameters changes during preoperative chemoradiotherapy to predict pathologic response and overall survival in locally advanced esophageal adenocarcinoma patients. Cancer Chemother Pharmacol. 2016;77:723–31.CrossRefGoogle Scholar
  50. 50.
    Zhang L, Zhao C, Peng PJ, Lu LX, Huang PY, Han F, et al. Phase III study comparing standard radiotherapy with or without weekly oxaliplatin in treatment of locoregionally advanced nasopharyngeal carcinoma: preliminary results. J Clin Oncol. 2005;23:8461–8.CrossRefGoogle Scholar
  51. 51.
    Chen L, Hu CS, Chen XZ, Hu GQ, Cheng ZB, Sun Y, et al. Concurrent chemoradiotherapy plus adjuvant chemotherapy versus concurrent chemoradiotherapy alone in patients with locoregionally advanced nasopharyngeal carcinoma: a phase 3 multicentre randomised controlled trial. Lancet Oncol. 2012;13:163–71.CrossRefGoogle Scholar
  52. 52.
    Zhang N, Liang SB, Deng YM, Lu RL, Chen HY, Zhao H, et al. Primary tumor regression speed after radiotherapy and its prognostic significance in nasopharyngeal carcinoma: a retrospective study. BMC Cancer. 2014;14:136.CrossRefGoogle Scholar
  53. 53.
    Li WF, Zhang Y, Liu X, Tang LL, Tian L, Guo R, et al. Delayed clinical complete response to intensity-modulated radiotherapy in nasopharyngeal carcinoma. Oral Oncol. 2017;75:120–6.CrossRefGoogle Scholar
  54. 54.
    Lee AWM, Tung SY, Ng WT, Lee V, Ngan RKC, Choi HCW, et al. A multicenter, phase 3, randomized trial of concurrent chemoradiotherapy plus adjuvant chemotherapy versus radiotherapy alone in patients with regionally advanced nasopharyngeal carcinoma: 10-year outcomes for efficacy and toxicity. Cancer. 2017;123:4147–57.CrossRefGoogle Scholar
  55. 55.
    Chen L, Hu CS, Chen XZ, Hu GQ, Cheng ZB, Sun Y, et al. Adjuvant chemotherapy in patients with locoregionally advanced nasopharyngeal carcinoma: long-term results of a phase 3 multicentre randomised controlled trial. Eur J Cancer. 2017;75:150–8.CrossRefGoogle Scholar
  56. 56.
    Chi KH, Chang YC, Guo WY, Leung MJ, Shiau CY, Chen SY, et al. A phase III study of adjuvant chemotherapy in advanced nasopharyngeal carcinoma patients. Int J Radiat Oncol Biol Phys. 2002;52:1238–44.CrossRefGoogle Scholar
  57. 57.
    Ribassin-Majed L, Marguet S, Lee AWM, Ng WT, Ma J, Chan ATC, et al. What is the best treatment of locally advanced nasopharyngeal carcinoma? An individual patient data network meta-analysis. J Clin Oncol. 2017;35:498–505.CrossRefGoogle Scholar
  58. 58.
    Chen YP, Wang ZX, Chen L, Liu X, Tang LL, Mao YP, et al. A Bayesian network meta-analysis comparing concurrent chemoradiotherapy followed by adjuvant chemotherapy, concurrent chemoradiotherapy alone and radiotherapy alone in patients with locoregionally advanced nasopharyngeal carcinoma. Ann Oncol. 2015;26:205–11.CrossRefGoogle Scholar
  59. 59.
    Yeo ELL, Li YQ, Soo KC, Wee JTS, Chua MLK. Combinatorial strategies of radiotherapy and immunotherapy in nasopharyngeal carcinoma. Chin Clin Oncol. 2018;7:15.CrossRefGoogle Scholar
  60. 60.
    Song Y, Xiao H, Yang Z, Geng M, Ma J, Ren Y, et al. The predictive value of pre- and post-induction chemotherapy plasma EBV DNA level and tumor volume for the radiosensitivity of locally advanced nasopharyngeal carcinoma. EXCLI J. 2017;16:1268–75.Google Scholar
  61. 61.
    Wang K, Ge Y, Ni C, Cui B, Du J, Zhang B, et al. Epstein-Barr virus-induced up-regulation of TCAB1 is involved in the DNA damage response in nasopharyngeal carcinoma. Sci Rep. 2017;7:3218.CrossRefGoogle Scholar
  62. 62.
    Leung SF, Chan AT, Zee B, Ma B, Chan LY, Johnson PJ, et al. Pretherapy quantitative measurement of circulating Epstein-Barr virus DNA is predictive of posttherapy distant failure in patients with early-stage nasopharyngeal carcinoma of undifferentiated type. Cancer. 2003;98:288–91.CrossRefGoogle Scholar
  63. 63.
    An X, Wang FH, Ding PR, Deng L, Jiang WQ, Zhang L, et al. Plasma Epstein-Barr virus DNA level strongly predicts survival in metastatic/recurrent nasopharyngeal carcinoma treated with palliative chemotherapy. Cancer. 2011;117:3750–7.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yu-Hung Chen
    • 1
  • Kai-Ping Chang
    • 2
  • Sung-Chao Chu
    • 3
  • Tzu-Chen Yen
    • 4
  • Ling-Yi Wang
    • 5
  • Joseph Tung-Chieh Chang
    • 6
  • Cheng-Lung Hsu
    • 7
  • Shu-Hang Ng
    • 8
  • Shu-Hsin Liu
    • 1
    • 9
  • Sheng-Chieh Chan
    • 4
    Email author
  1. 1.Department of Nuclear MedicineHualien Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationHualienTaiwan
  2. 2.Department of OtorhinolaryngologyLinkou Chang Gung Memorial Hospital and Chang Gung UniversityTaoyuanTaiwan
  3. 3.Department of Hematology and OncologyHualien Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationHualienTaiwan
  4. 4.Department of Nuclear MedicineLinkou Chang Gung Memorial Hospital and Chang Gung UniversityTaoyuanTaiwan
  5. 5.Epidemiology and Biostatistics Consulting Center, Department of Medical Research and Department of PharmacyTzu Chi General HospitalHualienTaiwan
  6. 6.Department of Radiation OncologyLinkou Chang Gung Memorial Hospital and Chang Gung UniversityTaoyuanTaiwan
  7. 7.Division of Medical Oncology, Department of Internal MedicineLinkou Chang Gung Memorial Hospital and Chang Gung UniversityTaoyuanTaiwan
  8. 8.Department of Diagnostic RadiologyLinkou Chang Gung Memorial Hospital and Chang Gung UniversityTaoyuanTaiwan
  9. 9.Department of Medical Imaging and Radiological SciencesTzu Chi University of Science and TechnologyHualienTaiwan

Personalised recommendations