Advertisement

Comparison of 18F-GE-180 and dynamic 18F-FET PET in high grade glioma: a double-tracer pilot study

  • Marcus Unterrainer
  • D. F. Fleischmann
  • C. Diekmann
  • L. Vomacka
  • S. Lindner
  • F. Vettermann
  • M. Brendel
  • V. Wenter
  • B. Ertl-Wagner
  • J. Herms
  • C. Wetzel
  • R. Rupprecht
  • J. C. Tonn
  • C. Belka
  • P. Bartenstein
  • M. Niyazi
  • Nathalie L. AlbertEmail author
Original Article

Abstract

Background

PET represents a valuable tool for glioma imaging. In addition to amino acid tracers such as 18F-FET, PET targeting the 18-kDa mitochondrial translocator-protein (TSPO) is of high interest for high-grade glioma (HGG) imaging due to its upregulation in HGG cells. 18F-GE-180, a novel TSPO ligand, has shown a high target-to-background contrast in HGG. Therefore, we intra-individually compared its uptake characteristics to dynamic 18F-FET PET and contrast-enhanced MRI in patients with HGG.

Methods

Twenty HGG patients (nine IDH-wildtype, 11 IDH-mutant) at initial diagnosis (n = 8) or recurrence (n = 12) were consecutively included and underwent 18F-GE-180 PET, dynamic 18F-FET PET, and MRI. The maximal tumour-to-background ratios (TBRmax) and biological tumour volumes (BTV) were evaluated in 18F-GE-180 and 18F-FET PET. Dynamic 18F-FET PET analysis included the evaluation of minimal time-to-peak (TTPmin). In MRI, the volume of contrast-enhancement was delineated (VOLCE). Volumes were spatially correlated using the Sørensen–Dice coefficient.

Results

The median TBRmax tended to be higher in 18F-GE-180 PET compared to 18F-FET PET [4.58 (2.33–8.95) vs 3.89 (1.56–7.15); p = 0.062] in the overall group. In subgroup analyses, IDH-wildtype gliomas showed a significantly higher median TBRmax in 18F-GE-180 PET compared to 18F-FET PET [5.45 (2.56–8.95) vs 4.06 (1.56–4.48); p = 0.008]; by contrast, no significant difference was observed in IDH-mutant gliomas [3.97 (2.33–6.81) vs 3.79 (2.01–7.15) p = 1.000]. Only 5/20 cases showed higher TBRmax in 18F-FET PET compared to 18F-GE-180 PET, all of them being IDH-mutant gliomas. No parameter in 18F-GE-180 PET correlated with TTPmin (p > 0.05 each). There was a tendency towards higher median BTVGE-180 [32.1 (0.4–236.0) ml] compared to BTVFET [19.3 (0.7–150.2) ml; p = 0.062] with a moderate spatial overlap [median Sørensen–Dice coefficient 0.55 (0.07–0.85)]. In MRI, median VOLCE [9.7 (0.1–72.5) ml] was significantly smaller than both BTVFET and BTVGE180 (p < 0.001 each), leading to a poor spatial correlation with BTVGE-180 [0.29 (0.01–0.48)] and BTVFET [0.38 (0.01–0.68)].

Conclusion

PET with 18F-GE-180 and 18F-FET provides differing imaging information in HGG dependent on the IDH-mutational status, with diverging spatial overlap and vast exceedance of contrast-enhancement in MRI. Combined PET imaging might reveal new insights regarding non-invasive characterization of tumour heterogeneity and might influence patients’ management.

Keywords

18F-GE-180 TSPO 18F-FET Amino acid MRI High-grade glioma 

Notes

Acknowledgements

We thank Dr. V. Milenkovic for the support regarding polymorphism genotyping. Additionally, we thank Joanne Stevens and GE-Healthcare for the support regarding tracer production.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no relationships or interests that could have direct or potential influence or impart bias on the work.

Ethical approval

The study was authorized by the local ethics committee (IRB 17–769) in accordance with the ICH Guideline for Good Clinical Practice (GCP) and the Declaration of Helsinki.

Informed consent

All patients gave written consent to participate in the study.

Supplementary material

259_2018_4166_MOESM1_ESM.docx (2.2 mb)
ESM 1 (DOCX 2217 kb)

References

  1. 1.
    Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, et al. Updated response assessment criteria for high-grade gliomas: Response Assessment in Neuro-Oncology Working Group. J Clin Oncol. 2010;28:1963–72.CrossRefGoogle Scholar
  2. 2.
    Watanabe M, Tanaka R, Takeda N. Magnetic resonance imaging and histopathology of cerebral gliomas. Neuroradiology. 1992;34:463–9.CrossRefGoogle Scholar
  3. 3.
    Suchorska B, Jansen NL, Linn J, Kretzschmar H, Janssen H, Eigenbrod S, et al. Biological tumor volume in 18FET-PET before radiochemotherapy correlates with survival in GBM. Neurology. 2015;84:710–9.CrossRefGoogle Scholar
  4. 4.
    Galldiks N, Langen KJ, Pope WB. From the clinician’s point of view — what is the status quo of positron emission tomography in patients with brain tumors? Neuro Oncol. 2015;7(11):1434–44.CrossRefGoogle Scholar
  5. 5.
    Albert NL, Weller M, Suchorska B, Galldiks N, Soffietti R, Kim MM, et al. Response Assessment in Neuro-Oncology Working Group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro Oncol. 2016;18:1199–208.CrossRefGoogle Scholar
  6. 6.
    Habermeier A, Graf J, Sandhöfer BF, Boissel J-P, Roesch F, Closs EI. System l amino acid transporter LAT1 accumulates O-(2-fluoroethyl)-l-tyrosine (FET). Amino Acids. 2015;47:335–44.  https://doi.org/10.1007/s00726-014-1863-3.CrossRefGoogle Scholar
  7. 7.
    Unterrainer M, Schweisthal F, Suchorska B, Wenter V, Schmid-Tannwald C, Fendler WP, et al. Serial 18F-FET PET imaging of primarily 18F-FET–negative glioma: does it make sense? J Nucl Med. 2016;57:1177–82.CrossRefGoogle Scholar
  8. 8.
    Vlodavsky E, Soustiel JF. Immunohistochemical expression of peripheral benzodiazepine receptors in human astrocytomas and its correlation with grade of malignancy, proliferation, apoptosis and survival. J Neurooncol. 2007;81:1–7.CrossRefGoogle Scholar
  9. 9.
    Su Z, Roncaroli F, Durrenberger PF, Coope DJ, Karabatsou K, Hinz R, et al. The 18-kDa mitochondrial translocator protein in human gliomas: an 11C-(R)PK11195 PET imaging and neuropathology study. J Nucl Med. 2015;56:512–7.CrossRefGoogle Scholar
  10. 10.
    Awde AR, Boisgard R, Theze B, Dubois A, Zheng J, Dolle F, et al. The translocator protein radioligand 18F-DPA-714 monitors antitumor effect of erufosine in a rat 9L intracranial glioma model. J Nucl Med. 2013;54:2125–31.CrossRefGoogle Scholar
  11. 11.
    Buck JR, McKinley ET, Fu A, Abel TW, Thompson RC, Chambless L, et al. Preclinical TSPO ligand PET to visualize human glioma xenotransplants: a preliminary study. PLoS One. 2015;10:e0141659.CrossRefGoogle Scholar
  12. 12.
    Winkeler A, Boisgard R, Awde AR, Dubois A, Theze B, Zheng J, et al. The translocator protein ligand [(1)(8)F]DPA-714 images glioma and activated microglia in vivo. Eur J Nucl Med Mol Imaging. 2012;39:811–23.CrossRefGoogle Scholar
  13. 13.
    Tang D, Nickels ML, Tantawy MN, Buck JR, Manning HC. Preclinical imaging evaluation of novel TSPO-PET ligand 2-(5,7-Diethyl-2-(4-(2-[(18)F]fluoroethoxy)phenyl)pyrazolo[1,5-a]pyrimidin-3-yl)- N,N-diethylacetamide ([ (18)F]VUIIS1008) in glioma. Molec Imaging Biol. 2014;16:813–20.CrossRefGoogle Scholar
  14. 14.
    Takaya S, Hashikawa K, Turkheimer FE, Mottram N, Deprez M, Ishizu K, et al. The lack of expression of the peripheral benzodiazepine receptor characterises microglial response in anaplastic astrocytomas. J Neurooncol. 2007;85:95–103.CrossRefGoogle Scholar
  15. 15.
    Junck L, Olson JM, Ciliax BJ, Koeppe RA, Watkins GL, Jewett DM, et al. PET imaging of human gliomas with ligands for the peripheral benzodiazepine binding site. Ann Neurol. 1989;26:752–8.  https://doi.org/10.1002/ana.410260611.CrossRefGoogle Scholar
  16. 16.
    Pappata S, Cornu P, Samson Y, Prenant C, Benavides J, Scatton B, et al. PET study of carbon-11-PK 11195 binding to peripheral type benzodiazepine sites in glioblastoma: a case report. J Nucl Med. 1991;32:1608–10.Google Scholar
  17. 17.
    Wadsworth H, Jones PA, Chau WF, Durrant C, Fouladi N, Passmore J, et al. [(1)(8)F]GE-180: a novel fluorine-18 labelled PET tracer for imaging translocator protein 18 kDa (TSPO). Bioorg Med Chem Lett. 2012;22:1308–13.CrossRefGoogle Scholar
  18. 18.
    Boutin H, Murray K, Pradillo J, Maroy R, Smigova A, Gerhard A, et al. 18F-GE-180: a novel TSPO radiotracer compared to 11C-R-PK11195 in a preclinical model of stroke. Eur J Nucl Med Mol Imaging. 2015;42:503–11.CrossRefGoogle Scholar
  19. 19.
    Dickens AM, Vainio S, Marjamaki P, Johansson J, Lehtiniemi P, Rokka J, et al. Detection of microglial activation in an acute model of neuroinflammation using PET and radiotracers 11C-(R)-PK11195 and 18F-GE-180. J Nucl Med. 2014;55:466–72.CrossRefGoogle Scholar
  20. 20.
    Sridharan S, Lepelletier F-X, Trigg W, Banister S, Reekie T, Kassiou M, et al. Comparative evaluation of three TSPO PET radiotracers in a LPS-induced model of mild neuroinflammation in rats. Mol Imaging Biol. 2017;19:77–89.CrossRefGoogle Scholar
  21. 21.
    Fan Z, Calsolaro V, Atkinson RA, Femminella GD, Waldman A, Buckley C, et al. Flutriciclamide (18F-GE180) PET: first in human PET study of novel 3rd generation in vivo marker of human translator protein. J Nucl Med. 2016;57(11):1753–1759.CrossRefGoogle Scholar
  22. 22.
    Feeney C, Scott G, Raffel J, Roberts S, Coello C, Jolly A, et al. Kinetic analysis of the translocator protein positron emission tomography ligand [18F]GE-180 in the human brain. Eur J Nucl Med Mol Imaging. 2016;43:2201–10.CrossRefGoogle Scholar
  23. 23.
    Vomacka L, Albert NL, Lindner S, Unterrainer M, Mahler C, Brendel M, et al. TSPO imaging using the novel PET ligand [18F]GE-180: quantification approaches in patients with multiple sclerosis. EJNMMI Res. 2017;7:89.CrossRefGoogle Scholar
  24. 24.
    Unterrainer M, Mahler C, Vomacka L, Lindner S, Havla J, Brendel M, et al. TSPO PET with [18F]GE-180 sensitively detects focal neuro-inflammation in patients with relapsing-remitting multiple sclerosis. Eur J Nucl Med Mol Imaging. 2018;45:1423–31.CrossRefGoogle Scholar
  25. 25.
    Albert NL, Unterrainer M, Fleischmann D, Lindner S, Vettermann F, Brunegraf A, et al. TSPO PET for glioma imaging using the novel ligand 18F-GE-180: first results in patients with glioblastoma. Eur J Nucl Med Mol Imaging. 2017;44(13):2230–2238CrossRefGoogle Scholar
  26. 26.
    Jensen P, Feng L, Law I, Svarer C, Knudsen GM, Mikkelsen JD, et al. TSPO imaging in glioblastoma multiforme: a direct comparison between 123I-CLINDE SPECT, 18F-FET PET, and gadolinium-enhanced MR imaging. J Nucl Med. 2015;56:1386–90.CrossRefGoogle Scholar
  27. 27.
    Louis DN, Perry A, Reifenberger G, Von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131:803–20.CrossRefGoogle Scholar
  28. 28.
    Suchorska B, Giese A, Biczok A, Unterrainer M, Weller M, Drexler M, et al. Identification of time-to-peak on dynamic 18F-FET-PET as a prognostic marker specifically in IDH1/2 mutant diffuse astrocytoma. Neurooncol. 2017;20(2):279–288.Google Scholar
  29. 29.
    Eigenbrod S, Trabold R, Brucker D, Erös C, Egensperger R, La Fougere C, et al. Molecular stereotactic biopsy technique improves diagnostic accuracy and enables personalized treatment strategies in glioma patients. Acta Neurochir. 2014;156:1427–40.CrossRefGoogle Scholar
  30. 30.
    Owen DR, Gunn RN, Rabiner EA, Bennacef I, Fujita M, Kreisl WC, et al. Mixed-affinity binding in humans with 18-kDa translocator protein ligands. Journal of nuclear medicine : official publication. Soc Nucl Med. 2011;52:24–32.CrossRefGoogle Scholar
  31. 31.
    Owen DR, Yeo AJ, Gunn RN, Song K, Wadsworth G, Lewis A, et al. An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J Cereb Blood Flow Metab. 2012;32:1–5.CrossRefGoogle Scholar
  32. 32.
    Guo Q, Owen DR, Rabiner EA, Turkheimer FE, Gunn RN. Identifying improved TSPO PET imaging probes through biomathematics: the impact of multiple TSPO binding sites in vivo. NeuroImage. 2012;60:902–10.CrossRefGoogle Scholar
  33. 33.
    Wickstrøm T, Clarke A, Gausemel I, Horn E, Jørgensen K, Khan I, et al. The development of an automated and GMP compliant FASTlab™ synthesis of [18F] GE-180; a radiotracer for imaging translocator protein (TSPO). J Label Compd Radiopharm. 2014;57:42–8.CrossRefGoogle Scholar
  34. 34.
    Unterrainer M, Vettermann F, Brendel M, Holzgreve A, Lifschitz M, Zähringer M, et al. Towards standardization of 18 F-FET PET imaging: do we need a consistent method of background activity assessment? EJNMMI Res. 2017;7:48.CrossRefGoogle Scholar
  35. 35.
    Jansen NL, Graute V, Armbruster L, Suchorska B, Lutz J, Eigenbrod S, et al. MRI-suspected low-grade glioma: is there a need to perform dynamic FET PET? Eur J Nucl Med Mol Imaging. 2012;39:1021–9.CrossRefGoogle Scholar
  36. 36.
    Jansen NL, Suchorska B, Wenter V, Schmid-Tannwald C, Todica A, Eigenbrod S, et al. Prognostic significance of dynamic 18F-FET PET in newly diagnosed astrocytic high-grade glioma. J Nucl Med. 2015;56:9–15.CrossRefGoogle Scholar
  37. 37.
    Dice LR. Measures of the amount of ecologic association between species. Ecology. 1945;26:297–302.CrossRefGoogle Scholar
  38. 38.
    Sørensen T. A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. Biol Skr. 1948;5:1–34.Google Scholar
  39. 39.
    Law I, Albert NL, Arbizu J, Boellaard R, Drzezga A, Galldiks N, et al. A joint RANO/EANO/EANM Practice Guideline/SNMMI Procedure Standard for Imaging of Gliomas using PET with Radiolabeled Amino Acids and [18F]FDG: Version 1.0. SNMMI Publications. 2018.Google Scholar
  40. 40.
    Jansen NL, Schwartz C, Graute V, Eigenbrod S, Lutz J, Egensperger R, et al. Prediction of oligodendroglial histology and LOH 1p/19q using dynamic [18F] FET-PET imaging in intracranial WHO grade II and III gliomas. Neurooncol. 2012;14:1473–80.Google Scholar
  41. 41.
    Jansen NL, Suchorska B, Wenter V, Eigenbrod S, Schmid-Tannwald C, Zwergal A, et al. Dynamic 18F-FET PET in newly diagnosed astrocytic low-grade glioma identifies high-risk patients. J Nucl Med. 2014;55:198–203.CrossRefGoogle Scholar
  42. 42.
    Verger A, Stoffels G, Bauer EK, Lohmann P, Blau T, Fink GR, et al. Static and dynamic 18F–FET PET for the characterization of gliomas defined by IDH and 1p/19q status. Eur J Nucl Med Mol Imaging. 2018;45(3):443–451.CrossRefGoogle Scholar
  43. 43.
    Unterrainer M, Winkelmann I, Suchorska B, Giese A, Wenter V, Kreth FW, et al. Biological tumour volumes of gliomas in early and standard 20–40 min 18F-FET PET images differ according to IDH mutation status. Eur J Nucl Med Mol Imaging. 2018;45:1242–9.  https://doi.org/10.1007/s00259-018-3969-4.CrossRefGoogle Scholar
  44. 44.
    Brendel M, Focke C, Blume T, Peters F, Deussing M, Probst F, et al. Time courses of cortical glucose metabolism and microglial activity across the life span of wild-type mice: a PET study. J Nucl Med. 2017;58:1984–90.CrossRefGoogle Scholar
  45. 45.
    Deussing M, Blume T, Vomacka L, Mahler C, Focke C, Todica A, et al. Coupling between physiological TSPO expression in brain and myocardium allows stabilization of late-phase cerebral [18F] GE180 PET quantification. NeuroImage. 2018;165:83–91.CrossRefGoogle Scholar
  46. 46.
    Deussing M, Blume T, Vomacka L, Mahler C, Focke C, Todica A, et al. Data on specificity of [18F] GE180 uptake for TSPO expression in rodent brain and myocardium. Data Brief. 2018;19:331–6.CrossRefGoogle Scholar
  47. 47.
    Pauleit D, Floeth F, Hamacher K, Riemenschneider MJ, Reifenberger G, Muller HW, et al. O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain. 2005;128:678–87.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Marcus Unterrainer
    • 1
    • 2
  • D. F. Fleischmann
    • 2
    • 3
  • C. Diekmann
    • 1
  • L. Vomacka
    • 1
  • S. Lindner
    • 1
  • F. Vettermann
    • 1
  • M. Brendel
    • 1
  • V. Wenter
    • 1
  • B. Ertl-Wagner
    • 4
  • J. Herms
    • 5
  • C. Wetzel
    • 6
  • R. Rupprecht
    • 6
  • J. C. Tonn
    • 2
    • 7
  • C. Belka
    • 2
    • 3
  • P. Bartenstein
    • 1
    • 2
  • M. Niyazi
    • 2
    • 3
  • Nathalie L. Albert
    • 1
    • 2
    Email author
  1. 1.Department of Nuclear MedicineUniversity Hospital, LMU MunichMunichGermany
  2. 2.German Cancer Consortium (DKTK), Partner Site Munich; and German Cancer Research Center (DKFZ)HeidelbergGermany
  3. 3.Department of Radiation OncologyUniversity Hospital, LMU MunichMunichGermany
  4. 4.Institute of Clinical RadiologyUniversity Hospital, LMU MunichMunichGermany
  5. 5.Department of NeuropathologyUniversity Hospital, LMU MunichMunichGermany
  6. 6.Department of Psychiatry and PsychotherapyUniversity of RegensburgRegensburgGermany
  7. 7.Department of NeurosurgeryUniversity Hospital, LMU MunichMunichGermany

Personalised recommendations