Advertisement

The natural history of takotsubo syndrome: a two-year follow-up study with myocardial sympathetic and perfusion G-SPECT imaging

  • Stelvio SestiniEmail author
  • Francesco Pestelli
  • Mario Leoncini
  • Francesco Bellandi
  • Christian Mazzeo
  • Luigi Mansi
  • Ignasi Carrio
  • Antonio Castagnoli
Original Article

Abstract

Purpose

To investigate changes in sympathetic activity, perfusion, and left ventricular (LV) functionality in takotsubo cardiomyopathy (TTC) patients from onset (T0) to post-onset conditions at 1 month (T1), 1-2 years (T2, T3).

Methods

Twenty-two patients (70 ± 11 years) underwent serial gated single photon emission tomography (G-SPECT) studies with 123I-mIBG and 99mTc-Sestamibi. Statistics were performed using ANOVA/Sheffé post-hoc, correlation test, and receiver operating characteristic (ROC) curve analysis (p < 0.05).

Results

Patients presented at T0 with LV ballooning and reduced early-late mIBG uptake (95%, 100%), left ventricular ejection fraction (LVEF)G-SPECT (86%) and perfusion (77 %). Adrenergic dysfunction was greater in apex, it overlaps with contractile impairment, and both were more severe than perfusion defect. During follow-up, LVEFG-SPECT, contractility, and perfusion were normal, while 82% and 90% of patients at T1 and 50% at T2 and T3 continued to show a reduced apical early-late mIBG distribution. These patients presented at T0-T1 with greater impairment of adrenergic function, contractility, and perfusion. A relationship was present within innervation and both perfusion and contractile parameters at T0 and T1, and between the extent of adrenergic defect at T3 and both the defect extent and age at T0 (cut-off point 42.5%, 72 years).

Conclusion

Outcome for TTC is not limited to a reversible contractile and perfusion abnormalities, but it includes residual adrenergic dysfunction, depending on the level of adrenergic impairment and age of patients at onset. The number of patients, as well as degree of perfusion abnormalities were found to be higher than those previously reported possibly depending on the time-interval between hospital admission and perfusion scan.

Keywords

Takotsubo syndrome mIBG Myocardial perfusion 

References

  1. 1.
    Lüscher TF, Templin C. Is takotsubo syndrome a microvascular acute coronary syndrome? Towards of a new definition. Eur Heart J. 2016;37:2816–282.CrossRefGoogle Scholar
  2. 2.
    Akashi YJ, Ishihara M. Takotsubo syndrome: insights from Japan. Hearth Fail Clin. 2016. doi: 10.1016/j.hfc.2016.06.009.CrossRefGoogle Scholar
  3. 3.
    Kurowski V, Kaiser A, von Hof K, Killermann DP, Mayer B, Hartmann F, et al. Apical and midventricular transient left ventricular dysfunction syndrome (Tako-Tsubo Cardiomyopathy): frequency, mechanisms, and prognosis. Chest. 2007;132:809–16.CrossRefGoogle Scholar
  4. 4.
    Redfors B, Shao Y, Omerovic E. Stress-induced cardiomyopathy (Takotsubo) – broken heart and mind? Vasc Health Risk Manag. 2013;9:149–54.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Sharkey SW, Windenburg DC, Lesser JR, Maron MS, Hauser RG, Lesser JN, et al. Natural history and expansive clinical profile of stress (Tako-Tsubo) cardiomyopathy. J Am Coll Cardiol. 2010;55:333–41.CrossRefGoogle Scholar
  6. 6.
    Bybee KA, Prasad A. Stress-related cardiomyopathy syndromes. Circulation. 2008;118:397–409.CrossRefGoogle Scholar
  7. 7.
    Burgdorf C, von Hof K, Schunkert H, Kurowski V. Regional alterations in myocardial sympathetic innervation in patients with transient left-ventricular apical ballooning (Tako-Tsubo cardiomyopathy). J Nucl Cardiol. 2008;15:65–72.CrossRefGoogle Scholar
  8. 8.
    Prasad A, Madhavan M, Chareonthaitawee P. Cardiac sympathetic activity in stress induced (takotsubo) cardiomyopathy. Nat Rev Cardiol. 2009;6:430–4.CrossRefGoogle Scholar
  9. 9.
    Cimarelli S, Imperiale A, Ben-Sellem D, Rischner J, Detoru J, Morel O, et al. Nuclear medicine imaging of takotsubo cardiomyopathy: typical form and midventricular ballooning syndrome. J Nucl Cardiol. 2008;15:137–41.CrossRefGoogle Scholar
  10. 10.
    Feola M, Chauvie S, Rosso GL, Biggi A, Ribichini F, Bobbio M. Reversible impairment of coronary flow reserve in takotsubo cardiomyopathy: a myocardial PET study. J Nucl Cardiol. 2008;15:811–7.CrossRefGoogle Scholar
  11. 11.
    Owa M, Aizawa K, Urasawa N, et al. Emotional stress-induced “ampulla cardiomyopathy”: discrepancy between the metabolic and sympathetic innervation imaging performed during the recovery course. Jpn Circ J. 2001;65:349–52.CrossRefGoogle Scholar
  12. 12.
    Akashi YJ, Nakazawa K, Kakibara MS, Miyake F, Musha H, Sasaka K. 123I-MIBG Myocardial scintigraphy in patients with “Takotsubo” cardiomyopathy. J Nucl Med. 2004;45:1121–7.Google Scholar
  13. 13.
    Bybee KA, Murphy J, Prasad A, Wright RS, Lerman A, Rihal CS, et al. Acute impairment of regional myocardial glucose uptake in the apical ballooning (takotsubo) syndrome. J Nucl Cardiol. 2006;13(2):244–50.CrossRefGoogle Scholar
  14. 14.
    Hassan-Y S. Acute cardiac sympathetic disruption in the pathogenesis of the Takotsubo syndrome: a systematic review of the literature to date. Cardiovasc Revasc Med. 2014;15:35–42.CrossRefGoogle Scholar
  15. 15.
    Lyon AR, Rees PS, Prasad S, Poole-Wilson PA, Harding SE. Stress (Takotsubo) cardiomyopathy – a novel pathophysiological hypothesis to explain catecholamine-induced acute myocardial stunning. Nat Clin Pract Cardiovasc Med. 2008;5:22–9.CrossRefGoogle Scholar
  16. 16.
    Paur H, Wright PT, Sikkel MB, Tranter MH, Mansfield C, O’Gara P, et al. High levels of circulating epinephrine trigger apical cardiodepression in a β2 – adrenergic receptor/Gi-dependent manner: a new model of Takotsubo cardiomyopathy. Circulation. 2012;126:697–706.CrossRefGoogle Scholar
  17. 17.
    Wittstein IS, Thiemann DR, Lima JAC, Baughman KL, Schulman SP, Gerstenblith G, et al. Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med. 2005;352:539–48.CrossRefGoogle Scholar
  18. 18.
    Akashi YJ, Nef HM, Lyon AR. Epidemiology and pathophysiology of Takotsubo syndrome. Nat Rev Cardiol. 2015;12:387–97.CrossRefGoogle Scholar
  19. 19.
    Moriya M, Mori H, Suzuki N, Hazama M, Yano K. Six-month follow-up of Takotsubo cardiomyopathy with I-123-β-metyl-iodophenyl pentadecanoic acid and I-123-metaiodobenzyl-guanidine myocardial scintigraphy. Intern Med. 2002;41:829–33.CrossRefGoogle Scholar
  20. 20.
    Cimarelli S, Sauer F, Morel O, Ohlmann P, Costantinesco A, Imperiale A. Transient left ventricular dysfunction syndrome: patho-physiological bases through nuclear medicine imaging. Int J Cardiol. 2010;144:212–8.CrossRefGoogle Scholar
  21. 21.
    Bybee KA, Kara T, Prasad A, et al. Systematic review: transient left ventricular apical ballooning: a syndrome that mimics ST-segment elevation myocardial infarction. Ann Intern Med. 2004;141:858–65.CrossRefGoogle Scholar
  22. 22.
    Somsen GA, Verberne HJ, Fleury E, Righetti A. Normal values and within-subject variability of cardiac I-123 MIBG scintigraphy in healthy individuals: implication for clinical studies. J Nucl Cardiol. 2004;11(2):126–33.CrossRefGoogle Scholar
  23. 23.
    Moruzomi T, Kusuoka M, Fukuchi K, Tani A, Uehara T, Matsuda S, et al. Myocardial iodine -123-metaiodobenzylguanidine images and autonomic nerve activity in normal subjects. J Nucl Med. 1997;38:49–52.Google Scholar
  24. 24.
    Yong S, Travin MI. Radionuclide imaging of cardiac autonomic innervation. J Nucl Cardiol. 2010;17:655–66.CrossRefGoogle Scholar
  25. 25.
    Carrio I. Cardiac neurotransmission imaging. J Nucl Med. 2001;42:1062–76.Google Scholar
  26. 26.
    Christensen TE, Bang LE, Holmvang L, Skovgaard DC, Oturai DB, SØholm H, et al. 123I-MIBG Scintigraphy in the subacute state of Takotsubo cardiomyopathy. JACC. 2016;9(8):982–9.Google Scholar
  27. 27.
    Verberne HJ, Van der Heijden DJ, Van Eck-smit B. Persisting myocardial sympathetic denervation in takotsubo cardiomyopathy. J Nucl Cardiol. 2009;16(2):321–4.CrossRefGoogle Scholar
  28. 28.
    Kurisu S, Inoue I, Kawagoe T, Ishihara M, Shimatani Y, Nishioka K, et al. Myocardial perfusion and fatty acid metabolism in patients with Tako-Tsubo like left ventricular dysfunction. J Am Coll Cardiol. 2003;41(5):743–8.CrossRefGoogle Scholar
  29. 29.
    Ito K, Sugihara H, Kawasaki T, Yuba T, Doue T, Tanabe T, et al. Assessment of ampulla (Takotsubo) cardiomyopathy with coronary angiography, two-dimensional echocardiography and 99mTc-tetrofosmin myocardial single photon emission computed tomography. Ann Nucl Med. 2001;15:351–5.CrossRefGoogle Scholar
  30. 30.
    Lymperopoulos A. Physiology and pharmacology of the cardiovascular adrenergic system. Front Physiol. 2013;4(240):1–7.Google Scholar
  31. 31.
    Vershure DO, van Eck-Smit BLF, Somsen GA. Cardiac sympathetic activity in hypertrophic cardiomyopathy and Tako-tsubo cardiomyopathy. Clin Transl Imaging. 2015;3:379–85.CrossRefGoogle Scholar
  32. 32.
    Matsunari I, Schricke U, Bengel FM, Haase HU, Barthel P, Schmidt G, et al. Extent of cardiac sympathetic neuronal damage is determined by the area of ischemia in patients with acute coronary syndromes. 2000; 101 (22): 2579-2585Google Scholar
  33. 33.
    Lautamaki R, Sasano T, Higuchi T, Nekolla SG, Lardo AC, Holt D, et al. Multiparametric molecular imaging provides mechanistic insights into sympathetic innervation impairment in the viable infarct border zone. JNM. 2015;56(3):457–63.CrossRefGoogle Scholar
  34. 34.
    Canty JM, Fallavollita Jr JA. Sympathetic nerves and myocyte necrosis: more than meets the eye. Circ Res. 2003;93:796–8.CrossRefGoogle Scholar
  35. 35.
    Sasano T, Abraham MR, Chang KC, Ashikaga H, Mills KJ, Holt DP, et al. Abnormal sympathetic innervation of viable myocardium and the substrate of ventricular tachycardia after myocardial infarction. J Am Coll Cardiol. 2008;51(23):2266–75.CrossRefGoogle Scholar
  36. 36.
    Fürstenwerth H. Rethinking hearth failure. Cardiol Res. 2012;3(6):243–57.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Shao Y, Redfors B, Täng MS, Mölmann H, Troidl C, Szardian S, et al. Novel rat model reveals important roles of β-adrenoreceptors in stress-induced cardiomyopathy. Int J Cardiol. 2013;168:1943–50.CrossRefGoogle Scholar
  38. 38.
    Madias JE. Further validation of the epinephrine pathophysiology rat model of Takotsubo syndrome. Int J Cardiol. 2013;168:1737–8.CrossRefGoogle Scholar
  39. 39.
    Yoshida T, Hibino T, Kako N, Murai S, Oguri M, Kato K, et al. A pathophysiologic study of tako-tsubo cardiomyopathy with F-18 fluorodeoxyglucose positron emission tomography. Eur Hearth J. 2007;28:2598–604.CrossRefGoogle Scholar
  40. 40.
    Yoshida T, Hibino T, Kako N, Murai S, Oguri M, Kato K, et al. A pathophysiologic study of tako-tsubo cardiomyopathy with F18-fluodeoxyglucose positron emission tomography. Eur Heart J. 2007;28:2598–604.CrossRefGoogle Scholar
  41. 41.
    Obunai K, Misra D, Van Tosh A, Bergmann SR. Metabolic evidence of myocardial stunning in takotsubo cardiomyopathy: a positron emission tomography study. J Nucl Cardiol. 2005;12:742–4.CrossRefGoogle Scholar
  42. 42.
    Nef HM, Möllmann H, Kostin S, Troidl C, Voss S, Weber M, et al. Tako-Tsubo cardiomyopathy: intraindividual structural analysis in the acute phase and after functional recovery. Eur Heart J. 2007;28:2456–64.CrossRefGoogle Scholar
  43. 43.
    Gregory T, Smith M. Cardiovascular complications of brain injury. Contin Educ Anaesth Crit Care Pain 2011; 1-5.Google Scholar
  44. 44.
    Nguyen TH, Neil CJ, Sverdlov AL, Ngo DT, Chan WP, Heresztyn T, et al. Enhanced NO signaling in patients with Takotsubo cardiomyopathy: short-term pain, long-term gain? Cardiovasc Drugs Ther. 2013;27:541–7.CrossRefGoogle Scholar
  45. 45.
    Madias JE. Takotsubo syndrome/QTc interval prolongation/myocardial edema/cardiac sympathetic denervation/cardiac arrhythmias: A quintet needing exploration. Int J Cardiol. 2016;203:259–61.CrossRefGoogle Scholar
  46. 46.
    Fallavollita JA, Heavey BM, Luisi Jr AJ, Michalek SM, Baldwa S, Mashtare Jr TL, et al. Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy. J Am Coll Cardiol. 2014;63(2):141–9.CrossRefGoogle Scholar
  47. 47.
    Malhotra S, Fernandez SF, Fallavollita JA, Canty Jr JM. Prognostic Significance of Imaging Myocardial Sympathetic Innervation. Curr Cardiol Rep. 2015;17(8):62–72.CrossRefGoogle Scholar
  48. 48.
    Ancona F, Bertoldi LF, Ruggieri F, Cerri M, Magnoni M, Beretta L, et al. Takotsubo cardiomyopathy and neurogenic stunned myocardium: similar albeit different. Eur Heart J. 2016;37:2830–2.CrossRefGoogle Scholar
  49. 49.
    Rengo G, Pagano G, Vitale G, Formisano R, Komici K, Petraglia L, et al. Impact of aging on cardiac sympathetic innervation measured by 123I-mIBG imaging in patients with systolic heart failure. EJNMMI. 2016;43(13):2392–400.Google Scholar
  50. 50.
    Komamura K, Fukui M, Iwasaku T, Hirotani S, Masuyama T. Takotsubo cardiomyopathy: pathophysiology, diagnosis and treatment. World J Cardiol. 2014;6(7):602–9.CrossRefGoogle Scholar
  51. 51.
    Madias JE. Do we need MIBG in the evaluation of patients with suspected Takotsubo sindrome? Diagnostic, prognostic, and pathophysiologic connotations. Int J Cardiol. 2016;203:783–4.CrossRefGoogle Scholar
  52. 52.
    Cain ME. Impact of denervated myocardium on improving risk stratification on cardiac sudden death. Trans Am Clin Climatol Assoc. 2014;125:141–53.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Gopalakrishnan M, Hassan A, Villines D, Nasr S, Chandrasekaran M, Klein LW. Predictors of short- and long-term outcomes of Takotsubo cardiomyopathy. Am J Cardiol. 2015;116:1586–90.CrossRefGoogle Scholar
  54. 54.
    Galiuto L, De Caterina AR, Porfidia A, Paraggio L, Barchetta S, Locorotondo G, et al. Reversible coronary microvascular dysfunction: a common pathogenetic mechanism in apical ballooning Tako-tsubo Syndrome. Eur Hearth J. 2010;31:1319–27.CrossRefGoogle Scholar
  55. 55.
    Matsuo S, Nakajima K, Kinuya S, et al. Diagnostic utility of 123I-BMIPP imaging in patients with Takotsubo cardiomyopathy. J Cardiol. 2014;64:49–56.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Deptartment of Diagnostic ImagingNuclear Medicine Unit, N.O.P. - S. Stefano, U.S.L. Toscana CentroPratoItaly
  2. 2.Deptartment of Internal MedicineCardiovascular Unit, N.O.P. - S. Stefano, U.S.L, Toscana CentroPratoItaly
  3. 3.Deptartment of Diagnostic ImagingNuclear Medicine Unit, University II NaplesNaplesItaly
  4. 4.Nuclear MedicineHospital Sant PauBarcelonaSpain

Personalised recommendations