Skip to main content

Advertisement

Log in

Furosemide diminishes 18F-fluoroethylcholine uptake in prostate cancer in vivo

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

18F-Fluoroethylcholine (18F-FECh) is excreted via the urinary system with high activity accumulation in the urinary bladder. Furosemide and oral hydration can be administered concomitantly to reduce urinary activity to provide better detectability of retroperitoneal and pelvic lesions. Currently it is unknown if there is any effect of furosemide on 18F-FECh uptake in organs, tissues and tumour lesions and the extent to which image quality along the urinary tract may be improved by furosemide.

Methods

We retrospectively analysed 217 18F-FECh PET/CT examinations from 213 patients with known prostate cancer (PCa), performed either with oral hydration (109) or furosemide 20 mg together with oral hydration (108). Maximum 18F-FECh uptake in different organs, tissues, lymph nodes and osseous metastases was quantified in terms of standardized uptake value (SUV) in a volume of interest and compared between the two groups. To characterize the impact of furosemide on lesion detectability a three-point rating scale was used to assess the presence of focal activity spots in the ureters and of perivesicular artefacts.

Results

Patient characteristics and distribution of tumour lesions were well balanced between the two groups. Overall, SUVmax values from normal organs were increased after furosemide compared to the values in patients scanned without furosemide. Significant changes were observed in the salivary glands, liver, spleen, pancreas, kidneys, gluteus muscle and perirenal fat. SUVmax values were significantly decreased after furosemide in lymph node metastases (SUVmax 4.81 ± 2.68 vs. 6.48 ± 4.22, p = 0.0006), but not in osseous metastases. Evaluation of image quality along the urinary tract revealed significantly better depiction of the perivesicular space and significantly less focal tracer accumulation in the ureters in patients receiving furosemide, but the number of detected lymph nodes was not significantly different.

Conclusion

Furosemide administration reduced choline uptake in tumour lesions, especially significant in pelvic lymph node metastases. Although furosemide administration improved image quality, optimal image quality may also be obtained by adequate hydration without the risk of diminishing choline uptake in PCa lesions. Therefore a controlled hydration protocol seems more appropriate than administration of furosemide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jilg CA, Rischke HC, Reske SN, Henne K, Grosu AL, Weber W, et al. Salvage lymph node dissection with adjuvant radiotherapy for nodal recurrence of prostate cancer. J Urol. 2012;188:2190–7. doi:10.1016/j.juro.2012.08.041.

    Article  PubMed  CAS  Google Scholar 

  2. Castellucci P, Fuccio C, Nanni C, Santi I, Rizzello A, Lodi F, et al. Influence of trigger PSA and PSA kinetics on 11C-choline PET/CT detection rate in patients with biochemical relapse after radical prostatectomy. J Nucl Med. 2009;50:1394–400. doi:10.2967/jnumed.108.061507.

    Article  PubMed  Google Scholar 

  3. Jadvar H. Prostate cancer: PET with 18F-FDG, 18F- or 11C-acetate, and 18F- or 11C-choline. J Nucl Med. 2011;52:81–9. doi:10.2967/jnumed.110.077941.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rischke HC, Knippen S, Kirste S, Grosu AL. Treatment of recurrent prostate cancer following radical prostatectomy: the radiation-oncologists point of view. Q J Nucl Med Mol Imaging. 2012;56:409–20.

    PubMed  CAS  Google Scholar 

  5. Beheshti M, Imamovic L, Broinger G, Vali R, Waldenberger P, Stoiber F, et al. 18F choline PET/CT in the preoperative staging of prostate cancer in patients with intermediate or high risk of extracapsular disease: a prospective study of 130 patients. Radiology. 2010;254:925–33. doi:10.1148/radiol.09090413.

    Article  PubMed  Google Scholar 

  6. Jilg CA, Schultze-Seemann W, Drendel V, Vach W, Wieser G, Krauss T, et al. Detection of lymph node metastasis in patients with nodal prostate cancer relapse using 18F/11C-choline positron emission tomography/computerized tomography. J Urol. 2014;192:103–11. doi:10.1016/j.juro.2013.12.054.

    Article  Google Scholar 

  7. Rigatti P, Suardi N, Briganti A, Da Pozzo LF, Tutolo M, Villa L, et al. Pelvic/retroperitoneal salvage lymph node dissection for patients treated with radical prostatectomy with biochemical recurrence and nodal recurrence detected by [11C]choline positron emission tomography/computed tomography. Eur Urol. 2011;60:935–43. doi:10.1016/j.eururo.2011.07.060.

    Article  PubMed  Google Scholar 

  8. Apolo AB, Pandit-Taskar N, Morris MJ. Novel tracers and their development for the imaging of metastatic prostate cancer. J Nucl Med. 2008;49:2031–41. doi:10.2967/jnumed.108.050658.

    Article  PubMed  PubMed Central  Google Scholar 

  9. DeGrado TR, Baldwin SW, Wang S, Orr MD, Liao RP, Friedman HS, et al. Synthesis and evaluation of (18)F-labeled choline analogs as oncologic PET tracers. J Nucl Med. 2001;42:1805–14.

    PubMed  CAS  Google Scholar 

  10. Kamel EM, Jichlinski P, Prior JO, Meuwly JY, Delaloye JF, Vaucher L, et al. Forced diuresis improves the diagnostic accuracy of 18F-FDG PET in abdominopelvic malignancies. J Nucl Med. 2006;47:1803–7.

    PubMed  CAS  Google Scholar 

  11. Anjos DA, Etchebehere EC, Ramos CD, Santos AO, Albertotti C, Camargo EE. 18F-FDG PET/CT delayed images after diuretic for restaging invasive bladder cancer. J Nucl Med. 2007;48:764–70. doi:10.2967/jnumed.106.036350.

    Article  PubMed  Google Scholar 

  12. Ceriani L, Suriano S, Ruberto T, Giovanella L. Could different hydration protocols affect the quality of 18F-FDG PET/CT images? J Nucl Med Technol. 2011;39:77–82. doi:10.2967/jnmt.110.081265.

    Article  PubMed  Google Scholar 

  13. Hara T, Kosaka N, Kishi H. Development of (18)F-fluoroethylcholine for cancer imaging with PET: synthesis, biochemistry, and prostate cancer imaging. J Nucl Med. 2002;43:187–99.

    PubMed  CAS  Google Scholar 

  14. Kwee SA, Wei H, Sesterhenn I, Yun D, Coel MN. Localization of primary prostate cancer with dual-phase 18F-fluorocholine PET. J Nucl Med. 2006;47:262–9.

    PubMed  Google Scholar 

  15. Piel M, Bauman A, Baum RP, Hohnemann S, Klette I, Wortmann R, et al. Improved automated synthesis of [18F]fluoroethylcholine as a radiotracer for cancer imaging. Bioorg Med Chem. 2007;15:3171–5. doi:10.1016/j.bmc.2007.02.038.

    Article  PubMed  CAS  Google Scholar 

  16. Dachman AH, MacEneaney PM, Adedipe A, Carlin M, Schumm LP. Tumor size on computed tomography scans: is one measurement enough? Cancer. 2001;91:555–60.

    Article  PubMed  CAS  Google Scholar 

  17. Rischke HC, Nestle U, Fechter T, Doll C, Volegova-Neher N, Henne K, et al. 3 Tesla multiparametric MRI for GTV-definition of dominant intraprostatic lesions in patients with prostate cancer – an interobserver variability study. Radiat Oncol. 2013;8:183. doi:10.1186/1748-717X-8-183.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Polycarpou I, Thielemans K, Manjeshwar R, Aguiar P, Marsden PK, Tsoumpas C. Comparative evaluation of scatter correction in 3D PET using different scatter-level approximations. Ann Nucl Med. 2011;25:643–9. doi:10.1007/s12149-011-0514-y.

    Article  PubMed  Google Scholar 

  19. Heinisch M, Dirisamer A, Loidl W, Stoiber F, Gruy B, Haim S, et al. Positron emission tomography/computed tomography with F-18-fluorocholine for restaging of prostate cancer patients: meaningful at PSA <5 ng/ml? Mol Imaging Biol. 2006;8:43–8. doi:10.1007/s11307-005-0023-2.

    Article  PubMed  Google Scholar 

  20. Roberts FO, Gunawardana DH, Pathmaraj K, Wallace A, U PL, Mi T, et al. Radiation dose to PET technologists and strategies to lower occupational exposure. J Nucl Med Technol. 2005;33:44–7.

    PubMed  Google Scholar 

  21. Schwarzenbock SM, Kurth J, Gocke C, Kuhnt T, Hildebrandt G, Krause BJ. Role of choline PET/CT in guiding target volume delineation for irradiation of prostate cancer. Eur J Nucl Med Mol Imaging. 2013;40 Suppl 1:S28–35. doi:10.1007/s00259-013-2404-0.

    Article  PubMed  Google Scholar 

  22. Michel V, Yuan Z, Ramsubir S, Bakovic M. Choline transport for phospholipid synthesis. Exp Biol Med (Maywood). 2006;231:490–504.

    CAS  Google Scholar 

  23. Deves R, Krupka RM. The binding and translocation steps in transport as related to substrate structure. A study of the choline carrier of erythrocytes. Biochim Biophys Acta. 1979;557:469–85.

    Article  PubMed  CAS  Google Scholar 

  24. Simon JR, Atweh S, Kuhar MJ. Sodium-dependent high affinity choline uptake: a regulatory step in the synthesis of acetylcholine. J Neurochem. 1976;26:909–22.

    Article  PubMed  CAS  Google Scholar 

  25. O’Regan S, Collier B. Factors affecting choline transport by the cat superior cervical ganglion during and following stimulation, and the relationship between choline uptake and acetylcholine synthesis. Neuroscience. 1981;6:511–20.

    Article  PubMed  Google Scholar 

  26. Muller SA, Holzapfel K, Seidl C, Treiber U, Krause BJ, Senekowitsch-Schmidtke R. Characterization of choline uptake in prostate cancer cells following bicalutamide and docetaxel treatment. Eur J Nucl Med Mol Imaging. 2009;36:1434–42. doi:10.1007/s00259-009-1117-x.

    Article  PubMed  Google Scholar 

  27. Toyohara J, Hayashi A, Sato M, Tanaka H, Haraguchi K, Yoshimura Y, et al. Rationale of 5-(125)I-iodo-4'-thio-2'-deoxyuridine as a potential iodinated proliferation marker. J Nucl Med. 2002;43:1218–26.

    PubMed  CAS  Google Scholar 

  28. Hakalahti L, Vihko P, Henttu P, Autio-Harmainen H, Soini Y, Vihko R. Evaluation of PAP and PSA gene expression in prostatic hyperplasia and prostatic carcinoma using northern-blot analyses, in situ hybridization and immunohistochemical stainings with monoclonal and bispecific antibodies. Int J Cancer. 1993;55:590–7.

    Article  PubMed  CAS  Google Scholar 

  29. Culliford SJ, Bernhardt I, Ellory JC. Activation of a novel organic solute transporter in mammalian red blood cells. J Physiol. 1995;489(Pt 3):755–65.

    PubMed  CAS  PubMed Central  Google Scholar 

  30. Kim GH. Long-term adaptation of renal ion transporters to chronic diuretic treatment. Am J Nephrol. 2004;24:595–605. doi:10.1159/000082314.

    Article  PubMed  CAS  Google Scholar 

  31. Vormfelde SV, Sehrt D, Toliat MR, Schirmer M, Meineke I, Tzvetkov M, et al. Genetic variation in the renal sodium transporters NKCC2, NCC, and ENaC in relation to the effects of loop diuretic drugs. Clin Pharmacol Ther. 2007;82:300–9. doi:10.1038/sj.clpt.6100131.

    Article  PubMed  CAS  Google Scholar 

  32. Haas M, Forbush 3rd B. The Na-K-Cl cotransporters. J Bioenerg Biomembr. 1998;30:161–72.

    Article  PubMed  CAS  Google Scholar 

  33. Russell JM. Sodium-potassium-chloride cotransport. Physiol Rev. 2000;80:211–76.

    PubMed  CAS  Google Scholar 

  34. Maki M, Miyazaki H, Niisato N, Morihara T, Marunaka Y, Kubo T. Blockers of K+/Cl- transporter/channels diminish proliferation of osteoblastic cells. Biomed Res. 2009;30:137–40.

    Article  PubMed  CAS  Google Scholar 

  35. Shiozaki A, Miyazaki H, Niisato N, Nakahari T, Iwasaki Y, Itoi H, et al. Furosemide, a blocker of Na+/K+/2Cl- cotransporter, diminishes proliferation of poorly differentiated human gastric cancer cells by affecting G0/G1 state. J Physiol Sci. 2006;56:401–6. doi:10.2170/physiolsci.RP010806.

    Article  PubMed  CAS  Google Scholar 

  36. Hiraoka K, Miyazaki H, Niisato N, Iwasaki Y, Kawauchi A, Miki T, et al. Chloride ion modulates cell proliferation of human androgen-independent prostatic cancer cell. Cell Physiol Biochem. 2010;25:379–88. doi:10.1159/000303042.

    Article  PubMed  CAS  Google Scholar 

  37. Dikshit K, Vyden JK, Forrester JS, Chatterjee K, Prakash R, Swan HJ. Renal and extrarenal hemodynamic effects of furosemide in congestive heart failure after acute myocardial infarction. N Engl J Med. 1973;288:1087–90. doi:10.1056/NEJM197305242882102.

    Article  PubMed  CAS  Google Scholar 

  38. Jhund PS, McMurray JJ, Davie AP. The acute vascular effects of frusemide in heart failure. Br J Clin Pharmacol. 2000;50:9–13.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Dormans TP, Pickkers P, Russel FG, Smits P. Vascular effects of loop diuretics. Cardiovasc Res. 1996;32:988–97.

    Article  PubMed  CAS  Google Scholar 

  40. Wiemer G, Fink E, Linz W, Hropot M, Scholkens BE, Wohlfart P. Furosemide enhances the release of endothelial kinins, nitric oxide and prostacyclin. J Pharmacol Exp Ther. 1994;271:1611–5.

    PubMed  CAS  Google Scholar 

  41. Green TP, Thompson TR, Johnson DE, Lock JE. Furosemide promotes patent ductus arteriosus in premature infants with the respiratory-distress syndrome. N Engl J Med. 1983;308:743–8. doi:10.1056/NEJM198303313081303.

    Article  PubMed  CAS  Google Scholar 

  42. Cotton R, Suarez S, Reese J. Unexpected extra-renal effects of loop diuretics in the preterm neonate. Acta Paediatr. 2012;101:835–45. doi:10.1111/j.1651-2227.2012.02699.x.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Mancino M, Ametller E, Gascon P, Almendro V. The neuronal influence on tumor progression. Biochim Biophys Acta. 1816;2011:105–18. doi:10.1016/j.bbcan.2011.04.005.

    Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Christian Rischke.

Additional information

H. Christian Rischke and Teresa Beck contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rischke, H.C., Beck, T., Vach, W. et al. Furosemide diminishes 18F-fluoroethylcholine uptake in prostate cancer in vivo. Eur J Nucl Med Mol Imaging 41, 2074–2082 (2014). https://doi.org/10.1007/s00259-014-2829-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-014-2829-0

Keywords

Navigation