Advertisement

Optimizing radiation dose parameters in MDCT arthrography of the shoulder: illustration of basic concepts in a cadaveric study

  • Julien Aguet
  • Fabio Becce
  • Vincent Dunet
  • Alain Vlassenbroek
  • Emmanuel E. Coche
  • Patrick OmoumiEmail author
Technical Report
  • 27 Downloads

Abstract

Objective

To determine in a cadaveric study the lowest achievable radiation dose and optimal tube potential generating diagnostic image quality in multidetector computed tomography (MDCT) arthrography of the shoulder.

Materials and methods

Six shoulders from three human cadavers were scanned using a 256-MDCT system after intra-articular injection of diluted iodinated contrast material. Using six decreasing radiation dose levels (CTDIvol: 20, 15, 10, 8, 6, and 4 mGy) and for each dose level, four decreasing tube potentials (140, 120, 100, and 80 kVp), image noise and contrast-to-noise ratio (CNR) were measured. Two independent and blinded observers assessed the overall diagnostic image quality, subjective amount of noise, and severity of artifacts according to a four-point scale. Influence of those MDCT data acquisition parameters on objective and subjective image quality was analyzed using the Kruskal–Wallis and Wilcoxon signed-rank tests, and pairwise comparisons were performed.

Results

Multidetector CT protocols with radiation doses of 15 mGy or higher, combined with tube potentials of 100 kVp or higher, were equivalent in CNR to the reference 20 mGy–140 kVp protocol (all p ≥ 0.054). Above a CTDIvol of 10 mGy and a tube potential of 120 kVp, all protocols generated diagnostic image quality and subjective noise equivalent to the 20 mGy–140 kVp protocol (all p ≥ 0.22).

Conclusions

Diagnostic image quality in MDCT arthrography of the shoulder can be obtained with a radiation dose of 10 mGy at an optimal tube potential of 120 kVp, corresponding to a reduction of up to 50% compared with standard-dose protocols, and as high as 500% compared with reported protocols in the literature.

Keywords

MDCT CT Shoulder Arthrography Radiation dose Image quality 

Notes

Acknowledgments

We would like to thank the Anatomy Lab of the Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, for providing us with the cadavers.

Compliance with ethical standards

Conflicts of interest

None.

References

  1. 1.
    Fritz J, Fishman EK, Small KM, Winalski CS, Horger MS, Corl F, et al. MDCT arthrography of the shoulder with datasets of isotropic resolution: indications, technique, and applications. Am J Roentgenol. 2012;198(3):635–46.CrossRefGoogle Scholar
  2. 2.
    Omoumi P, Bafort A-C, Dubuc J-E, Malghem J, Vande Berg BC, Lecouvet FE. Evaluation of rotator cuff tendon tears: comparison of multidetector CT arthrography and 1.5-T MR arthrography. Radiology. 2012;264(3):812–22.CrossRefGoogle Scholar
  3. 3.
    Acid S, Le Corroller T, Aswad R, Pauly V, Champsaur P. Preoperative imaging of anterior shoulder instability: diagnostic effectiveness of MDCT arthrography and comparison with MR arthrography and arthroscopy. Am J Roentgenol. 2012;198(3):661–7.CrossRefGoogle Scholar
  4. 4.
    Lecouvet FE, Simoni P, Koutaïssoff S, Vande Berg BC, Malghem J, Dubuc J-EE. Multidetector spiral CT arthrography of the shoulder. Clinical applications and limits, with MR arthrography and arthroscopic correlations. Eur J Radiol. 2008;68(1):120–36.CrossRefGoogle Scholar
  5. 5.
    Omoumi P, Rubini A, Dubuc JE, Vande Berg BC, Lecouvet FE. Diagnostic performance of CT-arthrography and 1.5T MR-arthrography for the assessment of glenohumeral joint cartilage: a comparative study with arthroscopic correlation. Eur Radiol. 2015;25(4):961–9.CrossRefGoogle Scholar
  6. 6.
    Omoumi P, Mercier GA, Lecouvet F, Simoni P, Vande Berg BC. CT arthrography, MR arthrography, PET, and scintigraphy in osteoarthritis. Radiol Clin N Am. 2009;47(4):595–615.CrossRefGoogle Scholar
  7. 7.
    Jungmann PM, Agten CA, Pfirrmann CW, Sutter R. Advances in MRI around metal. J Magn Reson Imaging. 2017;46(4):972–91.CrossRefGoogle Scholar
  8. 8.
    Mallo GC, Burton L, Coats-Thomas M, Daniels SD, Sinz NJ, Warner JJP. Assessment of painful total shoulder arthroplasty using computed tomography arthrography. J Shoulder Elbow Surg. 2015;24(10):1507–11.  https://doi.org/10.1016/j.jse.2015.06.027.CrossRefPubMedGoogle Scholar
  9. 9.
    Biswas D, Bible JE, Bohan M, Simpson AK, Whang PG, Grauer JN. Radiation exposure from musculoskeletal computerized tomographic scans. J Bone Joint Surg Am. 2009;91(8):1882–9.CrossRefGoogle Scholar
  10. 10.
    Gervaise A, Teixeira P, Villani N, Lecocq S, Louis M, Blum A. CT dose optimisation and reduction in osteoarticular disease. Diagn Interv Imaging. 2013;94(4):371–88.CrossRefGoogle Scholar
  11. 11.
    Guggenberger R, Ulbrich EJ, Dietrich TJ, Scholz R, Kaelin P, Köhler C, et al. C-arm flat-panel CT arthrography of the shoulder: radiation dose considerations and preliminary data on diagnostic performance. Eur Radiol. 2017;27(2):454–63.CrossRefGoogle Scholar
  12. 12.
    Sinnott B, Ron E, Schneider AB. Exposing the thyroid to radiation: a review of its current extent, risks, and implications. Endocr Rev. 2010;31(5):756–73.CrossRefGoogle Scholar
  13. 13.
    Mazonakis M, Tzedakis A, Damilakis J, Gourtsoyiannis N. Thyroid dose from common head and neck CT examinations in children: is there an excess risk for thyroid cancer induction? Eur Radiol. 2007;17(5):1352–7.CrossRefGoogle Scholar
  14. 14.
    Waldt S, Metz S, Burkart A, Mueller D, Bruegel M, Rummeny EJ, et al. Variants of the superior labrum and labro-bicipital complex: a comparative study of shoulder specimens using MR arthrography, multi-slice CT arthrography and anatomical dissection. Eur Radiol. 2006;16(2):451–8.CrossRefGoogle Scholar
  15. 15.
    De Maeseneer M, Boulet C, Pouliart N, Kichouh M, Buls N, Verhelle F, et al. Assessment of the long head of the biceps tendon of the shoulder with 3T magnetic resonance arthrography and CT arthrography. Eur J Radiol. 2012;81(5):934–9.  https://doi.org/10.1016/j.ejrad.2011.01.121.CrossRefPubMedGoogle Scholar
  16. 16.
    Bongartz G, Golding SJ, Jurik AG, Leonardi M, van Persijn van Meerten E, Geleijns J, et al. European guidelines on quality criteria for computed tomography. March 2004. Available from: http://www.drs.dk/guidelines/ct/quality/mainindex.htm.
  17. 17.
    FOPH Swiss Federal Office of Public Health. Notice R-06-06. Ref R-06-06df. Established 01.04.2010.Google Scholar
  18. 18.
    Omoumi P, Becce F, Ott JG, Racine D, Verdun FR. Optimization of radiation dose and image quality in musculoskeletal CT: emphasis on iterative reconstruction techniques I. Semin Musculoskelet Radiol. 2015;19(5):415–21.CrossRefGoogle Scholar
  19. 19.
    Omoumi P, Verdun FR, Becce F. Optimization of radiation dose and image quality in musculoskeletal CT: emphasis on iterative reconstruction techniques II. Semin Musculoskelet Radiol. 2015;19(5):422–30.CrossRefGoogle Scholar
  20. 20.
    Omoumi P, Becce F, Racine D, Ott JG, Andreisek G, Verdun FR. Dual-energy CT: basic principles, technical approaches, and applications in musculoskeletal imaging I. Semin Musculoskelet Radiol. 2015;19(5):431–7.CrossRefGoogle Scholar
  21. 21.
    Radiological Society of North America. RadLex: a lexicon for uniform indexing and retrieval of radiology information resources [Internet]. March 2018. Available from: http://radlex.org/.
  22. 22.
    Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–74.CrossRefGoogle Scholar
  23. 23.
    Racine D, Viry A, Becce F, Schmidt S, Ba A, Bochud FO, et al. Objective comparison of high-contrast spatial resolution and low-contrast detectability for various clinical protocols on multiple CT scanners. Med Phys. 2017;44(9):e153–63.CrossRefGoogle Scholar
  24. 24.
    Simoni P, Leyder PP, Albert A, Malchair F, Maréchal C, Scarciolla L, et al. Optimization of computed tomography (CT) arthrography of hip for the visualization of cartilage: an in vitro study. Skeletal Radiol. 2014;43(2):169–78.CrossRefGoogle Scholar
  25. 25.
    Roth TD, Buckwalter KA, Choplin RH. Musculoskeletal computed tomography: current technology and clinical applications. Semin Roentgenol. 2013;48(2):126–39.  https://doi.org/10.1053/j.ro.2012.11.009.CrossRefPubMedGoogle Scholar
  26. 26.
    Gurung J, Khan MF, Maataoui A, Herzog C, Bux R, Bratzke H, et al. Multislice CT of the pelvis: dose reduction with regard to image quality using 16-row CT. Eur Radiol. 2005;15(9):1898–905.CrossRefGoogle Scholar
  27. 27.
    Subhas N, Freire M, Primak AN, Polster JM, Recht MP, Davros WJ, et al. CT arthrography: in vitro evaluation of single and dual energy for optimization of technique. Skeletal Radiol. 2010;39(10):1025–31.CrossRefGoogle Scholar
  28. 28.
    Ahn SJ, Hong SH, Chai JW, Choi J-YY, Yoo HJ, Kim SH, et al. Comparison of image quality of shoulder CT arthrography conducted using 120 kVp and 140 kVp protocols. Korean J Radiol. 2014;15(6):739–45.CrossRefGoogle Scholar
  29. 29.
    Kaza RK, Platt JF, Goodsitt MM, Al-Hawary MM, Maturen KE, Wasnik AP, et al. Emerging techniques for dose optimization in abdominal CT. Radiographics. 2014;34(1):4–17.CrossRefGoogle Scholar
  30. 30.
    Von Falck C, Galanski M, Shin H. Informatics in radiology: sliding-thin-slab averaging for improved depiction of low-contrast lesions with radiation dose savings at thin-section CT. Radiographics. 2010;30:317–26.  https://doi.org/10.1148/rg.302096007.
  31. 31.
    Becce F, Ben Salah Y, Verdun FR, Vande Berg BC, Lecouvet FE, Meuli R, et al. Computed tomography of the cervical spine: comparison of image quality between a standard-dose and a low-dose protocol using filtered back-projection and iterative reconstruction. Skeletal Radiol. 2013;42(7):937–45.CrossRefGoogle Scholar
  32. 32.
    Omoumi P, Verdun FR, Ben Salah Y, Vande Berg BC, Lecouvet FE, Malghem J, et al. Low-dose multidetector computed tomography of the cervical spine: optimization of iterative reconstruction strength levels. Acta Radiol. 2014;55(3):335–44.CrossRefGoogle Scholar
  33. 33.
    Geyer LL, Körner M, Hempel R, Deak Z, Mueck FG, Linsenmaier U, et al. Evaluation of a dedicated MDCT protocol using iterative image reconstruction after cervical spine trauma. Clin Radiol. 2013;68(7):391–6.CrossRefGoogle Scholar
  34. 34.
    Tobalem F, Dugert E, Verdun FR, Dunet V, Ott JG, Rudiger HA, et al. MDCT arthrography of the hip: value of the adaptive statistical iterative reconstruction technique and potential for radiation dose reduction. AJR Am J Roentgenol. 2014;203(6):W665–73.CrossRefGoogle Scholar

Copyright information

© ISS 2019

Authors and Affiliations

  • Julien Aguet
    • 1
  • Fabio Becce
    • 1
  • Vincent Dunet
    • 1
  • Alain Vlassenbroek
    • 2
  • Emmanuel E. Coche
    • 3
  • Patrick Omoumi
    • 1
    Email author
  1. 1.Department of Diagnostic and Interventional RadiologyLausanne University Hospital and University of LausanneLausanneSwitzerland
  2. 2.Philips HealthcareBruxellesBelgium
  3. 3.Department of Radiology and Medical Imaging, Cliniques Universitaires Saint-LucUniversité Catholique de LouvainBruxellesBelgium

Personalised recommendations