External fixators: looking beyond the hardware maze

  • Kimia Khalatbari KaniEmail author
  • Jack A. Porrino
  • Felix S. Chew
Review Article


External fixation has a wide variety of orthopedic applications. Although external fixator frames may have a complex appearance, these constructs are formed from several basic components and can be broadly categorized into unilateral, circular, or hybrid designs. The introduction of computer-aided circular external fixation devices (hexapod frames) has simplified the treatment of multiaxial and especially rotational deformities. Serial radiography plays a central role in the evaluation of callus formation (at the level of treated fracture or nonunion as well as the regenerate and docking site with distraction osteogenesis), tailoring the rate and rhythm of distraction during distraction osteogenesis, evaluation of frame complications, and determination of the timing of frame removal. The goals of this article are to review: the components, types, and relevant terminology of external fixator constructs with special emphasis on the Taylor spatial frame, the principles and techniques of distraction osteogenesis, and complications of external fixation.


External fixator Unilateral frames Ring fixator Ilizarov frame Hexapod frames Taylor spatial frame Distraction osteogenesis Bone lengthening Bone transport 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Fragomen AT, Rozbruch SR. The mechanics of external fixation. HSS J. 2007;3(1):13–29.Google Scholar
  2. 2.
    Moss DP, Tejwani NC. Biomechanics of external fixation: a review of the literature. Bull NYU Hosp Jt Dis. 2007;65(4):294–9.Google Scholar
  3. 3.
    Behrens F. A primer of fixator devices and configurations. Clin Orthop Relat Res. 1989;241:5–14.Google Scholar
  4. 4.
    Lowenberg DW, Githens M, Boone C. Principles of tibial fracture management with circular external fixation. Orthop Clin North Am. 2014;45(2):191–206.Google Scholar
  5. 5.
    Watson JT. Principles of external fixation. In: Court-Brown CM, Heckman JD, McKee M, McQueen M, Ricci W, Torentta P, editors. Rockwood and Green’s fractures in adults, 8th ed, vol. 1. Philadelphia: Lippincott Williams & Wilkins/Wolters Kluwer Health; 2015. p. 227–305.Google Scholar
  6. 6.
    Hernigou P. History of external fixation for treatment of fractures. Int Orthop. 2017;41(4):845–53.Google Scholar
  7. 7.
    Bible JE, Mir HR. External fixation: principles and applications. J Am Acad Orthop Surg. 2015;23(11):683–90.Google Scholar
  8. 8.
    Modi CS, Ho K, Smith CD, Boer R, Turner SM. Dynamic and static external fixation for distal radius fractures—a systematic review. Injury. 2010;41(10):1006–11.Google Scholar
  9. 9.
    Miyazaki AN, Fregoneze M, Santos PD, Silva LA, Junior NG, Checchia SL. Stiff elbow treatment by interposing arthroplasty associated to hinged external fixator. Rev Bras Ortop. 2009;44(4):336–41.Google Scholar
  10. 10.
    Zaffagnini S, Iacono F, Lo Presti M, Di Martino A, Chochlidakis S, Elkin DJ, et al. A new hinged dynamic distractor, for immediate mobilization after knee dislocations: Technical note. Arch Orthop Trauma Surg. 2008;128(11):1233–7.Google Scholar
  11. 11.
    Kulkarni GS, Kulkarni VS, Shyam AK, Kulkarni RM, Kulkarni MG, Nayak P. Management of severe extra-articular contracture of the elbow by open arthrolysis and a monolateral hinged external fixator. J Bone Joint Surg (Br). 2010;92(1):92–7.Google Scholar
  12. 12.
    Abou Elatta MM, Assal F, Basheer HM, El Morshidy AF, Elglaind SM, Abdalla MA. The use of dynamic external fixation in the treatment of dorsal fracture subluxations and pilon fractures of finger proximal interphalangeal joints. J Hand Surg Eur Vol. 2017;42(2):182–7.Google Scholar
  13. 13.
    Nikkhah D, Ruston J, Toft N. Refinements in dynamic external fixation for optimal fracture distraction in pilon-type fractures of the proximal interphalangeal joint. J Plast Reconstr Aesthet Surg. 2016;69(8):1153–5.Google Scholar
  14. 14.
    Augat P, Claes L, Hanselmann KF, Suger G, Fleischmann W. Increase of stability in external fracture fixation by hydroxyapatite-coated bone screws. J Appl Biomater. 1995;6(2):99–104.Google Scholar
  15. 15.
    Caja VL, Piza G, Navarro A. Hydroxyapatite coating of external fixation pins to decrease axial deformity during tibial lengthening for short stature. J Bone Joint Surg Am. 2003;85-a(8):1527–31.Google Scholar
  16. 16.
    Kloen P. Supercutaneous plating: use of a locking compression plate as an external fixator. J Orthop Trauma. 2009;23(1):72–5.Google Scholar
  17. 17.
    He X, Zhang J, Li M, Yu Y, Zhu L. Treatment of segmental tibial fractures with supercutaneous plating. Orthopedics. 2014;37(8):e712–6.Google Scholar
  18. 18.
    Ang BFH, Chen JY, Yew AKS, Chua SK, Chou SM, Chia SL, et al. Externalised locking compression plate as an alternative to the unilateral external fixator: a biomechanical comparative study of axial and torsional stiffness. Bone Joint Res. 2017;6(4):216–23.Google Scholar
  19. 19.
    Behrens F, Johnson W. Unilateral external fixation. Methods to increase and reduce frame stiffness. Clin Orthop Relat Res. 1989;241:48–56.Google Scholar
  20. 20.
    Behrens F, Johnson WD, Koch TW, Kovacevic N. Bending stiffness of unilateral and bilateral fixator frames. Clin Orthop Relat Res. 1983;178:103–10.Google Scholar
  21. 21.
    Arazi M, Yalcin H, Tarakcioglu N, Dasci Z, Kutlu A. The effects of dynamization and destabilization of the external fixator on fracture healing: a comparative biomechanical study in dogs. Orthopedics. 2002;25(5):521–4.Google Scholar
  22. 22.
    Augat P, Burger J, Schorlemmer S, Henke T, Peraus M, Claes L. Shear movement at the fracture site delays healing in a diaphyseal fracture model. J Orthop Res. 2003;21(6):1011–7.Google Scholar
  23. 23.
    Windhagen H, Glockner R, Bail H, Kolbeck S, Raschke M. Stiffness characteristics of composite hybrid external fixators. Clin Orthop Relat Res. 2002;405:267–76.Google Scholar
  24. 24.
    Podolsky A, Chao EY. Mechanical performance of Ilizarov circular external fixators in comparison with other external fixators. Clin Orthop Relat Res. 1993;293:61–70.Google Scholar
  25. 25.
    Lowenberg DW, Nork S, Abruzzo FM. Correlation of shear to compression for progressive fracture obliquity. Clin Orthop Relat Res. 2008;466(12):2947–54.Google Scholar
  26. 26.
    Metcalfe AJ, Saleh M, Yang L. Techniques for improving stability in oblique fractures treated by circular fixation with particular reference to the sagittal plane. J Bone Joint Surg (Br). 2005;87(6):868–72.Google Scholar
  27. 27.
    Pinzur MS. Simple solutions for difficult problems: a beginner’s guide to ring fixation. Foot Ankle Clin. 2008;13(1):1–13.Google Scholar
  28. 28.
    Lewis RA, Lewis DD, Anderson CL, Hudson CC, Coggeshall JD, Iorgulescu AD, et al. Mechanics of supplemental drop wire and half-pin fixation elements in single ring circular external fixator constructs. Vet Surg. 2016;45(4):471–9.Google Scholar
  29. 29.
    Seide K, Wolter D, Kortmann HR. Fracture reduction and deformity correction with the hexapod Ilizarov fixator. Clin Orthop Relat Res. 1999;363:186–95.Google Scholar
  30. 30.
    Keshet D, Eidelman M. Clinical utility of the Taylor spatial frame for limb deformities. Orthop Res Rev. 2017;9:51–61.Google Scholar
  31. 31.
  32. 32.
    Naqui SZ, Thiryayi W, Foster A, Tselentakis G, Evans M, Day JB. Correction of simple and complex pediatric deformities using the Taylor-spatial Frame. J Pediatr Orthop. 2008;28(6):640–7.Google Scholar
  33. 33.
    Fracture Reduction and Deformity Correction Software 01/20015. Accessed: 5/24/2019.
  34. 34.
    Wright J, Sabah SA, Patel S, Spence G. The silhouette technique: improving post-operative radiographs for planning of correction with a hexapod external fixator. Strategies Trauma Limb Reconstr. 2017;12(2):127–31.Google Scholar
  35. 35.
    Goodship AE, Watkins PE, Rigby HS, Kenwright J. The role of fixator frame stiffness in the control of fracture healing. An experimental study. J Biomech. 1993;26(9):1027–35.Google Scholar
  36. 36.
    Cross AR, Lewis DD, Murphy ST, Rigaud S, Madison JB, Kehoe MM, et al. Effects of ring diameter and wire tension on the axial biomechanics of four-ring circular external skeletal fixator constructs. Am J Vet Res. 2001;62(7):1025–30.Google Scholar
  37. 37.
    Yang L, Nayagam S, Saleh M. Stiffness characteristics and inter-fragmentary displacements with different hybrid external fixators. Clin Biomech (Bristol, Avon). 2003;18(2):166–72.Google Scholar
  38. 38.
    Runyan CM. Flores RL, McCarthy JG. Distraction osteogenesis: biologic and biomechanical principles. In: JG M, editor. Craniofacial distraction. Springer International Publishing; 2017. p. 11–43.Google Scholar
  39. 39.
    Ilizarov GA. The tension-stress effect on the genesis and growth of tissues. Part I. The influence of stability of fixation and soft-tissue preservation. Clin Orthop Relat Res. 1989;238:249–81.Google Scholar
  40. 40.
    Ilizarov GA. The tension-stress effect on the genesis and growth of tissues: Part II. The influence of the rate and frequency of distraction. Clin Orthop Relat Res. 1989;239:263–85.Google Scholar
  41. 41.
    Hamdy RC, Bernstein M, Fragomen AT, Rozbruch SR. What’s new in limb lengthening and deformity correction. J Bone Joint Surg Am. 2018;100(16):1436–42.Google Scholar
  42. 42.
    Matsubara H, Tsuchiya H. Treatment of bone tumor using external fixator. J Orthop Sci. 2019;24(1):1–8.Google Scholar
  43. 43.
    Hamdy RC, Rendon JS, Tabrizian M). Distraction osteogenesis and its challenges in bone regeneration, bone regeneration, Prof. Haim Tal (Ed.), ISBN: 978-953-51-0487-2, InTech; 2012. Available from:
  44. 44.
    Calder PR, Laubscher M, Goodier WD. The role of the intramedullary implant in limb lengthening. Injury. 2017;48(Suppl 1):S52–s8.Google Scholar
  45. 45.
    Codivilla A. The classic: On the means of lengthening, in the lower limbs, the muscles and tissues which are shortened through deformity. 1905. Clin Orthop Relat Res. 2008;466(12):2903–9.Google Scholar
  46. 46.
    Karp NS, McCarthy JG, Schreiber JS, Sissons HA, Thorne CH. Membranous bone lengthening: a serial histological study. Ann Plast Surg. 1992;29(1):2–7.Google Scholar
  47. 47.
    Vauhkonen M, Peltonen J, Karaharju E, Aalto K, Alitalo I. Collagen synthesis and mineralization in the early phase of distraction bone healing. Bone Miner. 1990;10(3):171–81.Google Scholar
  48. 48.
    Percival CJ, Richtsmeier JT. Angiogenesis and intramembranous osteogenesis. Dev Dyn. 2013;242(8):909–22.Google Scholar
  49. 49.
    Aronson J, Harp JH Jr. Mechanical considerations in using tensioned wires in a transosseous external fixation system. Clin Orthop Relat Res. 1992;280:23–9.Google Scholar
  50. 50.
    Emara KM, Ghafar KA, Al Kersh MA. Methods to shorten the duration of an external fixator in the management of tibial infections. World J Orthop. 2011;2(9):85–92.Google Scholar
  51. 51.
    Forriol F, Iglesias A, Arias M, Aquerreta D, Canadell J. Relationship between radiologic morphology of the bone lengthening formation and its complications. J Pediatr Orthop B. 1999;8(4):292–8.Google Scholar
  52. 52.
    Li R, Saleh M, Yang L, Coulton L. Radiographic classification of osteogenesis during bone distraction. J Orthop Res. 2006;24(3):339–47.Google Scholar
  53. 53.
    Fischgrund J, Paley D, Suter C. Variables affecting time to bone healing during limb lengthening. Clin Orthop Relat Res. 1994;301:31–7.Google Scholar
  54. 54.
    Rozbruch SR, Fragomen AT, Ilizarov S. Correction of tibial deformity with use of the Ilizarov-Taylor spatial frame. J Bone Joint Surg Am. 2006;88(Suppl 4):156–74.Google Scholar
  55. 55.
    Kabata T, Tsuchiya H, Sakurakichi K, Yamashiro T, Watanabe K, Tomita K. Reconstruction with distraction osteogenesis for juxta-articular nonunions with bone loss. J Trauma. 2005;58(6):1213–22.Google Scholar
  56. 56.
    D’Hooghe P, Defoort K, Lammens J, Stuyck J. Management of a large post-traumatic skin and bone defect using an Ilizarov frame. Acta Orthop Belg. 2006;72(2):214–8.Google Scholar
  57. 57.
    Panagopoulos GN, Mavrogenis AF, Mauffrey C, Lesensky J, Angelini A, Megaloikonomos PD, et al. Intercalary reconstructions after bone tumor resections: a review of treatments. Eur J Orthop Surg Traumatol. 2017;27(6):737–46.Google Scholar
  58. 58.
    Quinnan SM. Segmental bone loss reconstruction using ring fixation. J Orthop Trauma. 2017;31(Suppl 5):S42–s6.Google Scholar
  59. 59.
    Papakostidis C, Bhandari M, Giannoudis PV. Distraction osteogenesis in the treatment of long bone defects of the lower limbs: effectiveness, complications and clinical results; a systematic review and meta-analysis. Bone Joint J. 2013;95-b(12):1673–80.Google Scholar
  60. 60.
    Watson JT. Distraction osteogenesis. J Am Acad Orthop Surg. 2006;14(10):S168–74.Google Scholar
  61. 61.
    Green SA. Skeletal defects: A comparison of bone grafting and bone transport for segmental skeletal defects. Clin Orthop Relat Res. 1994;301:111–7.Google Scholar
  62. 62.
    Green SA, Jackson JM, Wall DM, Marinow H, Ishkanian J. Management of segmental defects by the Ilizarov intercalary bone transport method. Clin Orthop Relat Res. 1992;280:136–42.Google Scholar
  63. 63.
    Girard PJ, Kuhn KM, Bailey JR, Lynott JA, Mazurek MT. Bone transport combined with locking bridge plate fixation for the treatment of tibial segmental defects: a report of 2 cases. J Orthop Trauma. 2013;27(9):e220–6.Google Scholar
  64. 64.
    Lesensky J, Prince DE. Distraction osteogenesis reconstruction of large segmental bone defects after primary tumor resection: pitfalls and benefits. Eur J Orthop Surg Traumatol. 2017;27(6):715–27.Google Scholar
  65. 65.
    Iobst CA, Mohammed W, Colley R. Determining when it is safe to remove the external fixator: results from a survey of the Limb Lengthening and Reconstruction Society. Orthopedics. 2017;40(5):e876–e9.Google Scholar
  66. 66.
    Starr KA, Fillman R, Raney EM. Reliability of radiographic assessment of distraction osteogenesis site. J Pediatr Orthop. 2004;24(1):26–9.Google Scholar
  67. 67.
    Hazra S, Song HR, Biswal S, Lee SH, Jang KM, Modi HN. Quantitative assessment of mineralization in distraction osteogenesis. Skelet Radiol. 2008;37(9):843–7.Google Scholar
  68. 68.
    Zhao L, Fan Q, Venkatesh KP, Park MS, Song HR. Objective guidelines for removing an external fixator after tibial lengthening using pixel value ratio: a pilot study. Clin Orthop Relat Res. 2009;467(12):3321–6.Google Scholar
  69. 69.
    Saran N, Hamdy RC. DEXA as a predictor of fixator removal in distraction osteogenesis. Clin Orthop Relat Res. 2008;466(12):2955–61.Google Scholar
  70. 70.
    Simpson AH, Kenwright J. Fracture after distraction osteogenesis. J Bone Joint Surg (Br). 2000;82(5):659–65.Google Scholar
  71. 71.
    Danziger MB, Kumar A, DeWeese J. Fractures after femoral lengthening using the Ilizarov method. J Pediatr Orthop. 1995;15(2):220–3.Google Scholar
  72. 72.
    Hegab AF, Shuman MA. Distraction osteogenesis of the maxillofacial skeleton: biomechanics and clinical implications. 2012;1:509.
  73. 73.
    Nguyen VD, London J, Cone RO 3rd. Ring sequestrum: radiographic characteristics of skeletal fixation pin-tract osteomyelitis. Radiology. 1986;158(1):129–31.Google Scholar
  74. 74.
    Kazmers NH, Fragomen AT, Rozbruch SR. Prevention of pin site infection in external fixation: a review of the literature. Strategies Trauma Limb Reconstr. 2016;11(2):75–85.Google Scholar
  75. 75.
    Dahl MT, Gulli B, Berg T. Complications of limb lengthening. A learning curve. Clin Orthop Relat Res. 1994;301:10–8.Google Scholar
  76. 76.
    Ward P. Care of skeletal pins: a literature review. Nurs Stand. 1998;12(39):34–8.Google Scholar
  77. 77.
    Parameswaran AD, Roberts CS, Seligson D, Voor M. Pin tract infection with contemporary external fixation: how much of a problem? J Orthop Trauma. 2003;17(7):503–7.Google Scholar
  78. 78.
    Pommer A, Muhr G, David A. Hydroxyapatite-coated Schanz pins in external fixators used for distraction osteogenesis: a randomized, controlled trial. J Bone Joint Surg Am. 2002;84-a(7):1162–6.Google Scholar
  79. 79.
    Shyam AK, Singh SU, Modi HN, Song HR, Lee SH, An H. Leg lengthening by distraction osteogenesis using the Ilizarov apparatus: a novel concept of tibia callus subsidence and its influencing factors. Int Orthop. 2009;33(6):1753–9.Google Scholar
  80. 80.
    Simpson AH, Cunningham JL, Kenwright J. The forces which develop in the tissues during leg lengthening. A clinical study. J Bone Joint Surg (Br). 1996;78(6):979–83.Google Scholar

Copyright information

© ISS 2019

Authors and Affiliations

  • Kimia Khalatbari Kani
    • 1
    Email author
  • Jack A. Porrino
    • 2
  • Felix S. Chew
    • 3
  1. 1.Department of Diagnostic Radiology and Nuclear MedicineUniversity of Maryland School of MedicineBaltimoreUSA
  2. 2.Radiology and Biomedical ImagingYale School of MedicineNew HavenUSA
  3. 3.Department of RadiologyUniversity of WashingtonSeattleUSA

Personalised recommendations