Skeletal Radiology

, Volume 48, Issue 4, pp 503–516 | Cite as

The current status of MRI in the pre-operative assessment of intramedullary conventional appendicular osteosarcoma

  • Asif Saifuddin
  • Ban SharifEmail author
  • Craig Gerrand
  • Jeremy Whelan
Review Article


Osteosarcoma is the commonest primary malignant bone tumour in children and adolescents, the majority of cases being conventional intra-medullary high-grade tumours affecting the appendicular skeleton. Treatment is typically with a combination of neo-adjuvant chemotherapy, tumour resection with limb reconstruction and post-operative chemotherapy. The current article reviews the role of magnetic resonance imaging (MRI) in the pre-operative assessment of high-grade central conventional osteosarcoma.


Osteosarcoma Magnetic resonance imaging Magnetic resonance imaging in pre-operative assessment of osteosarcoma Magnetic resonance imaging in local staging of osteosarcoma 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Bielack S, Kempf-Bielack B, Von Kalle T, Schwarz R, Wirth T, Kager L, et al. Controversies in childhood osteosarcoma. Minerva Pediatr. 2013;65(2):125–48.Google Scholar
  2. 2.
    Kundu ZS. Classification, imaging, biopsy and staging of osteosarcoma. Indian J Orthop. 2014;48(3):238–46.Google Scholar
  3. 3.
    Biazzo A, De Paolis M. Multidisciplinary approach to osteosarcoma. Acta Orthop Belg. 2016;82(4):690–8.Google Scholar
  4. 4.
    Durfee RA, Mohammed M, Luu HH. Review of osteosarcoma and current management. Rheumatol Ther. 2016;3(2):221–43.Google Scholar
  5. 5.
    Taran S, Taran R, Malipatil N. Pediatric osteosarcoma: an updated review. Indian J Med Paediatr Oncol. 2017;38(1):33.Google Scholar
  6. 6.
    Misaghi A, Goldin A, Awad M, Kulidjian AA. Osteosarcoma: a comprehensive review. SICOT-J. 2018;4:12.Google Scholar
  7. 7.
    Gerrand C, Athanasou N, Brennan B, Grimer R, Judson I, Morland B, et al. UK guidelines for the management of bone sarcomas. Clin Sarcoma Res. 2016;6:7.Google Scholar
  8. 8.
    Fletcher CDM, Unni KK, Mertens F, Weltgesundheitsorganisation, International Agency for Research on Cancer, editors. Pathology and genetics of tumours of soft tissue and bone; [the WHO classification of tumours of soft tissue and bone presented in this book reflects the views of a working group that convened for an editorial and consensus conference in Lyon, France, April 24–28, 2002]. Lyon: IARC Press; 2002. 427 p. (World Health Organization Classification of tumours).Google Scholar
  9. 9.
    Klein MJ, Siegal GP. Osteosarcoma: anatomic and histologic variants. Am J Clin Pathol. 2006;125(4):555–81.Google Scholar
  10. 10.
    Gao Z-H, Yin J-Q, Liu D-W, Meng Q-F, Li J-P. Preoperative easily misdiagnosed telangiectatic osteosarcoma: clinical. Cancer Imaging. 2013;13(4):520–6.Google Scholar
  11. 11.
    Nakajima H, Sim FH, Bond JR, Unni KK. Small cell osteosarcoma of bone. Review of 72 cases. Cancer. 1997;79(11):2095–106.Google Scholar
  12. 12.
    Wang C-S, Yin Q-H, Liao J-S, Lou J-H, Ding X-Y, Zhu Y-B. Giant cell-rich osteosarcoma in long bones: clinical, radiological and pathological features. Radiol Med (Torino). 2013;118(8):1324–34.Google Scholar
  13. 13.
    Jeys LM, Kulkarni A, Grimer RJ, Carter SR, Tillman RM, Abudu A. Endoprosthetic reconstruction for the treatment of musculoskeletal tumors of the appendicular skeleton and pelvis. J Bone Jt Surg. 2008;90(6):1265–71.Google Scholar
  14. 14.
    Capanna R, Scoccianti G, Campanacci DA, Beltrami G, De Biase P. Surgical technique: extraarticular knee resection with prosthesis–proximal tibia-extensor apparatus allograft for tumors invading the knee. Clin Orthop Relat Res. 2011;469(10):2905–14.Google Scholar
  15. 15.
    Yao W, Cai Q, Wang J, Gao S. Treatment of osteosarcoma around the knee in skeletally immature patients. Oncol Lett [Internet]. 2017 [cited 2018 Jun 27]; Available from:
  16. 16.
    Saifuddin A. The accuracy of imaging in the local staging of appendicular osteosarcoma. Skelet Radiol. 2002;31(4):191–201.Google Scholar
  17. 17.
    Eftekhari F. Imaging Assessment of Osteosarcoma in Childhood and Adolescence: Diagnosis, Staging, and Evaluating Response to Chemotherapy. In: Jaffe N, Bruland OS, Bielack S, editors. Pediatric and Adolescent Osteosarcoma [Internet]. Boston, MA: Springer US; 2009 [cited 2018 Jun 27]. p. 33–62. Available from:
  18. 18.
    Kaste SC. Imaging pediatric bone sarcomas. Radiol Clin N Am. 2011;49(4):749–65.Google Scholar
  19. 19.
    Wang C-S, Yin Q-H, Liao J-S, Lou J-H, Ding X-Y, Zhu Y-B, et al. Primary diaphyseal osteosarcoma in long bones: imaging features and tumor characteristics. Eur J Radiol. 2012;81(11):3397–403.Google Scholar
  20. 20.
    Iwata S, Nakamura T, Gaston CL, Carter SR, Tillman RM, Abudu A, et al. Diaphyseal osteosarcomas have distinct clinical features from metaphyseal osteosarcomas. Eur J Surg Oncol EJSO. 2014;40(9):1095–100.Google Scholar
  21. 21.
    Suresh S, Saifuddin A. Radiological appearances of appendicular osteosarcoma: a comprehensive pictorial review. Clin Radiol. 2007;62(4):314–23.Google Scholar
  22. 22.
    Yen C-H, Chang C-Y, Teng MM-H, Wu H-TH, Chen PC-H, Chiou H-J, et al. Different and identical features of chondroblastic osteosarcoma and chondrosarcoma: highlights on radiography and magnetic resonance imaging. J Chin Med Assoc. 2009;72(2):76–82.Google Scholar
  23. 23.
    Yakushiji T, Oka K, Sato H, Yorimitsu S, Fujimoto T, Yamashita Y, et al. Characterization of chondroblastic osteosarcoma: gadolinium-enhanced versus diffusion-weighted MR imaging. J Magn Reson Imaging. 2009;29(4):895–900.Google Scholar
  24. 24.
    Zeitoun R, Shokry AM, Ahmed Khaleel S, Mogahed SM. Osteosarcoma subtypes: magnetic resonance and quantitative diffusion-weighted imaging criteria. J Egypt Natl Cancer Inst. 2018;30(1):39–44.Google Scholar
  25. 25.
    Chen Y, Yu X, Xu S, Xu M, Song R. Impacts of tumor location, nature and bone destruction of extremity osteosarcoma on selection of limb salvage operative procedure: selection of limb salvage operation protocol for osteosarcoma. Orthop Surg. 2016;8(2):139–49.Google Scholar
  26. 26.
    Shahid M, Albergo N, Purvis T, Heron K, Gaston L, Carter S, et al. Management of sarcomas possibly involving the knee joint when to perform extra-articular resection of the knee joint and is it safe? Eur J Surg Oncol EJSO. 2017;43(1):175–80.Google Scholar
  27. 27.
    Shiga NT, Del Grande F, Lardo O, Fayad LM. Imaging of primary bone tumors: determination of tumor extent by non-contrast sequences. Pediatr Radiol. 2013;43(8):1017–23.Google Scholar
  28. 28.
    Jin T, Deng Z-P, Liu W-F, Xu H-R, Li Y, Niu X-H. Magnetic resonance imaging for the assessment of long bone tumors. Chin Med J. 2017;130(21):2547.Google Scholar
  29. 29.
    Thompson MJ, Shapton JC, Punt SE, Johnson CN, Conrad EU. MRI identification of the osseous extent of pediatric bone sarcomas. Clin Orthop. 2018;476(3):559–64.Google Scholar
  30. 30.
    Putta T, Gibikote S, Madhuri V, Walter N. Accuracy of various MRI sequences in determining the tumour margin in musculoskeletal tumours. Pol J Radiol. 2016;81:540–8.Google Scholar
  31. 31.
    Deng Z, Ding Y, Hao L, Zhang Q, Su Y, Niu X. Marrow signal mimicking tumor on MRI T1-weighted imaging after neoadjuvant chemotherapy in extremity osteosarcomas. J Bone Oncol. 2017;6:22–6.Google Scholar
  32. 32.
    Kohl CA, Chivers FS, Lorans R, Roberts CC, Kransdorf MJ. Accuracy of chemical shift MR imaging in diagnosing indeterminate bone marrow lesions in the pelvis: review of a single institution’s experience. Skelet Radiol. 2014;43(8):1079–84.Google Scholar
  33. 33.
    Del Grande F, Tatizawa-Shiga N, Jalali Farahani S, Chalian M, Fayad LM. Chemical shift imaging: preliminary experience as an alternative sequence for defining the extent of a bone tumor. Quant Imaging Med Surg. 2014;4(3):173–80.Google Scholar
  34. 34.
    Enneking WF, Kagan A. “Skip” metastases in osteosarcoma. Cancer. 1975;36(6):2192–205.Google Scholar
  35. 35.
    Kager L, Zoubek A, Kastner U, Kempf-Bielack B, Potratz J, Kotz R, et al. Skip metastases in osteosarcoma: experience of the cooperative osteosarcoma study group. J Clin Oncol. 2006;24(10):1535–41.Google Scholar
  36. 36.
    Sajadi KR, Heck RK, Neel MD, Rao BN, Daw N, Rodriguez-Galindo C, et al. The incidence and prognosis of osteosarcoma skip metastases. Clin Orthop. 2004;426:92–6.Google Scholar
  37. 37.
    Bhagia SM, Grimer RJ, Davies AM, Mangham DC. Scintigraphically negative skip metastasis in osteosarcoma. Eur Radiol. 1997;7(9):1446–8.Google Scholar
  38. 38.
    Walden MJ, Murphey MD, Vidal JA. Incidental enchondromas of the knee. Am J Roentgenol. 2008;190(6):1611–5.Google Scholar
  39. 39.
    Hong ED, Carrino JA, Weber KL, Fayad LM. Prevalence of shoulder enchondromas on routine MR imaging. Clin Imaging. 2011;35(5):378–84.Google Scholar
  40. 40.
    Picci P, Sangiorgi L, Bahamonde L, Aluigi P, Bibiloni J, Zavatta M, et al. Risk factors for local recurrences after limb-salvage surgery for high-grade osteosarcoma of the extremities. Ann Oncol Off J Eur Soc Med Oncol. 1997;8(9):899–903.Google Scholar
  41. 41.
    Wuisman P, Enneking WF. Prognosis for patients who have osteosarcoma with skip metastasis. J Bone Joint Surg Am. 1990;72(1):60–8.Google Scholar
  42. 42.
    Jawad MU, Scully SP. In brief: classifications in brief: enneking classification: benign and malignant tumors of the musculoskeletal system. Clin Orthop. 2010;468(7):2000–2.Google Scholar
  43. 43.
    van Trommel MF, Kroon HM, Bloem JL, Hogendoorn PC, Taminiau AH. MR imaging-based strategies in limb salvage surgery for osteosarcoma of the distal femur. Skelet Radiol. 1997;26(11):636–41.Google Scholar
  44. 44.
    Wu HTH, Chang CY, Lin J, Chen TH, Chen WM, Wang SF. Preoperative MR imaging assessment of osteosarcoma: a radiological – surgical correlation. Chin J Radiol. 2001;26:9–16.Google Scholar
  45. 45.
    Jeon D-G, Song WS, Kong C-B, Cho WH, Cho SH, Lee JD, et al. Role of surgical margin on local recurrence in high-risk extremity osteosarcoma: a case-controlled study. Clin Orthop Surg. 2013;5(3):216.Google Scholar
  46. 46.
    Masrouha KZ, Musallam KM, Samra AB, Tawil A, Haidar R, Chakhachiro Z, et al. Correlation of non-mass-like abnormal MR signal intensity with pathological findings surrounding pediatric osteosarcoma and Ewing’s sarcoma. Skelet Radiol. 2012;41(11):1453–61.Google Scholar
  47. 47.
    Jones KB, Ferguson PC, Lam B, Biau DJ, Hopyan S, Deheshi B, et al. Effects of neoadjuvant chemotherapy on image-directed planning of surgical resection for distal femoral osteosarcoma. J Bone Joint Surg Am. 2012;94(15):1399–405.Google Scholar
  48. 48.
    Simon MA, Hecht JD. Invasion of joints by primary bone sarcomas in adults. Cancer. 1982;50(8):1649–55.Google Scholar
  49. 49.
    Quan GMY, Slavin JL, Schlicht SM, Smith PJ, Powell GJ, Choong PFM. Osteosarcoma near joints: assessment and implications. J Surg Oncol. 2005;91(3):159–66.Google Scholar
  50. 50.
    Alkalay D, Kollender Y, Mozes M, Meller I. Transarticular tumor invasion via ligamentum teres. A clinical-pathologic study of 12 patients. Acta Orthop Scand. 1998;69(1):29–30.Google Scholar
  51. 51.
    Li X, Zhang Z, Latif M, Chen W, Cui J, Peng Z. Synovium as a widespread pathway to the adjacent joint in undifferentiated high-grade pleomorphic sarcoma of the tibia: a case report. Medicine (Baltimore). 2018;97(8):e9870.Google Scholar
  52. 52.
    Abdelwahab IF, Miller TT, Hermann G, Klein MJ, Kenan S, Lewis MM. Transarticular invasion of joints by bone tumors: hypothesis. Skelet Radiol. 1991;20(4):279–83.Google Scholar
  53. 53.
    Schima W, Amann G, Stiglbauer R, Windhager R, Kramer J, Nicolakis M, et al. Preoperative staging of osteosarcoma: efficacy of MR imaging in detecting joint involvement. AJR Am J Roentgenol. 1994;163(5):1171–5.Google Scholar
  54. 54.
    Kaste SC, Pratt CB, Cain AM, Jones-Wallace DJ, Rao BN. Metastases detected at the time of diagnosis of primary pediatric extremity osteosarcoma at diagnosis: imaging features. Cancer. 1999;86(8):1602–8.Google Scholar
  55. 55.
    Miller BJ, Cram P, Lynch CF, Buckwalter JA. Risk factors for metastatic disease at presentation with osteosarcoma: an analysis of the SEER database. J Bone Jt Surg-Am Vol. 2013;95(13):e89 1–8.Google Scholar
  56. 56.
    Marko TA, Diessner BJ, Spector LG. Prevalence of metastasis at diagnosis of osteosarcoma: an international comparison: prevalence of metastatic osteosarcoma at diagnosis. Pediatr Blood Cancer. 2016;63(6):1006–11.Google Scholar
  57. 57.
    Salah S, Ahmad R, Sultan I, Yaser S, Shehadeh A. Osteosarcoma with metastasis at initial diagnosis: current outcomes and prognostic factors in the context of a comprehensive cancer center. Mol Clin Oncol. 2014;2(5):811–6.Google Scholar
  58. 58.
    Roberts CC, Daffner RH, Weissman BN, Bancroft L, Bennett DL, Blebea JS, et al. ACR appropriateness Criteria® on metastatic bone disease. J Am Coll Radiol. 2010;7(6):400–9.Google Scholar
  59. 59.
    Daldrup-Link HE, Franzius C, Link TM, Laukamp D, Sciuk J, Jürgens H, et al. Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. Am J Roentgenol. 2001;177(1):229–36.Google Scholar
  60. 60.
    Byun BH, Kong C-B, Lim I, Kim BI, Choi CW, Song WS, et al. Comparison of (18)F-FDG PET/CT and (99 m)Tc-MDP bone scintigraphy for detection of bone metastasis in osteosarcoma. Skelet Radiol. 2013;42(12):1673–81.Google Scholar
  61. 61.
    Hurley C, McCarville MB, Shulkin BL, Mao S, Wu J, Navid F, et al. Comparison of 18 F-FDG-PET-CT and bone scintigraphy for evaluation of osseous metastases in newly diagnosed and recurrent osteosarcoma: 18 F-FDG-PET-CT for staging osteosarcoma. Pediatr Blood Cancer. 2016;63(8):1381–6.Google Scholar
  62. 62.
    Smets AM, Deurloo EE, Slager TJE, Stoker J, Bipat S. Whole-body magnetic resonance imaging for detection of skeletal metastases in children and young people with primary solid tumors—systematic review. Pediatr Radiol. 2018;48(2):241–52.Google Scholar
  63. 63.
    Paruthikunnan SM, Kadavigere R, Karegowda LH. Accuracy of whole-body DWI for metastases screening in a diverse group of malignancies: comparison with conventional cross-sectional imaging and nuclear scintigraphy. Am J Roentgenol. 2017;209(3):477–90.Google Scholar
  64. 64.
    Jacobs MA, Macura KJ, Zaheer A, Antonarakis ES, Stearns V, Wolff AC, et al. Multiparametric whole-body MRI with diffusion-weighted imaging and ADC mapping for the identification of visceral and osseous metastases from solid tumors. Acad Radiol [Internet]. 2018 [cited 2018 Jun 27]; Available from:
  65. 65.
    Saifuddin A, Mitchell R, Burnett SJ, Sandison A, Pringle JA. Ultrasound-guided needle biopsy of primary bone tumours. J Bone Joint Surg (Br). 2000;82(1):50–4.Google Scholar
  66. 66.
    Taupin T, Decouvelaere A-V, Vaz G, Thiesse P. Accuracy of core needle biopsy for the diagnosis of osteosarcoma: a retrospective analysis of 73patients. Diagn Interv Imaging. 2016;97(3):327–31.Google Scholar
  67. 67.
    Interiano RB, Malkan AD, Loh AHP, Hinkle N, Wahid FN, Bahrami A, et al. Initial diagnostic management of pediatric bone tumors. J Pediatr Surg. 2016;51(6):981–5.Google Scholar
  68. 68.
    Khoo MMY, Saifuddin A. The role of MRI in image-guided needle biopsy of focal bone and soft tissue neoplasms. Skelet Radiol. 2013;42(7):905–15.Google Scholar
  69. 69.
    Ahrar JU, Stafford RJ, Alzubaidi S, Ahrar K. Magnetic resonance imaging-guided biopsy in the musculoskeletal system using a cylindrical 1.5-T magnetic resonance imaging unit. Top Magn Reson Imaging. 2011;22(4):189–96.Google Scholar
  70. 70.
    Wu H-TH, Chang C-Y, Chang H, Yen C-C, Cheng H, Chen PC-S, et al. Magnetic resonance imaging guided biopsy of musculoskeletal lesions. J Chin Med Assoc. 2012;75(4):160–6.Google Scholar
  71. 71.
    Jeys LM, Thorne CJ, Parry M, Gaston CLL, Sumathi VP, Grimer JR. A novel system for the surgical staging of primary high-grade osteosarcoma: The Birmingham Classification. Clin Orthop Relat Res. 2017;475(3):842–50.Google Scholar
  72. 72.
    Cates JMM. Simple staging system for osteosarcoma performs equivalently to the AJCC and MSTS systems: OSTEOSARCOMA STAGING. J Orthop Res [Internet]. 2018 [cited 2018 Jun 27]; Available from:
  73. 73.
    Jeon D-G, Cho WH, Song WS, Kong C-B, Cho SH, Lee JW, et al. Correlation between fluid–fluid levels on initial MRI and the response to chemotherapy in stage IIB osteosarcoma. Ann Surg Oncol. 2014;21(6):1956–62.Google Scholar
  74. 74.
    Jeon D-G, Song WS, Cho WH, Kong C-B, Cho SH. Proximal tumor location and fluid-fluid levels on MRI predict resistance to chemotherapy in stage IIB osteosarcoma. Clin Orthop Relat Res. 2014;472(6):1911–20.Google Scholar
  75. 75.
    Kim MS, Lee S-Y, Cho WH, Song WS, Koh J-S, Lee JA, et al. Growth patterns of osteosarcoma predict patient survival. Arch Orthop Trauma Surg. 2009;129(9):1189–96.Google Scholar
  76. 76.
    Lee JA, Kim MS, Kim DH, Lim JS, Yoo JY, Koh JS, et al. Relative tumor burden predicts metastasis-free survival in pediatric osteosarcoma. Pediatr Blood Cancer. 2008;50(2):195–200.Google Scholar
  77. 77.
    Kim SH, Shin K-H, Park EH, Cho YJ, Park B-K, Suh J-S, et al. A new relative tumor sizing method in epi-metaphyseal osteosarcoma. BMC Cancer. 2015 [cited 2018 Jun 27];15(1). Available from:
  78. 78.
    Holscher HC, Bloem JL, Nooy MA, Taminiau AH, Eulderink F, Hermans J. The value of MR imaging in monitoring the effect of chemotherapy on bone sarcomas. AJR Am J Roentgenol. 1990;154(4):763–9.Google Scholar
  79. 79.
    Holscher HC, Bloem JL, Vanel D, Hermans J, Nooy MA, Taminiau AH, et al. Osteosarcoma: chemotherapy-induced changes at MR imaging. Radiology. 1992;182(3):839–44.Google Scholar
  80. 80.
    Holscher HC, Bloem JL, van der Woude HJ, Hermans J, Nooy MA, Taminiau AH, et al. Can MRI predict the histopathological response in patients with osteosarcoma after the first cycle of chemotherapy? Clin Radiol. 1995;50(6):384–90.Google Scholar
  81. 81.
    Shin KH, Moon SH, Suh JS, Yang WI. Tumor volume change as a predictor of chemotherapeutic response in osteosarcoma. Clin Orthop. 2000;376:200–8.Google Scholar
  82. 82.
    Amit P, Malhotra A, Kumar R, Kumar L, Patro D, Elangovan S. Evaluation of static and dynamic MRI for assessing response of bone sarcomas to preoperative chemotherapy: Correlation with histological necrosis. Indian J Radiol Imaging. 2015;25(3):269.Google Scholar
  83. 83.
    Laux CJ, Berzaczy G, Weber M, Lang S, Dominkus M, Windhager R, et al. Tumour response of osteosarcoma to neoadjuvant chemotherapy evaluated by magnetic resonance imaging as prognostic factor for outcome. Int Orthop. 2015;39(1):97–104.Google Scholar
  84. 84.
    Hanna SL, Parham DM, Fairclough DL, Meyer WH, Le AH, Fletcher BD. Assessment of osteosarcoma response to preoperative chemotherapy using dynamic FLASH gadolinium-DTPA-enhanced magnetic resonance mapping. Investig Radiol. 1992;27(5):367–73.Google Scholar
  85. 85.
    Guo J, Reddick WE, Glass JO, Ji Q, Billups CA, Wu J, et al. Dynamic contrast-enhanced magnetic resonance imaging as a prognostic factor in predicting event-free and overall survival in pediatric patients with osteosarcoma: DCE-MRI prognostic in osteosarcoma. Cancer. 2012;118(15):3776–85.Google Scholar
  86. 86.
    Bonnerot V, Charpentier A, Frouin F, Kalifa C, Vanel D, Di Paola R. Factor analysis of dynamic magnetic resonance imaging in predicting the response of osteosarcoma to chemotherapy. Investig Radiol. 1992;27(10):847–55.Google Scholar
  87. 87.
    Wakabayashi H, Saito J, Taki J, Hashimoto N, Tsuchiya H, Gabata T, et al. Triple-phase contrast-enhanced MRI for the prediction of preoperative chemotherapeutic effect in patients with osteosarcoma: comparison with 99mTc-MIBI scintigraphy. Skelet Radiol. 2016;45(1):87–95.Google Scholar
  88. 88.
    Kubo T, Furuta T, Johan MP, Adachi N, Ochi M. Percent slope analysis of dynamic magnetic resonance imaging for assessment of chemotherapy response of osteosarcoma or Ewing sarcoma: systematic review and meta-analysis. Skelet Radiol. 2016;45(9):1235–42.Google Scholar
  89. 89.
    Subhawong TK, Jacobs MA, Fayad LM. Insights into quantitative diffusion-weighted MRI for musculoskeletal tumor imaging. Am J Roentgenol. 2014;203(3):560–72.Google Scholar
  90. 90.
    Uhl M, Saueressig U, Koehler G, Kontny U, Niemeyer C, Reichardt W, et al. Evaluation of tumour necrosis during chemotherapy with diffusion-weighted MR imaging: preliminary results in osteosarcomas. Pediatr Radiol. 2006;36(12):1306–11.Google Scholar
  91. 91.
    Uhl M, Saueressig U, van Buiren M, Kontny U, Niemeyer C, Köhler G, et al. Osteosarcoma: preliminary results of in vivo assessment of tumor necrosis after chemotherapy with diffusion- and perfusion-weighted magnetic resonance imaging. Investig Radiol. 2006;41(8):618–23.Google Scholar
  92. 92.
    Oka K, Yakushiji T, Sato H, Hirai T, Yamashita Y, Mizuta H. The value of diffusion-weighted imaging for monitoring the chemotherapeutic response of osteosarcoma: a comparison between average apparent diffusion coefficient and minimum apparent diffusion coefficient. Skelet Radiol. 2010;39(2):141–6.Google Scholar
  93. 93.
    Wang C-S, Du L-J, Si M-J, Yin Q-H, Chen L, Shu M, et al. Noninvasive assessment of response to neoadjuvant chemotherapy in osteosarcoma of long bones with diffusion-weighted imaging: an initial in vivo study. Loeb D, editor. PLoS One. 2013;8(8):e72679.Google Scholar
  94. 94.
    Byun BH, Kong C-B, Lim I, Choi CW, Song WS, Cho WH, et al. Combination of 18F-FDG PET/CT and diffusion-weighted MR imaging as a predictor of histologic response to neoadjuvant chemotherapy: preliminary results in osteosarcoma. J Nucl Med. 2013;54(7):1053–9.Google Scholar
  95. 95.
    Wang J, Sun M, Liu D, Hu X, Pui MH, Meng Q, et al. Correlation between apparent diffusion coefficient and histopathology subtypes of osteosarcoma after neoadjuvant chemotherapy. Acta Radiol. 2017;58(8):971–6.Google Scholar
  96. 96.
    Baunin C, Schmidt G, Baumstarck K, Bouvier C, Gentet JC, Aschero A, et al. Value of diffusion-weighted images in differentiating mid-course responders to chemotherapy for osteosarcoma compared to the histological response: preliminary results. Skelet Radiol. 2012;41(9):1141–9.Google Scholar
  97. 97.
    Kubo T, Furuta T, Johan MP, Ochi M, Adachi N. Value of diffusion-weighted imaging for evaluating chemotherapy response in osteosarcoma: a meta-analysis. Mol Clin Oncol. 2017;7(1):88–92.Google Scholar
  98. 98.
    deSouza NM, Winfield JM, Waterton JC, Weller A, Papoutsaki M-V, Doran SJ, et al. Implementing diffusion-weighted MRI for body imaging in prospective multicentre trials: current considerations and future perspectives. Eur Radiol. 2018;28(3):1118–31.Google Scholar
  99. 99.
    Carrle D, Bielack SS. Current strategies of chemotherapy in osteosarcoma. Int Orthop. 2006;30(6):445–51.Google Scholar
  100. 100.
    Marina NM, Smeland S, Bielack SS, Bernstein M, Jovic G, Krailo MD, et al. Comparison of MAPIE versus MAP in patients with a poor response to preoperative chemotherapy for newly diagnosed high-grade osteosarcoma (EURAMOS-1): an open-label, international, randomised controlled trial. Lancet Oncol. 2016;17(10):1396–408.Google Scholar

Copyright information

© ISS 2018

Authors and Affiliations

  • Asif Saifuddin
    • 1
  • Ban Sharif
    • 1
    Email author
  • Craig Gerrand
    • 2
  • Jeremy Whelan
    • 3
  1. 1.Department of ImagingRoyal National Orthopaedic HospitalStanmoreUK
  2. 2.Department of Orthopaedic OncologyRoyal National Orthopaedic HospitalStanmoreUK
  3. 3.Medical OncologyUniversity College London HospitalLondonUK

Personalised recommendations