Advertisement

A pilot study assessing T1-weighted muscle MRI in amyotrophic lateral sclerosis (ALS)

  • Luca Diamanti
  • Enrico Alfonsi
  • Ottavia Eleonora Ferraro
  • Cristina Cereda
  • Orietta Pansarasa
  • Stefano Bastianello
  • Anna Pichiecchio
Scientific Article
  • 71 Downloads

Abstract

The authors set out to study the role of T1-weighted muscle MRI in the diagnostic phase of ALS, comparing images from ten patients and nine age-matched healthy controls (HCs). All subjects underwent MRI of 68 muscles in the hands, paraspinal regions and lower limbs; the images were semi-quantitatively scored. Atrophy was more frequent in muscles of ALS patients than HCs (p < 0.0001); fatty infiltration was particularly marked in iliopsoas (p = 0.046), anterior (p = 0.020) and posterior (p = 0.047) calf muscles in patients. A trend towards agreement was found between MRI and clinic-EMG data for the first dorsal interosseous, paraspinal, and tibial anterior muscles. Muscle T1-weighted MRI can distinguish ALS patients from HCs for specific regions (i.e., legs). MRI abnormalities could be found in pauci-symptomatic spinal muscles in bulbar-onset patients. Muscle MRI may be a useful diagnostic tool in ALS, in particular for muscles difficult to investigate using clinical-EMG methods.

Keywords

Amyotrophic lateral sclerosis Muscle magnetic resonance imaging Biomarkers Electromyography Muscle damage 

Notes

Acknowledgements

Italian Ministry of Health (Ricerca Corrente 2016-2017).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

256_2018_3073_MOESM1_ESM.docx (66 kb)
ESM 1 (DOCX 66 kb)
256_2018_3073_MOESM2_ESM.docx (23 kb)
ESM 2 (DOCX 23 kb)

References

  1. 1.
    Boillée S, Velde CV, Cleveland DW. ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron. 2006;52:39–59.CrossRefGoogle Scholar
  2. 2.
    Cova E, Cereda C, Galli A, Curti D, Finotti C, Di Poto C, Corato M, Mazzini G, Ceroni M. Modified expression of Bcl-2 and SOD1 proteins in lymphocytes from sporadic ALS patients. Neurosci Lett 2006;399: 186–190.CrossRefGoogle Scholar
  3. 3.
    Galbiati M, Crippa V, Rusmini P, Cristofani R, Cicardi ME, Giorgetti E, et al. ALS-related misfolded protein management in motor neurons and muscle cells. Neurochem Int. 2014;79:70–8.CrossRefGoogle Scholar
  4. 4.
    Miller TM, Kim SH, Yamanaka K, Hester M, Umapathi P, Arnson H, et al. Gene transfer demonstrates that muscle is not a primary target for non-cell-autonomous toxicity in familial amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A. 2006;103:19546–51.CrossRefGoogle Scholar
  5. 5.
    Dobrowolny G, Aucello M, Rizzuto E, Beccafico S, Mammucari C, Boncompagni S, Belia S, Wannenes F, Nicoletti C, Del Prete Z, Rosenthal N, Molinaro M, Protasi F, Fanò G, Sandri M, Musarò A. Skeletal muscle is a primary target of SOD1G93A-mediated toxicity. Cell Metab 2008; 8: 425–436.CrossRefGoogle Scholar
  6. 6.
    Wong M, Martin LJ. Skeletal muscle-restricted expression of human SOD1 causes motor neuron degeneration in transgenic mice. Hum Mol Genet. 2010;19:2284–302.CrossRefGoogle Scholar
  7. 7.
    Loeffler JP, Picchiarelli G, Dupuis L, Gonzalez De Aguilar JL. The role of skeletal muscle in amyotrophic lateral sclerosis. Brain Pathol. 2016;26:227–36.CrossRefGoogle Scholar
  8. 8.
    Marcuzzo S, Zucca I, Mastropietro A, de Rosbo NK, Cavalcante P, Tartari S, Bonanno S, Preite L, Mantegazza R, Bernasconi P. Hind limb muscle atrophy precedes cerebral neuronal degeneration in G93A-SOD1 mouse model of amyotrophic lateral sclerosis: a longitudinal MRI study. Exp Neurol 2011; 23: 30–37.CrossRefGoogle Scholar
  9. 9.
    Mercuri E, Pichiecchio A, Allsop J, Messina S, Pane M, Muntoni F. Muscle MRI in inherited neuromuscular disorders: past, present, and future. J Magn Reson Imaging. 2007;25:433–40.CrossRefGoogle Scholar
  10. 10.
    Ten Dam L, van der Kooi AJ, Verhamme C, Wattjes MP, de Visser M. Muscle imaging in inherited and acquired muscle diseases. Eur J Neurol. 2016;23:688–703.CrossRefGoogle Scholar
  11. 11.
    Murphy WA, Totty WG, Carroll JE. MRI of normal and pathological skeletal muscle. AJR Am J Roentgenol. 1986;146:565–74.CrossRefGoogle Scholar
  12. 12.
    Bryan WW, Reisch JS, McDonald G, Herbelin LL, Barohn RJ, Fleckenstein JL. Magnetic resonance imaging of muscle in amyotrophic lateral sclerosis. Neurology. 1998;51:110–3.CrossRefGoogle Scholar
  13. 13.
    Jenkins TM, Burness C, Connolly DJ, Rao DG, Hoggard N, Mawson S, et al. A prospective pilot study measuring muscle volumetric change in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 2013;14:414–23.CrossRefGoogle Scholar
  14. 14.
    Staff NP, Amrami KK, Howe BM. Magnetic resonance imaging abnormalities of peripheral nerve and muscle are common in amyotrophic lateral sclerosis and share features with multifocal motor neuropathy. Muscle Nerve. 2015;52:137–9.CrossRefGoogle Scholar
  15. 15.
    Gerevini S, Agosta F, Riva N, Spinelli EG, Pagani E, Caliendo G, et al. MR imaging of brachial plexus and limb-girdle muscles in patients with amyotrophic lateral sclerosis. Radiology. 2016;279:553–61.CrossRefGoogle Scholar
  16. 16.
    Jenkins TM, Alix JJP, David C, Pearson E, Rao DG, Hoggard N, et al. Imaging muscle as a potential biomarker of denervation in motor neuron disease. J Neurol Neurosurg Psychiatry. 2018;89:248–55.PubMedGoogle Scholar
  17. 17.
    Brooks BR, Miller RG, Swash M, Munsat TL. World Federation of Neurology Research Group on motor neuron diseases. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord. 2000;1:293–9.CrossRefGoogle Scholar
  18. 18.
    Cedarbaum JM, Stambler N, Malta E, Fuller C, Hilt D, Thurmond B, et al. The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS study group (phase III). J Neurol Sci. 1999;169:13–21.CrossRefGoogle Scholar
  19. 19.
    Brettschneider J, Toledo JB, Van Deerlin VM, Elman L, McCluskey L, Lee VM, Trojanowski JQ. Microglial activation correlates with disease progression and upper motor neuron clinical symptoms in amyotrophic lateral sclerosis. PLoS One 2012; 7:e39216.CrossRefGoogle Scholar
  20. 20.
    Mercuri E, Pichiecchio A, Counsell S, Allsop J, Cini C, Jungbluth H, et al. A short protocol for muscle MRI in children with muscular dystrophies. Eur J Paediatr Neurol. 2002;6:305–7.CrossRefGoogle Scholar
  21. 21.
    Cha CH, Patten BM. Amyotrophic lateral sclerosis: abnormalities of the tongue on magnetic resonance imaging. Ann Neurol. 1989;25:468–72.CrossRefGoogle Scholar
  22. 22.
    Pichiecchio A, Rossi M, Cinnante C, Colafati GS, De Icco R, Parini R, Menni F, Furlan F, Burlina A, Sacchini M, Donati MA, Fecarotta S, Casa RD, Deodato F, Taurisano R, Di Rocco M. Muscle MRI of classic infantile Pompe patients: fatty substitution and edema-like changes. Muscle Nerve 2017; 55:841–848.CrossRefGoogle Scholar

Copyright information

© ISS 2018

Authors and Affiliations

  1. 1.Neurology DepartmentIRCCS Mondino FoundationPaviaItaly
  2. 2.Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly
  3. 3.Neurophysiopathology DepartmentIRCCS Mondino FoundationPaviaItaly
  4. 4.Unit of Biostatistics and Clinical Epidemiology, Department of Public Health, Experimental and Forensic MedicineUniversity of PaviaPaviaItaly
  5. 5.Center of Genomic and post-GenomicIRCCS Mondino FoundationPaviaItaly
  6. 6.Neuroradiology DepartmentIRCCS Mondino FoundationPaviaItaly

Personalised recommendations