Skeletal Radiology

, Volume 39, Issue 2, pp 105–115 | Cite as

The benefits of molecular pathology in the diagnosis of musculoskeletal disease

Part I of a two-part review: soft tissue tumors
  • Adrienne M. Flanagan
  • David Delaney
  • Paul O’DonnellEmail author
Review Article


Bone and soft tissue metabolic and neoplastic diseases are increasingly characterized by their molecular signatures. This has resulted from increased knowledge of the human genome, which has contributed to the unraveling of molecular pathways in health and disease. Exploitation of this information has allowed it to be used for practical diagnostic purposes. The aim of the first part of this two-part review is to provide an up-to-date review of molecular genetic investigations that are available and routinely used by specialist musculoskeletal histopathologists in the diagnosis of neoplastic disease. Herein we focus on the benefits of employing well characterized somatic mutations in soft tissue lesions that are commonly employed in diagnostic pathology today. The second part highlights the known somatic and germline mutations implicated in osteoclast-rich lesions of bone, and the genetic changes that disturb phosphate metabolism and result in a variety of musculoskeletal phenotypes. Finally, a brief practical guide of how to use and provide a molecular pathology service is given.


Genetics Mutation Sarcoma Musculoskeletal diseases Soft tissue neoplasms 


  1. 1.
    Aurias A, Rimbaut C, Buffe D, Dubousset J, Mazabraud A. Translocation of chromosome 22 in Ewing’s sarcoma. C R Seances Acad Sci III. 1983;296:1105–7.PubMedGoogle Scholar
  2. 2.
    Whang-Peng J, Triche TJ, Knutsen T, Miser J, Douglass EC, Israel MA. Chromosome translocation in peripheral neuroepithelioma. N Engl J Med. 1984;311:584–5.PubMedGoogle Scholar
  3. 3.
    Turc-Carel C, Dal Cin P, Limon J, Li F, Sandberg AA. Translocation X;18 in synovial sarcoma. Cancer Genet Cytogenet. 1986;23:93.PubMedGoogle Scholar
  4. 4.
    Clark J, Rocques PJ, Crew AJ, Gill S, Shipley J, Chan AM, et al. Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma. Nat Genet. 1994;7:502–8.PubMedGoogle Scholar
  5. 5.
    Zucman J, Delattre O, Desmaze C, Epstein AL, Stenman G, Speleman F, et al. EWS and ATF-1 gene fusion induced by t(12;22) translocation in malignant melanoma of soft parts. Nat Genet. 1993;4:341–5.PubMedGoogle Scholar
  6. 6.
    Hisaoka M, Ishida T, Kuo TT, Matsuyama A, Imamura T, Nishida K, et al. Clear cell sarcoma of soft tissue: a clinicopathologic, immunohistochemical, and molecular analysis of 33 cases. Am J Surg Pathol. 2008;32:452–60.PubMedGoogle Scholar
  7. 7.
    O’Donnell P, Diss TC, Whelan J, Flanagan AM. Synovial sarcoma with radiological appearances of primitive neuroectodermal tumour/Ewing sarcoma: differentiation by molecular genetic studies. Skeletal Radiol. 2006;35:233–9.PubMedGoogle Scholar
  8. 8.
    Weinberg RA. The Biology of Cancer. 1 ed. New York: Garland Science, Taylor and Francis Group, LLC, 2007.Google Scholar
  9. 9.
    Reddy EP, Reynolds RK, Santos E, Barbacid M. A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature. 1982;300:149–52.PubMedGoogle Scholar
  10. 10.
    Tabin CJ, Bradley SM, Bargmann CI, Weinberg RA, Papageorge AG, Scolnick EM, et al. Mechanism of activation of a human oncogene. Nature. 1982;300:143–9.PubMedGoogle Scholar
  11. 11.
  12. 12.
    Heinrich MC, Corless CL, Duensing A, McGreevey L, Chen CJ, Joseph N, et al. PDGFRA activating mutations in gastrointestinal stromal tumors. Science. 2003;299:708–10.PubMedGoogle Scholar
  13. 13.
    Hirota S, Isozaki K, Moriyama Y, Hashimoto K, Nishida T, Ishiguro S, et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science. 1998;279:577–80.PubMedGoogle Scholar
  14. 14.
    Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005;310:644–8.PubMedGoogle Scholar
  15. 15.
    Tomlins SA, Laxman B, Dhanasekaran SM, Helgeson BE, Cao X, Morris DS, et al. Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature. 2007;448:595–9.PubMedGoogle Scholar
  16. 16.
    Argani P, Lae M, Hutchinson B, Reuter VE, Collins MH, Perentesis J, et al. Renal carcinomas with the t(6;11)(p21;q12): clinicopathologic features and demonstration of the specific alpha-TFEB gene fusion by immunohistochemistry, RT-PCR, and DNA PCR. Am J Surg Pathol. 2005;29:230–40.PubMedGoogle Scholar
  17. 17.
    Davis IJ, Hsi BL, Arroyo JD, Vargas SO, Yeh YA, Motyckova G, et al. Cloning of an Alpha-TFEB fusion in renal tumors harboring the t(6;11)(p21;q13) chromosome translocation. Proc Natl Acad Sci U S A. 2003;100:6051–6.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448:561–6.PubMedGoogle Scholar
  19. 19.
    Campbell PJ, Stephens PJ, Pleasance ED, O’Meara S, Li H, Santarius T, et al. Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nat Genet. 2008;40:722–9.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Consortium. 2009.
  21. 21.
    Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature. 2009;458:719–24.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Enzinger S, Goldblum JR. Enzinger and Weiss’s Soft Tissue Tumors. 5 ed. St. Louis: Mosby, Inc, 2008.Google Scholar
  23. 23.
    Weaver J, Goldblum JR, Turner S, Tubbs RR, Wang WL, Lazar AJ, et al. Detection of MDM2 gene amplification or protein expression distinguishes sclerosing mesenteritis and retroperitoneal fibrosis from inflammatory well-differentiated liposarcoma. Mod Pathol. 2009;22:66–70.PubMedGoogle Scholar
  24. 24.
    Turc-Carel C, Limon J, Dal Cin P, Rao U, Karakousis C, Sandberg AA. Cytogenetic studies of adipose tissue tumors. II. Recurrent reciprocal translocation t(12;16)(q13;p11) in myxoid liposarcomas. Cancer Genet Cytogenet. 1986;23:291–299.PubMedGoogle Scholar
  25. 25.
    Crozat A, Aman P, Mandahl N, Ron D. Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature. 1993;363:640–4.PubMedGoogle Scholar
  26. 26.
    Panagopoulos I, Mandahl N, Ron D, Hoglund M, Nilbert M, Mertens F, et al. Characterization of the CHOP breakpoints and fusion transcripts in myxoid liposarcomas with the 12;16 translocation. Cancer Res. 1994;54:6500–3.PubMedGoogle Scholar
  27. 27.
    Panagopoulos I, Hoglund M, Mertens F, Mandahl N, Mitelman F, Aman P. Fusion of the EWS and CHOP genes in myxoid liposarcoma. Oncogene. 1996;12:489–94.PubMedGoogle Scholar
  28. 28.
    Dal Cin P, Kools P, Sciot R, De Wever I, Van Damme B, Van de Ven W, et al. Cytogenetic and fluorescence in situ hybridization investigation of ring chromosomes characterizing a specific pathologic subgroup of adipose tissue tumors. Cancer Genet Cytogenet. 1993;68:85–90.Google Scholar
  29. 29.
    Heim S, Mandahl N, Kristoffersson U, Mitelman F, Rooser B, Rydholm A, et al. Marker ring chromosome—a new cytogenetic abnormality characterizing lipogenic tumors? Cancer Genet Cytogenet. 1987;24:319–26.PubMedGoogle Scholar
  30. 30.
    Weaver J, Downs-Kelly E, Goldblum JR, Turner S, Kulkarni S, Tubbs RR, et al. Fluorescence in situ hybridization for MDM2 gene amplification as a diagnostic tool in lipomatous neoplasms. Mod Pathol. 2008;21:943–9.PubMedGoogle Scholar
  31. 31.
    Engstrom K, Bergh P, Cederlund CG, Hultborn R, Willen H, Aman P, et al. Irradiation of myxoid/round cell liposarcoma induces volume reduction and lipoma-like morphology. Acta Oncol. 2007;46:838–45.PubMedGoogle Scholar
  32. 32.
    Schwab JH, Boland PJ, Antonescu C, Bilsky MH, Healey JH. Spinal metastases from myxoid liposarcoma warrant screening with magnetic resonance imaging. Cancer. 2007;110:1815–22.PubMedGoogle Scholar
  33. 33.
    Forni C, Minuzzo M, Virdis E, Tamborini E, Simone M, Tavecchio M, et al. Trabectedin (ET-743) promotes differentiation in myxoid liposarcoma tumors. Mol Cancer Ther. 2009;8:449–57.PubMedGoogle Scholar
  34. 34.
    Idowu BD, Al-Adnani M, O’Donnell P, Yu L, Odell E, Diss T, et al. A sensitive mutation-specific screening technique for GNAS1 mutations in cases of fibrous dysplasia: the first report of a codon 227 mutation in bone. Histopathology. 2007;50:691–704.PubMedGoogle Scholar
  35. 35.
    Delaney D, Diss TC, Presneau N, Hing S, Berisha F, Idowu BD, et al. GNAS1 mutations occur more commonly than previously thought in intramuscular myxoma. Mod Pathol. 2009;22:718–24.PubMedGoogle Scholar
  36. 36.
    Mazabraud A, Semat P, Roze R. A propos de l’association de fibromyxomes des tissus mous à la dysplasie fibreuse des os. Presse Med. 1967;75:2223–8.PubMedGoogle Scholar
  37. 37.
    Willems SM, Debiec-Rychter M, Szuhai K, Hogendoorn PC, Sciot R. Local recurrence of myxofibrosarcoma is associated with increase in tumour grade and cytogenetic aberrations, suggesting a multistep tumour progression model. Mod Pathol. 2006;19:407–16.PubMedGoogle Scholar
  38. 38.
    Nielsen GP, O’Connell JX, Rosenberg AE. Intramuscular myxoma: a clinicopathologic study of 51 cases with emphasis on hypercellular and hypervascular variants. Am J Surg Pathol. 1998;22:1222–7.PubMedGoogle Scholar
  39. 39.
    Evans HL. Low-grade fibromyxoid sarcoma. A report of two metastasizing neoplasms having a deceptively benign appearance. Am J Clin Pathol. 1987;88:615–9.PubMedGoogle Scholar
  40. 40.
    Evans HL. Low-grade fibromyxoid sarcoma. A report of 12 cases. Am J Surg Pathol. 1993;17:595–600.PubMedGoogle Scholar
  41. 41.
    Canpolat C, Evans HL, Corpron C, Andrassy RJ, Chan K, Eifel P, et al. Fibromyxoid sarcoma in a four-year-old child: case report and review of the literature. Med Pediatr Oncol. 1996;27:561–4.PubMedGoogle Scholar
  42. 42.
    Folpe AL, Lane KL, Paull G, Weiss SW. Low-grade fibromyxoid sarcoma and hyalinizing spindle cell tumor with giant rosettes: a clinicopathologic study of 73 cases supporting their identity and assessing the impact of high-grade areas. Am J Surg Pathol. 2000;24:1353–60.PubMedGoogle Scholar
  43. 43.
    Mertens F, Fletcher CD, Antonescu CR, Coindre JM, Colecchia M, Domanski HA, et al. Clinicopathologic and molecular genetic characterization of low-grade fibromyxoid sarcoma, and cloning of a novel FUS/CREB3L1 fusion gene. Lab Invest. 2005;85:408–15.PubMedGoogle Scholar
  44. 44.
    Reid R, de Silva MV, Paterson L, Ryan E, Fisher C. Low-grade fibromyxoid sarcoma and hyalinizing spindle cell tumor with giant rosettes share a common t(7;16)(q34;p11) translocation. Am J Surg Pathol. 2003;27:1229–36.PubMedGoogle Scholar
  45. 45.
    Downs-Kelly E, Goldblum JR, Patel RM, Weiss SW, Folpe AL, Mertens F, et al. The utility of fluorescence in situ hybridization (FISH) in the diagnosis of myxoid soft tissue neoplasms. Am J Surg Pathol. 2008;32:8–13.PubMedGoogle Scholar
  46. 46.
    Matsuyama A, Hisaoka M, Shimajiri S, Hayashi T, Imamura T, Ishida T, et al. Molecular detection of FUS-CREB3L2 fusion transcripts in low-grade fibromyxoid sarcoma using formalin-fixed, paraffin-embedded tissue specimens. Am J Surg Pathol. 2006;30:1077–84.PubMedGoogle Scholar
  47. 47.
    Meis-Kindblom JM, Bergh P, Gunterberg B, Kindblom LG. Extraskeletal myxoid chondrosarcoma: a reappraisal of its morphologic spectrum and prognostic factors based on 117 cases. Am J Surg Pathol. 1999;23:636–50.PubMedGoogle Scholar
  48. 48.
    O’Donnell P, Tirabosco R, Vujovic S, Bartlett W, Briggs TW, Henderson S, et al. Diagnosing an extra-axial chordoma of the proximal tibia with the help of brachyury, a molecule required for notochordal differentiation. Skeletal Radiol. 2007;36:59–65.PubMedGoogle Scholar
  49. 49.
    Tirabosco R, Mangham DC, Rosenberg AE, Vujovic S, Bousdras K, Pizzolitto S, et al. Brachyury expression in extra-axial skeletal and soft tissue chordomas: a marker that distinguishes chordoma from mixed tumor/myoepithelioma/parachordoma in soft tissue. Am J Surg Pathol. 2008;32:572–80.PubMedGoogle Scholar
  50. 50.
    Oliveira AM, Sebo TJ, McGrory JE, Gaffey TA, Rock MG, Nascimento AG. Extraskeletal myxoid chondrosarcoma: a clinicopathologic, immunohistochemical, and ploidy analysis of 23 cases. Mod Pathol. 2000;13:900–8.PubMedGoogle Scholar
  51. 51.
    Sciot R, Dal Cin P, Fletcher C, Samson I, Smith M, De Vos R, et al. t(9;22)(q22–31;q11–12) is a consistent marker of extraskeletal myxoid chondrosarcoma: evaluation of three cases. Mod Pathol. 1995;8:765–8.PubMedGoogle Scholar
  52. 52.
    Panagopoulos I, Mertens F, Isaksson M, Domanski HA, Brosjo O, Heim S, et al. Molecular genetic characterization of the EWS/CHN and RBP56/CHN fusion genes in extraskeletal myxoid chondrosarcoma. Genes Chromosomes Cancer. 2002;35:340–52.PubMedGoogle Scholar
  53. 53.
    Sjogren H, Meis-Kindblom J, Kindblom LG, Aman P, Stenman G. Fusion of the EWS-related gene TAF2N to TEC in extraskeletal myxoid chondrosarcoma. Cancer Res. 1999;59:5064–7.PubMedGoogle Scholar
  54. 54.
    Kohashi K, Oda Y, Yamamoto H, Tamiya S, Oshiro Y, Izumi T, et al. SMARCB1/INI1 protein expression in round cell soft tissue sarcomas associated with chromosomal translocations involving EWS: a special reference to SMARCB1/INI1 negative variant extraskeletal myxoid chondrosarcoma. Am J Surg Pathol. 2008;32:1168–74.PubMedGoogle Scholar
  55. 55.
    Alman BA, Li C, Pajerski ME, Diaz-Cano S, Wolfe HJ. Increased beta-catenin protein and somatic APC mutations in sporadic aggressive fibromatoses (desmoid tumors). Am J Pathol. 1997;151:329–34.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Miyoshi Y, Iwao K, Nawa G, Yoshikawa H, Ochi T, Nakamura Y. Frequent mutations in the beta-catenin gene in desmoid tumors from patients without familial adenomatous polyposis. Oncol Res. 1998;10:591–4.PubMedGoogle Scholar
  57. 57.
    Giarola M, Wells D, Mondini P, Pilotti S, Sala P, Azzarelli A, et al. Mutations of adenomatous polyposis coli (APC) gene are uncommon in sporadic desmoid tumours. Br J Cancer. 1998;78:582–7.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Amary MF, Pauwels P, Meulemans E, Roemen GM, Islam L, Idowu B, et al. Detection of beta-catenin mutations in paraffin-embedded sporadic desmoid-type fibromatosis by mutation-specific restriction enzyme digestion (MSRED): an ancillary diagnostic tool. Am J Surg Pathol. 2007;31:1299–309.PubMedGoogle Scholar
  59. 59.
    Agus V, Tamborini E, Mezzelani A, Pierotti MA, Pilotti S. A novel fusion gene, SYT-SSX4, in synovial sarcoma. J Natl Cancer Inst. 2001;93:1347–9.PubMedGoogle Scholar
  60. 60.
    Brodin B, Haslam K, Yang K, Bartolazzi A, Xie Y, Starborg M, et al. Cloning and characterization of spliced fusion transcript variants of synovial sarcoma: SYT/SSX4, SYT/SSX4v, and SYT/SSX2v. Possible regulatory role of the fusion gene product in wild type SYT expression. Gene 2001;268:173–82.PubMedGoogle Scholar
  61. 61.
    Amary MF, Berisha F, Bernardi Fdel C, Herbert A, James M, Reis-Filho JS, et al. Detection of SS18-SSX fusion transcripts in formalin-fixed paraffin-embedded neoplasms: analysis of conventional RT-PCR, qRT-PCR and dual color FISH as diagnostic tools for synovial sarcoma. Mod Pathol. 2007;20:482–96.PubMedGoogle Scholar
  62. 62.
    Hornick JL, Fletcher CD. Myoepithelial tumors of soft tissue: a clinicopathologic and immunohistochemical study of 101 cases with evaluation of prognostic parameters. Am J Surg Pathol. 2003;27:1183–96.PubMedGoogle Scholar
  63. 63.
    Fletcher CDM, Krishnan U, Mertens F. Pathology and genetics. Tumours of soft tissue and bone. In: Kleihues P, Sobin LH, editors. World Health Organization Classification of Tumours. Lyon: IARC Press; 2002.Google Scholar
  64. 64.
    Esiashvili N, Goodman M, Ward K, Marcus RB Jr, Johnstone PA. Neuroblastoma in adults: incidence and survival analysis based on SEER data. Pediatr Blood Cancer. 2007;49:41–6.PubMedGoogle Scholar
  65. 65.
    Mangham DC, Williams A, McMullan DJ, McClure J, Sumathi VP, Grimer RJ, et al. Ewing’s sarcoma of bone: the detection of specific transcripts in a large, consecutive series of formalin-fixed, decalcified, paraffin-embedded tissue samples using the reverse transcriptase-polymerase chain reaction. Histopathology 2006;48:363–76.PubMedGoogle Scholar
  66. 66.
    Windsor R, Strauss S, Seddon B, Whelan J. Experimental therapies in Ewing’s sarcoma. Expert Opin Investig Drugs. 2009;18:143–59.PubMedGoogle Scholar
  67. 67.
    Walterhouse D, Watson A. Optimal management strategies for rhabdomyosarcoma in children. Paediatr Drugs. 2007;9:391–400.PubMedGoogle Scholar
  68. 68.
    Chou AJ, Geller DS, Gorlick R. Therapy for osteosarcoma: where do we go from here? Paediatr Drugs. 2008;10:315–27.PubMedGoogle Scholar
  69. 69.
    Sorensen PH, Lessnick SL, Lopez-Terrada D, Liu XF, Triche TJ, Denny CT. A second Ewing’s sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor, ERG. Nat Genet. 1994;6:146–51.PubMedGoogle Scholar
  70. 70.
    Jeon IS, Davis JN, Braun BS, Sublett JE, Roussel MF, Denny CT, et al. A variant Ewing’s sarcoma translocation (7;22) fuses the EWS gene to the ETS gene ETV1. Oncogene. 1995;10:1229–34.PubMedGoogle Scholar
  71. 71.
    Urano F, Umezawa A, Hong W, Kikuchi H, Hata J. A novel chimera gene between EWS and E1A-F, encoding the adenovirus E1A enhancer-binding protein, in extraosseous Ewing’s sarcoma. Biochem Biophys Res Commun. 1996;219:608–12.PubMedGoogle Scholar
  72. 72.
    Llombart-Bosch A, Pellin A, Carda C, Noguera R, Navarro S, Peydro-Olaya A. Soft tissue Ewing sarcoma-peripheral primitive neuroectodermal tumor with atypical clear cell pattern shows a new type of EWS-FEV fusion transcript. Diagn Mol Pathol. 2000;9:137–44.PubMedGoogle Scholar
  73. 73.
    Peter M, Couturier J, Pacquement H, Michon J, Thomas G, Magdelenat H, et al. A new member of the ETS family fused to EWS in Ewing tumors. Oncogene. 1997;14:1159–64.PubMedGoogle Scholar
  74. 74.
    Murphy AJ, Bishop K, Pereira C, Chilton-MacNeill S, Ho M, Zielenska M, et al. A new molecular variant of desmoplastic small round cell tumor: significance of WT1 immunostaining in this entity. Hum Pathol. 2008;39:1763–70.PubMedGoogle Scholar
  75. 75.
    Sirvent N, Coindre JM, Maire G, Hostein I, Keslair F, Guillou L, et al. Detection of MDM2-CDK4 amplification by fluorescence in situ hybridization in 200 paraffin-embedded tumor samples: utility in diagnosing adipocytic lesions and comparison with immunohistochemistry and real-time PCR. Am J Surg Pathol. 2007;31:1476–89.PubMedGoogle Scholar
  76. 76.
    Binh MB, Sastre-Garau X, Guillou L, de Pinieux G, Terrier P, Lagace R, et al. MDM2 and CDK4 immunostainings are useful adjuncts in diagnosing well-differentiated and dedifferentiated liposarcoma subtypes: a comparative analysis of 559 soft tissue neoplasms with genetic data. Am J Surg Pathol. 2005;29:1340–7.PubMedGoogle Scholar
  77. 77.
    Gisselsson D, Hibbard MK, Dal Cin P, Sciot R, Hsi BL, Kozakewich HP, et al. PLAG1 alterations in lipoblastoma: involvement in varied mesenchymal cell types and evidence for alternative oncogenic mechanisms. Am J Pathol. 2001;159:955–62.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Dal Cin P, Sciot R, Polito P, Stas M, de Wever I, Cornelis A, et al. Lesions of 13q may occur independently of deletion of 16q in spindle cell/pleomorphic lipomas. Histopathology. 1997;31:222–5.PubMedGoogle Scholar
  79. 79.
    Gisselsson D, Hoglund M, Mertens F, Dal Cin P, Mandahl N. Hibernomas are characterized by homozygous deletions in the multiple endocrine neoplasia type I region. Metaphase fluorescence in situ hybridization reveals complex rearrangements not detected by conventional cytogenetics. Am J Pathol. 1999;155:61–6.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Evans HL, Soule EH, Winkelmann RK. Atypical lipoma, atypical intramuscular lipoma, and well differentiated retroperitoneal liposarcoma: a reappraisal of 30 cases formerly classified as well differentiated liposarcoma. Cancer. 1979;43:574–84.PubMedGoogle Scholar
  81. 81.
    Weiss SW, Rao VK. Well-differentiated liposarcoma (atypical lipoma) of deep soft tissue of the extremities, retroperitoneum, and miscellaneous sites. A follow-up study of 92 cases with analysis of the incidence of “dedifferentiation". Am J Surg Pathol. 1992;16:1051–8.PubMedGoogle Scholar
  82. 82.
    Hoeben A, Schoffski P, Debiec-Rychter M. Clinical implications of mutational analysis in gastrointestinal stromal tumours. Br J Cancer. 2008;98:684–8.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Lasota J, Miettinen M. Clinical significance of oncogenic KIT and PDGFRA mutations in gastrointestinal stromal tumours. Histopathology. 2008;53:245–66.PubMedGoogle Scholar
  84. 84.
    Lasota J, Dansonka-Mieszkowska A, Sobin LH, Miettinen M. A great majority of GISTs with PDGFRA mutations represent gastric tumors of low or no malignant potential. Lab Invest. 2004;84:874–83.PubMedGoogle Scholar
  85. 85.
    Lasota J, Stachura J, Miettinen M. GISTs with PDGFRA exon 14 mutations represent subset of clinically favorable gastric tumors with epithelioid morphology. Lab Invest. 2006;86:94–100.PubMedGoogle Scholar

Copyright information

© ISS 2009

Authors and Affiliations

  • Adrienne M. Flanagan
    • 1
    • 2
    • 3
    • 4
  • David Delaney
    • 1
  • Paul O’Donnell
    • 3
    • 5
    Email author
  1. 1.Department of HistopathologyRoyal National Orthopaedic Hospital NHS TrustStanmoreUK
  2. 2.Paul O’Gorman Cancer InstituteUCLLondonUK
  3. 3.Institute of Orthopaedics and Musculoskeletal ScienceUCLStanmoreUK
  4. 4.Department of HistopathologyUCLH NHS Trust, Rockefeller BuildingLondonUSA
  5. 5.Department of RadiologyRoyal National Orthopaedic Hospital NHS TrustMiddlesexUK

Personalised recommendations