Skip to main content
Log in

Natural and man-induced stress evolution of slopes: the Monte Mario hill in Rome

  • Original Article
  • Published:
Environmental Geology

Abstract

The paper deals with stress-release effects induced by man-made cuts or excavations into natural stiff clay slopes that experienced erosion in response to valley deepening. The study was focused on the Monte Mario hill in Rome (Italy), which formed part of an area of recent urban expansion. The methodology of the study relied on a reference engineering-geology model, which was developed on the basis of site and laboratory data and stress–strain analyses. The latter analyses were carried out with the finite-difference code FLAC 4.0. Numerical modelling was based on a sequential approach, taking into account the main evolutionary stages of the Tiber river valley in Romeȁ9s urban area and then making cuts at the bottom of the slope located south of the Monte Mario Astronomical Observatory. The simulation revealed the stress-release effects that fluvial erosion and excavation fronts have caused on the investigated slopes and their consequent gravitational instabilities. These processes appear with metre-scale displacements, followed by stress-release cracks (actually observed on the slopes under review). In quantifying stress-release deformations, the simulation took into account the possible role of creep in the observed retardation of stress-release effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Agliardi F, Crosta G, Zanchi A (2001) Structural constraints on deep-seated slope deformation kinematics. Eng Geol 59:83–102

    Article  Google Scholar 

  • Ambrosetti P, Bonadonna FP (1967) Revisione dei dati sul Plio-Pleistocene di Roma. Atti Accademia Gioenia di Sc Naturali In Catania 18:33–70

    Google Scholar 

  • Amorosi A, Cotecchia F, Lollino P, Parise M, Santaloia F (2004) Instability processes of stiff clayey slopes subjected to excavation. In: Lacerda WA, Ehrlich M, Fontoyra SAB, Sayao SF (eds) Landslides: evaluation and stabilization, Proceedings of the IX international symposium on landslides (Rio de Janeiro). Balkema, Rotterdam, pp 1201–1206

  • Asef MR, Reddish DJ (2002) The impact of confining stress on the rock mass deformation modulus. Géotechnique 52(4):235–241

    Article  Google Scholar 

  • Bellotti P, Chiocchini U, Castorina F, Tolomeo L (1994) Le Unità clastiche plio-pleistoceniche tra Monte Mario (città di Roma) e la costa tirrenica presso Focene: alcune osservazioni sulla stratigrafia sequenziale. Boll. Serv. Geol. dȁ9Italia CXIII: 3–24

  • Belluomini G (1985) Risultati e prospettive di un nuovo metodo di datazione basato sulla racemizzazione degli Amminoacidi. Acc. Naz. dei Lincei, Contr. Centro Interd. di Sc. Mat. e loro Appl., 69

  • Bergamin L, Carboni MG, Di Bella L, Marra F, Palagi I (2000) Stratigraphical and paleoenvironmental features of the Pleistocene sediments of Monte Mario (Rome). Eclogae Geologicae Helvetiae 93(2):265–275

    Google Scholar 

  • Bonadonna FP (1968) Studi sul Pleistocene del Lazio V. La biostratigrafia di Monte Mario e la “Fauna Malacologica Mariana” di Cerulli Irelli. Mem Soc Geol It 7:261–321

    Google Scholar 

  • Bozzano F, Andreucci A, Gaeta M, Salucci R (2000) A geological model of the buried Tiber River Valley beneath the historical centre of Rome. Bull Eng Geol Env 59:1–21

    Article  Google Scholar 

  • Bozzano F, Martino M, Martino S, Moretti S, Zannotti S (2003) Analysis of deformations in the “argille grigio-azzurre” formation based on site observations, vol 1. Congresso AIGA (Chieti, 18–20/02/2003) (abstract)

  • Burland JB, Longworth TI, Moore JFA (1977) A study of ground movement and progressive failure caused by a deep excavation in Oxford Clay. Géotechnique 27(4):557–591

    Google Scholar 

  • Burland JB, Rampello S, Georgiannou VN, Calabresi G (1999) A laboratory study of the strength of four stiff clays. Géotechnique 49(2):273–283

    Google Scholar 

  • Calabresi G (2004) Terreni argillosi consistenti: esperienze italiane. Rivista Italiana di Geotecnica 38(1):14–57

    Google Scholar 

  • Cancelli A, Chinaglia N (1993) Shear strength parameters and slope stability in argillaceous rocks. In: Anagnostopoulos CA et al (eds) Geotechnical engineering of hard soil-soft rocks. Balkema, Rotterdam, pp 1087–1092

  • Calabresi G, Scarpelli G (1985) Argille sovraconsolidate e fessurate: fenomeni franosi. Geologia Applicata ed Idrogeologia XX(II):93–125

    Google Scholar 

  • Calabresi G, Rampello S, Viggiani G (1990) Il comportamento meccanico delle argille consistenti. Atti MIR ȁ890 (1990 MIR proceedings), III ciclo di conferenze di meccanica ed ingegneria delle rocce (3rd series of rock mechanics and engineering conferences) 3:1–16

  • Carboni MG (1975) Biostratigrafia di alcuni affioramenti pliocenici del versante tirrenico dellȁ9Italia centrale. Geologica Romana 14:63–85

    Google Scholar 

  • Chandler RJ, Skempton AW (1974) The design of permanent cutting slopes in stiff fissured clays. Géotechnique 24(4):457–466

    Google Scholar 

  • Conato V, Esu D, Malatesta A, Zarlenga F (1980) New data on the Pleistocene of Rome. Quaternaria 22:131–176

    Google Scholar 

  • Cooper MR, Broomhead EN, Petley DJ, Grants DI (1998) The Selborne cutting stability experiment, Géotechnique 48(1):63–102

    Google Scholar 

  • Cosentino D, Cipollari P, Di Bella L, Esposito A, Faranda C, Giordano G, Gliozzi E, Mazzini I, Moretti S, Funiciello R (2004) Il limite Plio-Pleistocene nella città di Roma: nuovi dati di sottosuolo dal Passante a Nord Ovest (Monte della Farnesina). Atti del Convegno Geosed, Roma

  • De Angelis Dȁ9Ossat G (1942) Nuove sezioni geologiche dei colli di Roma. Boll Soc Geol It 61:22–49

  • Dixon N, Bromhead EN (2002) Landsliding in London Clay coastal cliffs. Q J Eng Geol Hydrogeol 35:327–343

    Article  Google Scholar 

  • Duncan JM, Dunlop P (1969) Slopes in stiff-fissured clays and shales. J Soil Mech Found Div ASCE 95(5):467–492

    Google Scholar 

  • Esu F (1966) Short-term stability of slopes in unweathered jointed clays. Géotechnique 16(4):321–328

    Google Scholar 

  • Fookes PG (1997) The First Glossop lecture. Geology for Engineers the Geological Model, Prediction and Performance. Q J Eng Geol Hydrogeol 30:293–424

    Article  Google Scholar 

  • Fookes PG, Baynes FJ, Hutchinson JN (2000) Invited lecture, Total geological history: a model approach to the anticipation, observation and understanding of site conditions. GeoEng 2000, an international conference on geotechnical and geological engineering, vol 1. Melbourne, pp 370–460

  • Frutaz AP (1962) Le piante di Roma. Istituto di Studi Romani

  • Gigli E (1971) Cosa cȁ9è sotto Roma? Monte Mario, Vaticano, Gianicolo: una sola origine. Capitolium 46:7–8

    Google Scholar 

  • Giordano G, Esposito A, De Rita D, Fabri M, Mazzini I, Trigari A, Rosa C, Funiciello R (2003) The sedimentation along the Roman Coast between Middle and Upper Pleistocene: the interplay of eustatism, tectonics and volcanism—new data and review. II Quaternario 16(1bis):121–129

    Google Scholar 

  • Griffith AA (1920) The phenomena of rupture and flow in solids. Phil Trans Roy Soc London A 221:163–198

    Article  Google Scholar 

  • Griffith DV, Fenton GA (2000) Influence of soil strength spatial variability on the stability of an undrained clay slope by finite elements. Slope Stability 2000, Proceedings of the sessions of Geo-Denver 2000, ASCE, pp184–193

  • Haneberg WC (1999) Effect of valley incision on the subsurface state of stress-theory and application to the Rio Grande Valley near Albuquerque, New Mexico. Environ Eng Geosci V(1):117–131

    Google Scholar 

  • Hicks MA, Samy K (2002) Influence of heterogeneity on undrained clay slope stability. Q J Eng Geol Hydrogeol 35:41–49

    Article  Google Scholar 

  • Hoque E, Tatsuoka F (2004) Effect of stress ratio on small-strain stiffness during triaxial shearing. Geotecnique 54(7):429–439

    Article  Google Scholar 

  • Houlsby GT, Amorosi A, Rojas E (2005) Elastic moduli of soils dependent on pressure: a hyperelastic formulation. Geotecnique 55(5):383–392

    Article  Google Scholar 

  • IGM (1924) Roma e suburbio. In Frutaz (1962): Le piante di Roma. Istituto di Studi Romani

  • Itasca (2000) FLAC 4.0: user manual. Itasca Consulting Group (License: DST- “La Sapienza”, Roma, Serial number 213-039-0127-16143)

  • Karner DB, Marra F (1998) Correlation of fluviodeltaic aggradational sections with glacial climate history: a revision of the Pleistocene stratigraphy of Rome. Geol Soc Am Bull 110(6):748–758

    Article  Google Scholar 

  • Karner DB, Marra F, Renne PR (2001a) The history of the Monti Sabatini and Alban Hills volcanoes: groundwork for assessing volcanic-tectonic hazards for Rome. J Volcanol Geotherm Res 107:185–219

    Article  Google Scholar 

  • Karner D, Marra F, Florindo F, Boschi E (2001b) Pulsed uplift estimated from terrace elevations in the coast of Rome: evidence for a new phase of volcanic activity? Earth Planet Sci Lett 188:135–148

    Article  Google Scholar 

  • Leroueil S (2001) Natural slopes and cuts: movement and failure mechanisms. Géotechnique 51(3):197–243

    Article  Google Scholar 

  • Maffei A, Martino S, Prestininzi A (2005) From the geological to the numerical model in the analysis of gravity-induced slope deformations: an example from the Central Apennines (Italy). Eng Geol 78:215–236

    Article  Google Scholar 

  • Malatesta A, Zarlenga F (1986) Evoluzione paleogeografico-strutturale plio-pleistocenica del basso bacino romano a nord e a sud del. Tevere Mem Soc Geol It 35:75–85

    Google Scholar 

  • Marino A, Gigli M (1934) Roma. In Frutaz (1962): Le piante di Roma. Istituto di Studi Romani

  • Marra F (1993) Stratigrafia ed assetto geologico-strutturale dellȁ9area romana compresa tra il Tevere ed il Rio Galeria. Geologica Romana 29:515–535

    Google Scholar 

  • Marra F, Rosa C (1995a) Stratigrafia ed assetto geologico dellȁ9area romana. In: Funiciello R. (ed) La geologia di Roma. Il centro storico. Mem. Descr. Carta Geologica dȁ9Italia, vol 50, pp 49–112

  • Marra F, Rosa C (1995b) Carta geologica del centro storico di Roma in scala 1:10000. In: Funiciello R (ed) La geologia di Roma. Il centro storico. Tav. 9. Mem. Descr. Carta Geologica dȁ9Italia, p 50

  • Marra F, Rosa C, De Rita D, Funiciello R (1998) Stratigraphic and tectonic features of Middle Pleistocene sedimentary and volcanic deposit in the area of Rome (Italy). Q Int 47–48:51–63

    Article  Google Scholar 

  • Matheson DS, Thomson S (1973) Geological implications of valley rebound. Can Gothec J 10:961–977

    Google Scholar 

  • McTingue DF, Mei CC (1981) Gravity-induced stresses near topography of small slope. J Geophys Res 86(B10):9268–9278

    Article  Google Scholar 

  • Miller DJ, Dunne T (1996) Topographic perturbations of regional stresses and consequent bedrock fracturing. J Geophys Res 101(B11):25,523–25,536

    Article  Google Scholar 

  • Milli S (1997) Depositional setting and high-frequency sequence stratigraphy of the Middle-Upper Pleistocene to Holocene deposits of the Roman Basin. Geologica Romana 33:99–136

    Google Scholar 

  • Potts DM (2003) Numerical analysis: a virtual dream or practical reality? Géotechnique 53(6):535–573

    Article  Google Scholar 

  • Potts DM, Kovacevic N, Vaughan PR (1997) Delayed collapse of cut slopes in stiff clay. Géotechnique 47(5):953–982

    Article  Google Scholar 

  • Rampello S, Silvestri S (1993) The stress–strain behaviour of natural and reconstituted samples of two overconsolidated clays. In: Anagnostopoulos CA et al (eds) Geotechnical engineering of hard soils-soft rocks. Balkema, Rotterdam, pp 769–777

  • Savage WZ, Swolfs HS, Powers PS (1985) Gravitational stresses I longsymmetric ridges and valleys. Int J Rock Mech Min Sci Geomech Abstr 22(5):291–302

    Article  Google Scholar 

  • Spina G (1958) Risultati di prove eseguite sullȁ9argilla di Monte Mario (Roma). Giornale del Genio Civile, pp 112–115

  • Skempton AW (1977) Slope stability of cutting in Brown London clays. Proc 9th Inter Conf Soil Mech Found Eng 3:261–270

    Google Scholar 

  • Tavenas F, Leroueil S (1980) Creep and failure of slopes in clays. Can Gothec J 18:106–120

    Google Scholar 

  • Vaughan PR (1994) Assumption, prediction and reality in geotechnical engineering. Géotechnique 44(4):573–609

    Article  Google Scholar 

  • Ventriglia U (1986) Unpublished technical report

  • Ventriglia U (2002) La geologia del territorio del comune di Roma. Amministrazione Provinciale di Roma, Roma, pp. 809, 13 Tav

Download references

Acknowledgements

The author thanks F. Marra and A. Prestininzi for their scientific review of this paper and for their personal communications; the authors are also indebted to Roma Natura for providing technical documentation about the “Parco di Monte Mario” area and to Astaldy Company for the access to the “Passante a NW” tunnel during its construction. Publication of this paper was funded by grants of the Earth Science Department of the University of Rome “La Sapienza” (MIUR “ex 60%”, responsible Dr. M. Gaeta).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Martino.

Additional information

Research activities were carried on with the co-operation of Dȁ9Arcangelo A. (Consorzio TREESSE, andrea.darcangelo@libero.it) and Moretti S. (IMG S.r.l. Servizi Tecnici per lȁ9Ingegneria e lȁ9Ambiente, moretti@img-srl.it)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bozzano, F., Martino, S. & Priori, M. Natural and man-induced stress evolution of slopes: the Monte Mario hill in Rome. Environ Geol 50, 505–524 (2006). https://doi.org/10.1007/s00254-006-0228-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00254-006-0228-y

Keywords

Navigation