Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Transcriptome analysis of Botrytis cinerea in response to tea tree oil and its two characteristic components

Abstract

Tea tree oil (TTO) and its two characteristic components (terpinen-4-ol and 1,8-cineole) have been shown to inhibit Botrytis cinerea growth. In this study, we conducted a transcriptome analysis to determine the effects of TTO and its characteristic components, alone and in combination, against B. cinerea. Most differentially expressed genes (DEGs) from B. cinerea cells treated with terpinen-4-ol participated in the biosynthesis of secondary metabolites, and the metabolism of amino acids, carbohydrates, and lipids. All treatments containing terpinen-4-ol potentially induced mitochondrial dysfunction and oxidative stress. These were further confirmed by the decreased activities of several enzymes (e.g., succinate dehydrogenase (SDH), malate dehydrogenase (MDH), α-ketoglutarate dehydrogenase (α-KGDH), isocitrate dehydrogenase (ICDH)), the increased activities of certain enzymes (e.g., catalase (CAT), peroxidase (POD), superoxide dismutase (SOD)), and increased content of hydrogen peroxide (H2O2). 1,8-Cineole mainly affected DEGs involved in genetic information processing, resulting in cell death. This study provides insight into the molecular mechanism of B. cinerea inhibition by TTO, and explains the synergistic effect of terpinen-4-ol and 1,8-cineole on B. cinerea.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Accardi R, Oxelmark E, Jauniaux N, De PV, Marchini A, Tommasino M (2004) High levels of the mitochondrial large ribosomal subunit protein 40 prevent loss of mitochondrial DNA in null mmf1 Saccharomyces cerevisiae cells. Yeast 21(7):539–548. https://doi.org/10.1002/yea.1121

  2. Artus NN, Edwards GE (1985) NAD-malic enzyme from plants. FEBS Lett 182(2):225–233. https://doi.org/10.1016/0014-5793(85)80305-7

  3. Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils—a review. Food Chem Toxicol 46(2):446–475. https://doi.org/10.1016/j.fct.2007.09.106

  4. Brennan TC, Kromer JO, Nielsen LK (2013) Physiological and transcriptional responses of Saccharomyces cerevisiae to D-limonene show changes to the cell wall but not to the plasma membrane. Appl Environ Microbiol 79(12):3590–3600. https://doi.org/10.1128/AEM.00463-13

  5. Cabral LDC, Pinto VF, Patriarca A (2013) Application of plant derived compounds to control fungal spoilage and mycotoxin production in foods. Int J Food Microbiol 166(1):1–14. https://doi.org/10.1016/j.ijfoodmicro.2013.05.026

  6. Cardol P, Matagne RF, Remacle C (2002) Impact of mutations affecting ND mitochondria-encoded subunits on the activity and assembly of complex I in Chlamydomonas. Implication for the structural organization of the enzyme. J Mol Biol 319(5):1211–1221. https://doi.org/10.1016/s0022-2836(02)00407-2

  7. Cheng S, Shao X (2011) In vivo antifungal activities of the tea tree oil vapor against Botrytis cinerea. In: International Conference on New Technology of Agricultural Engineering, Zibo, 05/01 2011. p 949–951

  8. Conesa A, Terol J, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18):3674–3676. https://doi.org/10.1093/bioinformatics/bti610

  9. De Backer MD, Ilyina T, Ma XJ, Vandoninck S, Luyten WH, Vanden Bossche H (2001) Genomic profiling of the response of Candida albicans to itraconazole treatment using a DNA microarray. Antimicrob Agents Chemother 45(6):1660–1670. https://doi.org/10.1128/AAC.45.6.1660-1670.2001

  10. de Groot AC, Schmidt E (2016) Tea tree oil: contact allergy and chemical composition. Contact Dermatitis 75(3):129–143. https://doi.org/10.1111/cod.12591

  11. Dekker N, Speijer D, Grun CH, van den Berg M, de Haan A, Hochstenbach F (2004) Role of the α-glucanase Agn1p in fission-yeast cell separation. Mol Biol Cell 15(8):3903–3914. https://doi.org/10.1091/mbc.e04-04-0319

  12. Greenwillms NS, Fox TD, Costanzo MC (1998) Functional interactions between yeast mitochondrial ribosomes and mRNA 5′ untranslated leaders. Mol Cell Biol 18(4):1826–1834. https://doi.org/10.1128/mcb.18.4.1826

  13. Hammer KA, Carson CF, Riley TV, Nielsen JB (2006) A review of the toxicity of Melaleuca alternifolia (tea tree) oil. Food Chem Toxicol 44(5):616–625. https://doi.org/10.1016/j.fct.2005.09.001

  14. Haridas S, Wang Y, Lim L, Alamouti SM, Jackman S, Docking R, Robertson G, Birol I, Bohlmann J, Breuil C (2013) The genome and transcriptome of the pine saprophyte Ophiostoma piceae , and a comparison with the bark beetle-associated pine pathogen Grosmannia clavigera. BMC Genomics 14(1):373. https://doi.org/10.1186/1471-2164-14-373

  15. Heilmann CJ, Sorgo AG, Mohammadi S, Sosinska GJ, de Koster CG, Brul S, de Koning LJ, Klis FM (2013) Surface stress induces a conserved cell wall stress response in the pathogenic fungus Candida albicans. Eukaryot Cell 12(2):254–264. https://doi.org/10.1128/EC.00278-12

  16. Hirata D, Nakano K, Fukui M, Takenaka H, Miyakawa T, Mabuchi I (1998) Genes that cause aberrant cell morphology by overexpression in fission yeast: a role of a small GTP-binding protein Rho2 in cell morphogenesis. J Cell Sci 111(3):149–159. https://doi.org/10.1016/j.cyto.2011.12.008

  17. Hyldgaard M, Mygind T, Meyer RL (2012) Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Front Microbiol 3(12):12. https://doi.org/10.3389/fmicb.2012.00012

  18. Jian-Wu L, Jun L, He Z, Cong-Hua X (2011) Identification and transcriptional profiling of differentially expressed genes associated with resistance to Pseudoperonospora cubensis in cucumber. Plant Cell Rep 30(3):345–357. https://doi.org/10.1007/s00299-010-0959-9

  19. Jun T, Xiaoquan B, Hong Z, Jingsheng H, Yuxin C, Youwei W (2012) The mechanism of antifungal action of essential oil from dill (Anethum graveolens L.) on Aspergillus flavus. PLoS One 7(1):e30147. https://doi.org/10.1371/journal.pone.0030147

  20. Kelly MT, MacCallum DM, Clancy SD, Odds FC, Brown AJ, Butler G (2004) The Candida albicans CaACE2 gene affects morphogenesis, adherence and virulence. Mol Microbiol 53(3):969–983. https://doi.org/10.1111/j.1365-2958.2004.04185.x

  21. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14(4):R36. https://doi.org/10.1186/gb-2013-14-4-r36

  22. Koerber S, Santos AN, Tetens F, Küchenhoff A, Fischer B (1998) Increased expression of NADH-ubiquinone oxidoreductase chain 2 (ND2) in preimplantation rabbit embryos cultured with 20% oxygen concentration. Mol Reprod Dev 49(4):394–399. https://doi.org/10.1002/(SICI)1098-2795(199804)49:4<394::AID-MRD6>3.0.CO;2-I

  23. Legay G, Marouf E, Berger D, Neuhaus JM, Mauch-Mani B (2011) Identification of genes expressed during the compatible interaction of grapevine with Plasmopara viticola through suppression subtractive hybridization (SSH). Eur J Plant Pathol 129(2):281–301. https://doi.org/10.1007/s10658-010-9676-z

  24. Lewis AM, Matzdorf SS, Endres JL, Windham IH, Bayles KW, Rice KC (2015) Examination of the Staphylococcus aureus nitric oxide reductase (saNOR) reveals its contribution to modulating intracellular NO levels and cellular respiration. Mol Microbiol 96(3):651–669. https://doi.org/10.1111/mmi.12962

  25. Li Y, Shao X, Xu J, Wei Y, Xu F, Wang H (2017a) Effects and possible mechanism of tea tree oil against Botrytis cinerea and Penicillium expansum in vitro and in vivo test. Can J Microbiol 63(3):219–227. https://doi.org/10.1139/cjm-2016-0553

  26. Li Y, Shao X, Xu J, Wei Y, Xu F, Wang H (2017b) Tea tree oil exhibits antifungal activity against Botrytis cinerea by affecting mitochondria. Food Chem 234:62. https://doi.org/10.1016/j.foodchem.2017.04.172

  27. Lorena T, Tejada ML, Young PG (2002) The fission yeast ES2 homologue, Bis1, interacts with the Ish1 stress-responsive nuclear envelope protein. J Biol Chem 277(12):10562–10572. https://doi.org/10.1074/jbc.M110686200

  28. Molero G, Guillén MV, Martínez-Solano L, Gil C, Pla J, Nombela C, Sánchez-Pérez M, Diez-Orejas R (2010) The importance of the phagocytes' innate response in resolution of the infection induced by a low virulent Candida albicans mutant. Scand J Immunol 62(3):224–233. https://doi.org/10.1111/j.1365-3083.2005.01657.x

  29. Ouyang Q, Tao N, Jing G (2016) Transcriptional profiling analysis of Penicillium digitatum, the causal agent of citrus green mold, unravels an inhibited ergosterol biosynthesis pathway in response to citral. BMC Genomics 17(1):599. https://doi.org/10.1186/s12864-016-2943-4

  30. Oxelmark E, Marchini A, Malanchi I, Magherini F, Jaquet L, Hajibagheri MA, Blight KJ, Jauniaux JC, Tommasino M (2000) Mmf1p, a novel yeast mitochondrial protein conserved throughout evolution and involved in maintenance of the mitochondrial genome. Mol Cell Biol 20(20):7784–7797. https://doi.org/10.1128/MCB.20.20.7784-7797.2000

  31. Rabatinova A, Sanderova H, Jirat Matejckova J, Korelusova J, Sojka L, Barvik I, Papouskova V, Sklenar V, Zidek L, Krasny L (2013) The delta subunit of RNA polymerase is required for rapid changes in gene expression and competitive fitness of the cell. J Bacteriol 195(11):2603–2611. https://doi.org/10.1128/JB.00188-13

  32. Ren H, Wu X, Lyu Y, Zhou H, Xie X, Zhang X, Yang H (2017) Selection of reliable reference genes for gene expression studies in Botrytis cinerea. J Microbiol Methods 142:71. https://doi.org/10.1016/j.mimet.2017.09.006

  33. Rohm M, Lindemann E, Hiller E, Ermert D, Lemuth K, Trkulja D, Sogukpinar O, Brunner H, Rupp S, Urban CF, Sohn K (2013) A family of secreted pathogenesis-related proteins in Candida albicans. Mol Microbiol 87(1):132–151. https://doi.org/10.1111/mmi.12087

  34. Rosslenbroich HJ, Stuebler D (2000) Botrytis cinerea - history of chemical control and novel fungicides for its management. Crop Prot 19(8):557–561. https://doi.org/10.1016/S0261-2194(00)00072-7

  35. Saito S, Margosan D, Michailides TJ, Xiao CL (2016) Botrytis californica, a new cryptic species in the B. cinerea species complex causing gray mold in blueberries and table grapes. Mycologia 108(2):330–343. https://doi.org/10.3852/15-165

  36. Sakuradani E, Kobayashi M, Ashikari T, Shimizu S (1999) Identification of Delta12-fatty acid desaturase from arachidonic acid-producing mortierella fungus by heterologous expression in the yeast Saccharomyces cerevisiae and the fungus Aspergillus oryzae. Eur J Biochem 261:812–820. https://doi.org/10.1046/j.1432-1327.1999.00333.x

  37. Sara B (2004) Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 94(3):223–253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022

  38. Sawamura R, Ogura T, Esaki M (2014) A conserved α helix of Bcs1, a mitochondrial AAA chaperone, is required for the respiratory complex III maturation. Biochem Biophys Res Commun 443(3):997–1002. https://doi.org/10.1016/j.bbrc.2013.12.084

  39. Shao X, Cheng S, Wang H, Yu D, Mungai C (2013a) The possible mechanism of antifungal action of tea tree oil on Botrytis cinerea. J Appl Microbiol 114(6):1642–1649. https://doi.org/10.1111/jam.12193

  40. Shao X, Wang H, Xu F, Cheng S (2013b) Effects and possible mechanisms of tea tree oil vapor treatment on the main disease in postharvest strawberry fruit. Postharvest Biol Technol 77:94–101. https://doi.org/10.1016/j.postharvbio.2012.11.010

  41. Sharifi-Rad J, Salehi B, Varoni EM, Sharopov F, Yousaf Z, Ayatollahi SA, Kobarfard F, Sharifi-Rad M, Afdjei MH, Sharifi-Rad M (2017) Plants of the melaleuca genus as antimicrobial agents: from farm to pharmacy. Phytother Res 31(10):1475–1494. https://doi.org/10.1002/ptr.5880

  42. Souza ELD, Almeida ETDC, Guedes JPDS (2016) The potential of the incorporation of essential oils and their individual constituents to improve microbial safety in juices: a review. Compr Rev Food Sci Food Saf 15(4):753–772. https://doi.org/10.1111/1541-4337.12208

  43. Sun Q, Shang B, Wang L, Lu Z, Liu Y (2015) Cinnamaldehyde inhibits fungal growth and aflatoxin B1 biosynthesis by modulating the oxidative stress response of Aspergillus flavus. Appl Microbiol Biotechnol 100(3):1–10. https://doi.org/10.1007/s00253-015-7159-z

  44. Swords G, Hunter GLK (1978) Composition of Australian tea tree oil (Melaleuca alternifolia). J Agric Food Chem 26(3):734–737. https://doi.org/10.1021/jf60217a031

  45. Szczerbanik M, Jobling J, Morris S, Holford P (2007) Essential oil vapours control some common postharvest fungal pathogens. Aust J Exp Agric 47(1). https://doi.org/10.1071/ea05236

  46. Tao N, Ouyang Q, Lei J (2014) Citral inhibits mycelial growth of Penicillium italicum by a membrane damage mechanism. Food Control 41(2):116–121. https://doi.org/10.1016/j.foodcont.2014.01.010

  47. Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28(1):33–36. https://doi.org/10.1093/nar/28.1.33

  48. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28(5):511–515. https://doi.org/10.1038/nbt.1621

  49. Tzortzakis NG, Economakis CD (2007) Antifungal activity of lemongrass (Cympopogon citratus L.) essential oil against key postharvest pathogens. Innov Food Sci Emerg Technol 8(2):253–258. https://doi.org/10.1016/j.ifset.2007.01.002

  50. Vik A, Rine J (2001) Upc2p and Ecm22p, dual regulators of sterol biosynthesis in Saccharomyces cerevisiae. Mol Cell Biol 21(19):6395–6405. https://doi.org/10.1128/mcb.21.19.6395-6405.2001

  51. Wang T, Xiu J, Zhang Y, Wu J, Ma X, Wang Y, Guo G, Shang X (2017) Transcriptional responses of Candida albicans to antimicrobial peptide MAF-1A. Front Microbiol 8:894. https://doi.org/10.3389/fmicb.2017.00894

  52. Wang Y, Feng K, Yang H, Zhang Z, Yuan Y, Yue T (2018) Effect of cinnamaldehyde and citral combination on transcriptional profile, growth, oxidative damage and patulin biosynthesis of Penicillium expansum. Front Microbiol 9:597. https://doi.org/10.3389/fmicb.2018.00597

  53. Wu XZ, Cheng AX, Sun LM, Sun SJ, Lou HX (2009) Plagiochin E, an antifungal bis(bibenzyl), exerts its antifungal activity through mitochondrial dysfunction-induced reactive oxygen species accumulation in Candida albicans. BBA Gen Subjects 1790(8):770–777. https://doi.org/10.1016/j.bbagen.2009.05.002

  54. Wu C, Zhang J, Wang M, Du G, Chen J (2012) Lactobacillus casei combats acid stress by maintaining cell membrane functionality. J Ind Microbiol Biotechnol 39:1031–1039. https://doi.org/10.1007/s10295-012-1104-2

  55. Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li C-Y, Wei L (2011) KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 39(suppl_2):W316–W322. https://doi.org/10.1093/nar/gkr483

  56. Xing F, Hua H, Selvaraj JN, Zhao Y, Lu Z, Xiao L, Yang L (2014) Growth inhibition and morphological alterations of Fusarium verticillioides by cinnamon oil and cinnamaldehyde. Food Control 46:343–350. https://doi.org/10.1016/j.foodcont.2014.04.037

  57. Xu J, Shao X, Li Y, Wei Y, Xu F, Wang H (2017a) Metabolomic analysis and mode of action of metabolites of tea tree oil involved in the suppression of Botrytis cinerea. Front Microbiol 8:1017. https://doi.org/10.3389/fmicb.2017.01017

  58. Xu J, Shao X, Wei Y, Feng X, Wang H (2017b) iTRAQ proteomic analysis reveals that metabolic pathways involving energy metabolism are affected by tea tree oil in Botrytis cinerea. Front Microbiol 8:1989. https://doi.org/10.3389/fmicb.2017.01989

  59. Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11(2):R14. https://doi.org/10.1186/gb-2010-11-2-r14

  60. Yu D, Wang J, Shao X, Xu F, Wang H (2015) Antifungal modes of action of tea tree oil and its two characteristic components against Botrytis cinerea. J Appl Microbiol 119(5):1253–1262. https://doi.org/10.1111/jam.12939

  61. Zhang X, Lester RL, Dickson RC (2004) Pil1p and Lsp1p negatively regulate the 3-phosphoinositide-dependent protein kinase-like kinase Pkh1p and downstream signaling pathways Pkc1p and Ypk1p. J Biol Chem 279(21):22030–22038. https://doi.org/10.1074/jbc.M400299200

  62. Zheng S, Jing G, Wang X, Ouyang Q, Jia L, Tao N (2015) Citral exerts its antifungal activity against Penicillium digitatum by affecting the mitochondrial morphology and function. Food Chem 178:76–81. https://doi.org/10.1016/j.foodchem.2015.01.077

  63. Zhou T, Wang X, Ye B, Shi L, Bai X, Lai T (2018) Effects of essential oil decanal on growth and transcriptome of the postharvest fungal pathogen Penicillium expansum. Postharvest Biol Technol 145:203–212. https://doi.org/10.1016/j.postharvbio.2018.07.015

Download references

Acknowledgments

This study was funded by the National Key R&D Program of China (No. 2018YFD0401304), the National Science Foundation of China (No. 31371860), and General Research Project of Education of Zhejiang Province of China (No. Y201941026).

Author information

Correspondence to Xingfeng Shao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain studies with human participants or animals by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 635 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Shao, X., Wei, Y. et al. Transcriptome analysis of Botrytis cinerea in response to tea tree oil and its two characteristic components. Appl Microbiol Biotechnol 104, 2163–2178 (2020). https://doi.org/10.1007/s00253-020-10382-9

Download citation

Keywords

  • Transcriptomics
  • Tea tree oil
  • Botrytis cinerea
  • 1,8-Cineole
  • Terpinen-4-ol