Applied Microbiology and Biotechnology

, Volume 104, Issue 3, pp 1187–1199 | Cite as

Engineered bacterial biofloc formation enhancing phenol removal and cell tolerance

  • Xiao Jia
  • Shun Zhang
  • Jiawei Li
  • Juan Xia
  • Ruilian Yao
  • Xinqing Zhao
  • Bing Wu
  • Fengwu Bai
  • Yi XiaoEmail author
Applied genetics and molecular biotechnology


A microbial floc consisting of a community of microbes embedded in extracellular polymeric substances matrix can provide microbial resistances to toxic chemicals and harsh environments. Phenol is a toxic environmental pollutant and a typical lignin-derived phenolic inhibitor. In this study, we genetically engineered Escherichia coli cells by expressions of diguanylate cyclases (DGCs) to promote proteinaceous and aliphatic biofloc formation. Compared with the planktonic E. coli cells, the biofloc-forming cells improved phenol removal rate by up to 2.2-folds, due to their substantially improved tolerance (up to 149%) to phenol and slightly enhanced cellular activity (20%) of phenol hydroxylase (PheH). The engineered bioflocs also improved E. coli tolerance to other toxic compounds such as furfural, 5-hydroxymethylfurfural, and guaiacol. Additionally, the strategy of the engineered biofloc formation was applicable to Pseudomonas putida and enhanced its tolerance to phenol. This study highlights a strategy to form engineered bioflocs for improved cell tolerance and removal of toxic compounds, enabling their universality of use in bioproduction and bioremediation.


Engineered bioflocs Diguanylate cyclase Phenol removal Guaiacol Enhanced tolerance 



We thank Prof. Ningyi Zhou (Shanghai Jiaotong University, China) for his helpful suggestions and Prof. Luying Xun (Shandong University, China) and Prof. Rubing Liang (Shanghai Jiaotong University, China) for E. coli BL21(DE3)-groELS and P. putida KT2440, respectively.

Funding information

This work was sponsored by the National Key R&D Program of China (2018YFA0901200), Science and Technology Commission of Shanghai Municipality (18JC1413600), and Natural Science Foundation of Shanghai (18ZR1420500). This work was also funded in part by Open Project Program of CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), LMM and LAMB, SCSIO, CAS (Grant No. 2018011010).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2019_10289_MOESM1_ESM.pdf (390 kb)
ESM 1 (PDF 389 kb)


  1. Aparicio T, de Lorenzo V, Martinez-Garcia E (2018) CRISPR/Cas9-based Counterselection boosts recombineering efficiency in Pseudomonas putida. Biotechnol J 13(5):e1700161. CrossRefPubMedGoogle Scholar
  2. Arora PK, Bae H (2014) Bacterial degradation of chlorophenols and their derivatives. Microb Cell Factories 13(1):31. CrossRefGoogle Scholar
  3. Beloin C, Roux A, Ghigo JM (2008) Escherichia coli biofilms. Curr Top Microbiol Immunol 322:249–289PubMedPubMedCentralGoogle Scholar
  4. Benedetti I, de Lorenzo V, Nikel PI (2016) Genetic programming of catalytic Pseudomonas putida biofilms for boosting biodegradation of haloalkanes. Metab Eng 33:109–118. CrossRefPubMedGoogle Scholar
  5. De N, Pirruccello M, Krasteva PV, Bae N, Raghavan RV, Sondermann H (2008) Phosphorylation-independent regulation of the diguanylate cyclase WspR. PLoS Biol 6(3):e67. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS One 3(11):e3647. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Farhadian M, Duchez D, Vachelard C, Larroche C (2008) Monoaromatics removal from polluted water through bioreactors-a review. Water Res 42(6–7):1325–1341. CrossRefPubMedGoogle Scholar
  8. Groning JA, Eulberg D, Tischler D, Kaschabek SR, Schlomann M (2014) Gene redundancy of two-component (chloro)phenol hydroxylases in Rhodococcus opacus 1CP. FEMS Microbiol Lett 361(1):68–75. CrossRefPubMedGoogle Scholar
  9. Gu H, Zhang J, Bao J (2015) High tolerance and physiological mechanism of Zymomonas mobilis to phenolic inhibitors in ethanol fermentation of corncob residue. Biotechnol Bioeng 112(9):1770–1782. CrossRefPubMedGoogle Scholar
  10. Guvener ZT, Harwood CS (2007) Subcellular location characteristics of the Pseudomonas aeruginosa GGDEF protein, WspR, indicate that it produces cyclic-di-GMP in response to growth on surfaces. Mol Microbiol 66(6):1459–1473. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Ha DG, O'Toole GA (2015) c-di-GMP and its effects on biofilm formation and dispersion: a Pseudomonas Aeruginosa review. Microbiol Spectr 3(2):MB-0003-2014. CrossRefPubMedGoogle Scholar
  12. Hickman JW, Harwood CS (2008) Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol Microbiol 69(2):376–389. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hickman JW, Tifrea DF, Harwood CS (2005) A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Natl Acad Sci U S A 102(40):14422–14427. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Ibraheem O, Ndimba BK (2013) Molecular adaptation mechanisms employed by ethanologenic bacteria in response to lignocellulose-derived inhibitory compounds. Int J Biol Sci 9(6):598–612. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Irankhah S, Abdi Ali A, Reza Soudi M, Gharavi S, Ayati B (2018) Highly efficient phenol degradation in a batch moving bed biofilm reactor: benefiting from biofilm-enhancing bacteria. World J Microbiol Biotechnol 34(11):164–113. CrossRefPubMedGoogle Scholar
  16. Jenal U, Reinders A, Lori C (2017) Cyclic di-GMP: second messenger extraordinaire. Nat Rev Microbiol 15(5):271–284. CrossRefPubMedGoogle Scholar
  17. Jones-Burrage SE, Kremer TA, McKinlay JB (2019) Cell aggregation and aerobic respiration are important for Zymomonas mobilis ZM4 survival in an aerobic minimal medium. Appl Environ Microbiol 85(10).
  18. Jonsson LJ, Alriksson B, Nilvebrant NO (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6(1):16. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kirchner U, Westphal AH, Muller R, van Berkel WJ (2003) Phenol hydroxylase from Bacillus thermoglucosidasius A7, a two-protein component monooxygenase with a dual role for FAD. J Biol Chem 278(48):47545–47553. CrossRefPubMedGoogle Scholar
  20. Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66(1):10–26. CrossRefPubMedGoogle Scholar
  21. Kulasakara H, Lee V, Brencic A, Liberati N, Urbach J, Miyata S, Lee DG, Neely AN, Hyodo M, Hayakawa Y, Ausubel FM, Lory S (2006) Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3′-5′)-cyclic-GMP in virulence. Proc Natl Acad Sci U S A 103(8):2839–2844. CrossRefPubMedGoogle Scholar
  22. Lee K, Yoon SS (2017) Pseudomonas aeruginosa biofilm, a programmed bacterial life for fitness. J Microbiol Biotechnol 27(6):1053–1064. CrossRefPubMedGoogle Scholar
  23. Lee TS, Krupa RA, Zhang F, Hajimorad M, Holtz WJ, Prasad N, Lee SK, Keasling JD (2011) BglBrick vectors and datasheets: a synthetic biology platform for gene expression. J Biol Eng 5:12. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Li Q, Zhao XQ, Chang AK, Zhang QM, Bai FW (2012) Ethanol-induced yeast flocculation directed by the promoter of TPS1 encoding trehalose-6-phosphate synthase 1 for efficient ethanol production. Metab Eng 14(1):1–8. CrossRefPubMedGoogle Scholar
  25. Morgan JL, McNamara JT, Zimmer J (2014) Mechanism of activation of bacterial cellulose synthase by cyclic di-GMP. Nat Struct Mol Biol 21(5):489–496. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Nicastro GG, Kaihami GH, Pereira TO, Meireles DA, Groleau MC, Deziel E, Baldini RL (2014) Cyclic-di-GMP levels affect Pseudomonas aeruginosa fitness in the presence of imipenem. Environ Microbiol 16(5):1321–1333. CrossRefPubMedGoogle Scholar
  27. Ojima Y, Azuma M, Taya M (2018) Inducing flocculation of non-floc-forming Escherichia coli cells. World J Microbiol Biotechnol 34(12):185–188. CrossRefPubMedGoogle Scholar
  28. Ojima Y, Nguyen MH, Yajima R, Taya M (2015) Flocculation of Escherichia coli cells in association with enhanced production of outer membrane vesicles. Appl Environ Microbiol 81(17):5900–5906. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Pontrelli S, Chiu TY, Lan EI, Chen FY, Chang P, Liao JC (2018) Escherichia coli as a host for metabolic engineering. Metab Eng. CrossRefGoogle Scholar
  30. Saa L, Jaureguibeitia A, Largo E, Llama MJ, Serra JL (2010) Cloning, purification and characterization of two components of phenol hydroxylase from Rhodococcus erythropolis UPV-1. Appl Microbiol Biotechnol 86(1):201–211. CrossRefPubMedGoogle Scholar
  31. Sharma G, Sharma S, Sharma P, Chandola D, Dang S, Gupta S, Gabrani R (2016) Escherichia coli biofilm: development and therapeutic strategies. J Appl Microbiol 121(2):309–319. CrossRefPubMedGoogle Scholar
  32. Singh R, Paul D, Jain RK (2006) Biofilms: implications in bioremediation. Trends Microbiol 14(9):389–397. CrossRefPubMedGoogle Scholar
  33. Spurbeck RR, Tarrien RJ, Mobley HL (2012) Enzymatically active and inactive phosphodiesterases and diguanylate cyclases are involved in regulation of motility or sessility in Escherichia coli CFT073. MBio 3(5).
  34. Sureka K, Choi PH, Precit M, Delince M, Pensinger DA, Huynh TN, Jurado AR, Goo YA, Sadilek M, Iavarone AT, Sauer JD, Tong L, Woodward JJ (2014) The cyclic dinucleotide c-di-AMP is an allosteric regulator of metabolic enzyme function. Cell 158(6):1389–1401. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Szokol J, Rucka L, Simcikova M, Halada P, Nesvera J, Patek M (2014) Induction and carbon catabolite repression of phenol degradation genes in Rhodococcus erythropolis and Rhodococcus jostii. Appl Microbiol Biotechnol 98(19):8267–8279. CrossRefPubMedGoogle Scholar
  36. Todhanakasem T, Yodsanga S, Sowatad A, Kanokratana P, Thanonkeo P, Champreda V (2018) Inhibition analysis of inhibitors derived from lignocellulose pretreatment on the metabolic activity of Zymomonas mobilis biofilm and planktonic cells and the proteomic responses. Biotechnol Bioeng 115(1):70–81. CrossRefPubMedGoogle Scholar
  37. Tolker-Nielsen T (2015) Biofilm development. Microbiol Spectr 3(2):MB-0001-2014. CrossRefPubMedGoogle Scholar
  38. Valentini M, Filloux A (2016) Biofilms and cyclic di-GMP (c-di-GMP) signaling: lessons from Pseudomonas aeruginosa and other Bacteria. J Biol Chem 291(24):12547–12555. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Vedler E, Heinaru E, Jutkina J, Viggor S, Koressaar T, Remm M, Heinaru A (2013) Limnobacter spp. as newly detected phenol-degraders among Baltic Sea surface water bacteria characterised by comparative analysis of catabolic genes. Syst Appl Microbiol 36(8):525–532. CrossRefPubMedGoogle Scholar
  40. Wang B, Xu J, Gao J, Fu X, Han H, Li Z, Wang L, Tian Y, Peng R, Yao Q (2019) Construction of an Escherichia coli strain to degrade phenol completely with two modified metabolic modules. J Hazard Mater 373:29–38. CrossRefPubMedGoogle Scholar
  41. Wu Y, Ding Y, Cohen Y, Cao B (2015) Elevated level of the second messenger c-di-GMP in Comamonas testosteroni enhances biofilm formation and biofilm-based biodegradation of 3-chloroaniline. Appl Microbiol Biotechnol 99(4):1967–1976. CrossRefPubMedGoogle Scholar
  42. Xia J, Liu CG, Zhao XQ, Xiao Y, Xia XX, Bai FW (2018) Contribution of cellulose synthesis, formation of fibrils and their entanglement to the self-flocculation of Zymomonas mobilis. Biotechnol Bioeng 115(11):2714–2725. CrossRefPubMedGoogle Scholar
  43. Xue C, Zhao XQ, Bai FW (2010) Effect of the size of yeast flocs and zinc supplementation on continuous ethanol fermentation performance and metabolic flux distribution under very high concentration conditions. Biotechnol Bioeng 105(5):935–944. CrossRefPubMedGoogle Scholar
  44. Yoneda A, Henson WR, Goldner NK, Park KJ, Forsberg KJ, Kim SJ, Pesesky MW, Foston M, Dantas G, Moon TS (2016) Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcus opacus PD630. Nucleic Acids Res 44(5):2240–2254. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Zhao N, Bai Y, Liu CG, Zhao XQ, Xu JF, Bai FW (2014) Flocculating Zymomonas mobilis is a promising host to be engineered for fuel ethanol production from lignocellulosic biomass. Biotechnol J 9(3):362–371. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Faculty of Civil and Environmental EngineeringUniversity of IcelandReykjavikIceland

Personalised recommendations