Characterization of protein interaction surface on fatty acyl selectivity of starter condensation domain in lipopeptide biosynthesis

  • Wenjie Fan
  • Hao Liu
  • Panpan Liu
  • Xi Deng
  • Haifeng Chen
  • Qian LiuEmail author
  • Yan FengEmail author
Biotechnologically relevant enzymes and proteins


Lipopeptides are important non-ribosomal peptide synthetases (NRPSs) products with broad therapeutic potential in biotechnology and biopharmaceutical applications. Fatty acyl modifications in N-terminal of lipopeptides have attracted wide interest in the engineering processes of altered fatty acyl selectivity. In this study, we focused on the starter condensation domain of antibiotic A54145 (lptC1) and its indiscriminate selectivity of fatty acyl substrates, which results in multi-component products. Using in silico analysis, five site-directed mutations at protein–protein interface were identified with altered activity and selectivity towards wild type lptC1. The variants Y149W and A330T exhibited changed substrate selectivity to prefer longer branched chain fatty acyl substrate, while T16A and A350D showed improved selectivity for shorter linear chain fatty acyl substrates. Subsequently, molecular dynamics (MD) simulations were performed to analyze the impact of these residues on the changes of catalytic activity and conformation. Through in silico analysis, the altered binding free energy were coincident with the corresponding activity performance of the variants, and surface forces indicated that other factors or processes may influence the activity and selectivity. Moreover, the MD results revealed even altered active center conformations, implying the importance of these interface residues affected on distant active center thus reflected to catalysis activity. Based on the biochemistry and computational results, our work provides detailed insights from molecular and dynamics aspects into the role of C1’s interface residues during complex NRPS biosynthesis machinery, prompting further rational engineering for lipopeptide catalysis.


Nonribosomal peptide synthetase Condensation domain Protein–protein interaction Fatty acyl selectivity Lipopeptide biosynthesis Protein engineering 


Funding information

This work was financially supported by the Ministry of Science and Technology of China (2017YFE0103300), Natural Science Foundation of China (31600637) and National Key R&D Program of China (2018YFA0900400).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2019_10251_MOESM1_ESM.pdf (1.5 mb)
ESM 1 (PDF 1.45 mb)


  1. Alan T, Samel SA, Lars-Oliver E, Marahiel MA (2008) Crystal structure of the termination module of a nonribosomal peptide synthetase. Science 321(5889):659–663. CrossRefGoogle Scholar
  2. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22(2):195–201. CrossRefGoogle Scholar
  3. Baltz RH, Miao V, Wrigley SK (2005) Natural products to drugs: daptomycin and related lipopeptide antibiotics. Nat Prod Rep 22(6):717–741. CrossRefPubMedGoogle Scholar
  4. Belshaw PJ, Walsh CT, Stachelhaus T (1999) Aminoacyl-CoAs as probes of condensation domain selectivity in nonribosomal peptide synthesis. Science 284(5413):486–489. CrossRefPubMedGoogle Scholar
  5. Bloudoff K, Schmeing TM (2017) Structural and functional aspects of the nonribosomal peptide synthetase condensation domain superfamily: discovery, dissection and diversity. Biochim Biophys Acta Proteins Proteom 1865(11 Pt B):1587–1604. CrossRefPubMedGoogle Scholar
  6. Bloudoff K, Rodionov D, Schmeing TM (2013) Crystal structures of the first condensation domain of CDA synthetase suggest conformational changes during the synthetic cycle of nonribosomal peptide synthetases. J Mol Biol 425(17):3137–3150. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brown AS, Calcott MJ, Owen JG, Ackerley DF (2018) Structural, functional and evolutionary perspectives on effective re-engineering of non-ribosomal peptide synthetase assembly lines. Nat Prod Rep 35(11):1210–1228. CrossRefPubMedGoogle Scholar
  8. Chooi YH, Tang Y (2010) Adding the lipo to lipopeptides: do more with less. Chem Biol 17(8):791–793. CrossRefPubMedGoogle Scholar
  9. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092. CrossRefGoogle Scholar
  10. Drake EJ, Miller BR, Shi C, Tarrasch JT, Sundlov JA, Allen CL, Skiniotis G, Aldrich CC, Gulick AM (2016) Structures of two distinct conformations of holo-non-ribosomal peptide synthetases. Nature 529(7585):235–238. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Ehmann DE, Trauger JW, Stachelhaus T, Walsh CT (2000) Aminoacyl-SNACs as small-molecule substrates for the condensation domains of nonribosomal peptide synthetases. Chem Biol 7(10):765–772. CrossRefPubMedGoogle Scholar
  12. Goodrich AC, Meyers DJ, Frueh DP (2017) Molecular impact of covalent modifications on nonribosomal peptide synthetase carrier protein communication. J Biol Chem 292(24):10002–10013. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Izore T, Cryle MJ (2018) The many faces and important roles of protein-protein interactions during non-ribosomal peptide synthesis. Nat Prod Rep 35(11):1120–1139. CrossRefPubMedGoogle Scholar
  14. Jimenez-Oses G, Osuna S, Gao X, Sawaya MR, Gilson L, Collier SJ, Huisman GW, Yeates TO, Tang Y, Houk KN (2014) The role of distant mutations and allosteric regulation on LovD active site dynamics. Nat Chem Biol 10(6):431–436. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Keating TA, Marshall CG, Walsh CT, Keating AE (2002) The structure of VibH represents nonribosomal peptide synthetase condensation, cyclization and epimerization domains. Nat Struct Biol 9(7):522–526. CrossRefPubMedGoogle Scholar
  16. Kittila T, Mollo A, Charkoudian LK, Cryle MJ (2016) New structural data reveal the motion of carrier proteins in nonribosomal peptide synthesis. Angew Chem Int Ed Engl 55(34):9834–9840. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kraas FI, Helmetag V, Wittmann M, Strieker M, Marahiel MA (2010) Functional dissection of surfactin synthetase initiation module reveals insights into the mechanism of lipoinitiation. Chem Biol 17(8):872–880. CrossRefPubMedGoogle Scholar
  18. Kraas FI, Giessen TW, Marahiel MA (2012) Exploring the mechanism of lipid transfer during biosynthesis of the acidic lipopeptide antibiotic CDA. FEBS Lett 586(3):283–288. CrossRefPubMedGoogle Scholar
  19. Lai JR, Fischbach MA, Liu DR, Walsh CT (2006) Localized protein interaction surfaces on the EntB carrier protein revealed by combinatorial mutagenesis and selection. J Am Chem Soc 128(34):11002–11003. CrossRefPubMedGoogle Scholar
  20. Luo L, Kohli RM, Onishi M, Linne U, Marahiel MA, Walsh CT (2002) Timing of epimerization and condensation reactions in nonribosomal peptide assembly lines: kinetic analysis of phenylalanine activating elongation modules of tyrocidine synthetase B. Biochemistry 41(29):9184–9196. CrossRefPubMedGoogle Scholar
  21. Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11(8):3696–3713. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Marahiel MA (2016) A structural model for multimodular NRPS assembly lines. Nat Prod Rep 33(2):136–140. CrossRefPubMedGoogle Scholar
  23. Miller BR 3rd, McGee TD Jr, Swails JM, Homeyer N, Gohlke H, Roitberg AE (2012) an efficient program for end-state free energy calculations. J Chem Theory Comput 8(9):3314–3321. CrossRefPubMedGoogle Scholar
  24. Miller BR, Gulick AM (2016) Structural biology of nonribosomal peptide synthetases. Methods Mol Biol 1401:3–29. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Osuna S, Jiménez-Osés G, Noey EL, Houk KN (2015) Molecular dynamics explorations of active site structure in designed and evolved enzymes. Acc Chem Res 48(4):1080–1089. CrossRefPubMedGoogle Scholar
  26. Paul S, Ishida H, Nguyen LT, Liu Z, Vogel HJ (2017) Structural and dynamic characterization of a freestanding acyl carrier protein involved in the biosynthesis of cyclic lipopeptide antibiotics. Protein Sci 26(5):946–959. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Pfeifer BA, Admiraal SJ, Gramajo H, Cane DE, Khosla C (2001) Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli. Science 291(5509):1790–1792. CrossRefPubMedGoogle Scholar
  28. Pierce BG, Wiehe K, Hwang H, Kim BH, Vreven T, Weng Z (2014) ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics 30(12):1771–1773. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Rausch C, Hoof I, Weber T, Wohlleben W, Huson DH (2007) Phylogenetic analysis of condensation domains in NRPS sheds light on their functional evolution. BMC Evol Biol 7(1):78. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Roe DR, Cheatham TE 3rd (2013) PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9(7):3084–3095. CrossRefPubMedGoogle Scholar
  31. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23(3):327–341. CrossRefGoogle Scholar
  32. Salomon-Ferrer R, Case DA, Walker RC (2013) An overview of the Amber biomolecular simulation package. Wiley Interdiscip Rev Comput Mol Sci 3(2):198–210. CrossRefGoogle Scholar
  33. Samel SA, Schoenafinger G, Knappe TA, Marahiel MA, Essen LO (2007) Structural and functional insights into a peptide bond-forming bidomain from a nonribosomal peptide synthetase. Structure 15(7):781–792. CrossRefPubMedGoogle Scholar
  34. Stachelhaus T, Mootz HD, Bergendahl V, Marahiel MA (1998) Peptide bond formation in nonribosomal peptide biosynthesis catalytic role of the condensation domain. J Biol Chem 273(35):22773–22781. CrossRefPubMedGoogle Scholar
  35. Strieker M, Marahiel MA (2009) The structural diversity of acidic lipopeptide antibiotics. Chembiochem 10(4):607–616. CrossRefPubMedGoogle Scholar
  36. Sundlov JA, Shi C, Wilson DJ, Aldrich CC, Gulick AM (2012) Structural and functional investigation of the intermolecular interaction between NRPS adenylation and carrier protein domains. Chem Biol 19(2):188–198. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Weissman KJ (2015) The structural biology of biosynthetic megaenzymes. Nat Chem Biol 11(9):660–670. CrossRefPubMedGoogle Scholar
  38. Winn M, Fyans JK, Zhuo Y, Micklefield J (2016) Recent advances in engineering nonribosomal peptide assembly lines. Nat Prod Rep 33(2):317–347. CrossRefPubMedGoogle Scholar
  39. Wittmann M, Linne U, Pohlmann V, Marahiel MA (2008) Role of DptE and DptF in the lipidation reaction of daptomycin. FEBS J 275(21):5343–5354. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations