Advertisement

Exploration and genome mining of natural products from marine Streptomyces

  • Zhijie Yang
  • Jianqiao He
  • Xin Wei
  • Jianhua Ju
  • Junying MaEmail author
Mini-Review

Abstract

Marine Streptomyces sp. are an important source of bioactive compounds owing to their unique habitats and metabolic pathways. Whole-genome sequencing and bioinformatics analyses have shown that the potential of synthesizing secondary metabolites from marine-derived Streptomyces has been substantially underestimated. Genome mining is an integrated strategy used to discover natural products based on gene cluster sequences and biosynthetic pathways. Its emergence has greatly enhanced the discovery of natural compounds from marine Streptomyces, thereby yielding a large number of bioactive molecules with novel structures and potent activities. In this review, we briefly summarize the current applications of genome mining in marine Streptomyces, such as bioinformatics-based optimization of culture conditions, ribosome engineering, control of regulatory networks, heterologous expression of biosynthetic gene cluster, and combinatorial biosynthesis of natural compounds. Furthermore, we discuss the factors hindering the utilization of marine-derived natural products and conclude with the prospects for this technique.

Keywords

Marine microorganisms Streptomyces Genome mining Natural products 

Notes

Funding information

This study was supported by the National Natural Science Foundation of China (grants 31870046, 81425022, U1501223, and U1706206); National Natural Science Foundation of Guangdong Province (grant 2018A0303130005); and the Special Support program for Training High-Level Talents in Guangdong (grant 201528018).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical statement

This review does not include any studies with human participants or animals performed by any of the authors.

References

  1. Alvarez-Mico X, Jensen PR, Fenical W, Hughes CC (2013) Chlorizidine, a cytotoxic 5H-pyrrolo[2,1-a]isoindol-5-one-containing alkaloid from a marine Streptomyces sp. Org Lett 15(5):988–991.  https://doi.org/10.1021/ol303374e PubMedPubMedCentralCrossRefGoogle Scholar
  2. Bachmann BO, Ravel J (2009) Chapter 8. Methods for in silico prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence data. Meth Enzymol 458:181–217.  https://doi.org/10.1016/S0076-6879(09)04808-3CrossRefGoogle Scholar
  3. Beld J, Sonnenschein EC, Vickery CR, Noel JP, Burkart MD (2014) The phosphopantetheinyl transferases: catalysis of a post-translational modification crucial for life. Nat Prod Rep 31(1):61–108.  https://doi.org/10.1039/c3np70054b PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O'Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model Actinomycete Streptomyces coelicolor A3(2). Nature 417(6885):141–147.  https://doi.org/10.1038/417141a PubMedCrossRefGoogle Scholar
  5. Bento AP, Gaulton A, Hersey A, Bellis LJ, Chambers J, Davies M, Krüger FA, Light Y, Mak L, McGlinchey S, Nowotka M, Papadatos G, Santos R, Overington JP (2014) The ChEMBL bioactivity database: an update. Nucleic Acids Res 42:D1083–D1090.  https://doi.org/10.1093/nar/gkt1031 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Medema MH, Weber T (2019) antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 47(W1):W81–W87.  https://doi.org/10.1093/nar/gkz310 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bode HB, Bethe B, Hofs R, Zeeck A (2002) Big effects from small changes: possible ways to explore nature's chemical diversity. Chembiochem 3(7):619–627.  https://doi.org/10.1002/1439-7633(20020703)3:7<619::aid-cbic619>3.0.co;2-9PubMedCrossRefGoogle Scholar
  8. Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR (2019) Marine natural products. Nat Prod Rep 36(1):122–173.  https://doi.org/10.1039/c8np00092a PubMedCrossRefGoogle Scholar
  9. Carver TJ, Rutherford KM, Berriman M, Rajandream MA, Barrell BG, Parkhill J (2005) ACT: the Artemis comparison tool. Bioinformatics 21(16):3422–3423.  https://doi.org/10.1093/bioinformatics/bti553 PubMedCrossRefPubMedCentralGoogle Scholar
  10. Chavali AK, Rhee SY (2018) Bioinformatics tools for the identification of gene clusters that biosynthesize specialized metabolites. Brief Bioinformatics 19(5):1022–1034.  https://doi.org/10.1093/bib/bbx020 PubMedCentralCrossRefGoogle Scholar
  11. Conway KR, Boddy CN (2013) ClusterMine360: a database of microbial PKS/NRPS biosynthesis. Nucleic Acids Res 41:D402–D407.  https://doi.org/10.1093/nar/gks993 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Dai SW (2017) Construction and preliminary application of CRISPR/Cas9 genome editing systems in two rare Actinomycetes. Anhui University, China, DissertationGoogle Scholar
  13. Estevez MR, Myronovskyi M, Gummerlich N, Nadmid S, Luzhetskyy A (2018) Heterologous expression of the nybomycin gene cluster from the marine strain Streptomyces albus subsp chlorinus NRRL B-24108. Mar Drugs 16(11).  https://doi.org/10.3390/md16110435 PubMedCentralCrossRefGoogle Scholar
  14. Feng Z, Chen G, Zhang J, Zhu H, Yu X, Yin Y, Zhang X (2019) Characterization and complete genome analysis of the carbazomycin B-producing strain Streptomyces luteoverticillatus SZJ61. Curr Microbiol 76(9):982–987.  https://doi.org/10.1007/s00284-019-01711-x PubMedCrossRefPubMedCentralGoogle Scholar
  15. Finn RD, Clements J, Arndt W, Miller BL, Wheeler TJ, Schreiber F, Bateman A, Eddy SR (2015) HMMER web server: 2015 update. Nucleic Acids Res 43(W1):W30–W38.  https://doi.org/10.1093/nar/gkv397 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Flissi A, Dufresne Y, Michalik J, Tonon L, Janot S, Noé L, Jacques P, Leclère V, Pupin M (2016) Norine, the knowledgebase dedicated to non-ribosomal peptides, is now open to crowdsourcing. Nucleic Acids Res 44(4):D1113–D1118.  https://doi.org/10.1093/nar/gkv1143 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Genilloud O (2017) Actinomycetes: still a source of novel antibiotics. Nat Prod Rep 34(10):1203–1232.  https://doi.org/10.1039/c7np00026j PubMedCrossRefPubMedCentralGoogle Scholar
  18. Gui C, Yuan J, Mo X, Huang H, Zhang S, Gu YC, Ju J (2018) Cytotoxic anthracycline metabolites from a recombinant streptomyces. J Nat Prod 81(5):1278–1289.  https://doi.org/10.1021/acs.jnatprod.8b00212 PubMedCrossRefPubMedCentralGoogle Scholar
  19. Guo F, Xiang S, Li L, Wang B, Rajasarkka J, Grondahl-Yli-Hannuksela K, Ai G, Metsa-Ketela M, Yang K (2015) Targeted activation of silent natural product biosynthesis pathways by reporter-guided mutant selection. Metab Eng 28:134–142.  https://doi.org/10.1016/j.ymben.2014.12.006 PubMedCrossRefPubMedCentralGoogle Scholar
  20. Gwon HJ, Teruhiko I, Shigeaki H, Baik SH (2014) Identification of novel non-metal haloperoxidases from the marine metagenome. J Microbiol Biotechnol 24(6):835–842.  https://doi.org/10.4014/jmb.1310.10070 PubMedCrossRefPubMedCentralGoogle Scholar
  21. Hadjithomas M, Chen IMA, Chu K, Huang J, Ratner A, Palaniappan K, Andersen E, Markowitz V, Kyrpides NC, Ivanova NN (2017) IMG-ABC: new features for bacterial secondary metabolism analysis and targeted biosynthetic gene cluster discovery in thousands of microbial genomes. Nucleic Acids Res 45(D1):D560–D565.  https://doi.org/10.1093/nar/gkw1103 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Hassan HM, Boonlarppradab C, Fenical W (2016) Actinoquinolines a and B, anti-inflammatory quinoline alkaloids from a marine-derived Streptomyces sp., strain CNP975. J Antibiot 69(7):511–514.  https://doi.org/10.1038/ja.2016.56 PubMedCrossRefPubMedCentralGoogle Scholar
  23. Hastings J, de Matos P, Dekker A, Ennis M, Harsha B, Kale N, Muthukrishnan V, Owen G, Turner S, Williams M, Steinbeck C (2013) The ChEBI reference database and ontology for biologically relevant chemistry: enhancements for 2013. Nucleic Acids Res 41:D456–D463.  https://doi.org/10.1093/nar/gks1146 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Huang X, Yang Z, Xie Q, Zhang Z, Zhang H, Ma J (2019) Natural products for treating colorectal cancer: a mechanistic review. Biomed Pharmacother 117:109142.  https://doi.org/10.1016/j.biopha.2019.109142 CrossRefGoogle Scholar
  25. Ishikawa J, Hotta K (1999) FramePlot: a new implementation of the frame analysis for predicting protein-coding regions in bacterial DNA with a high G plus C content. FEMS Microbiol Lett 174(2):251–253.  https://doi.org/10.1111/j.1574-6968.1999.tb13576.x PubMedCrossRefGoogle Scholar
  26. Kaysser L, Bernhardt P, Nam S-J, Loesgen S, Ruby JG, Skewes-Cox P, Jensen PR, Fenical W, Moore BS (2012) Merochlorins A-D, cyclic meroterpenoid antibiotics biosynthesized in divergent pathways with vanadium-dependent chloroperoxidases. J Am Chem Soc 134(29):11988–11991.  https://doi.org/10.1021/ja305665f PubMedPubMedCentralCrossRefGoogle Scholar
  27. Kelly R, Kidd R (2015) ChemSpider - a tool for natural products research. Nat Prod Rep 32(8):1163–1164.  https://doi.org/10.1039/C5NP90022K
  28. Khaldi N, Seifuddin FT, Turner G, Haft D, Nierman WC, Wolfe KH, Fedorova ND (2010) SMURF: genomic mapping of fungal secondary metabolite clusters. Fungal Genet Biol 47(9):736–741.  https://doi.org/10.1016/j.fgb.2010.06.003 PubMedCrossRefGoogle Scholar
  29. Khater S, Gupta M, Agrawal P, Sain N, Prava J, Gupta P, Grover M, Kumar N, Mohanty D (2017) SBSPKSv2: structure-based sequence analysis of polyketide synthases and non-ribosomal peptide synthetases. Nucleic Acids Res 45(W1):W72–W79.  https://doi.org/10.1093/nar/gkx344 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Kim H, Yang I, Patil RS, Kang S, Lee J, Choi H, Kim M-S, Nam S-J, Kang H (2014) Anithiactins A-C, modified 2-Phenylthiazoles from a mudflat-derived Streptomyces sp. J Nat Prod 77(12):2716–2719.  https://doi.org/10.1021/np500558b PubMedCrossRefGoogle Scholar
  31. Kim J, Yi GS (2012) PKMiner: a database for exploring type II polyketide synthases. BMC Microbiol 12:169.  https://doi.org/10.1186/1471-2180-12-169 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Kokkotou K, Ioannou E, Nomikou M, Pitterl F, Vonaparti A, Siapi E, Zervou M, Roussis V (2014) An integrated approach using UHPLC-PDA-HRMS and 2D HSQC NMR for the metabolic profiling of the red alga Laurencia: dereplication and tracing of natural products. Phytochemistry 108:208–219.  https://doi.org/10.1016/j.phytochem.2014.10.007 PubMedCrossRefPubMedCentralGoogle Scholar
  33. Li L, Wei K, Liu X, Wu Y, Zheng G, Chen S, Jiang W, Lu Y (2019a) aMSGE: advanced multiplex site-specific genome engineering with orthogonal modular recombinases in Actinomycetes. Metab Eng 52(03):153–167.  https://doi.org/10.1016/j.ymben.2018.12.001 PubMedCrossRefPubMedCentralGoogle Scholar
  34. Li Q, Song Y, Qin X, Zhang X, Sun A, Ju J (2015) Identification of the biosynthetic gene cluster for the anti-infective desotamides and production of a new analogue in a heterologous host. J Nat Prod 78(4):944–948.  https://doi.org/10.1021/acs.jnatprod.5b00009 PubMedCrossRefPubMedCentralGoogle Scholar
  35. Li Y, Yu P, Li J, Tang Y, Bu Q, Mao X, Li Y (2019b) FadR1, a pathway-specific activator of fidaxomicin biosynthesis in Actinoplanes deccanensis Yp-1. Appl Microbiol Biotechnol 103(18):7583–7596.  https://doi.org/10.1007/s00253-019-09949-y PubMedCrossRefPubMedCentralGoogle Scholar
  36. Liu G, Chater KF, Chandra G, Niu G, Tan H (2013a) Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol Mol Biol Rev 77(1):112–143.  https://doi.org/10.1128/MMBR.00054-12 PubMedCrossRefPubMedCentralGoogle Scholar
  37. Liu Q, Liu Z, Sun C, Shao M, Ma J, Wei X, Zhang T, Li W, Ju J (2019a) Discovery and biosynthesis of atrovimycin, an antitubercular and antifungal cyclodepsipeptide featuring vicinal-dihydroxylated cinnamic acyl chain. Org Lett 21(8):2634–2638.  https://doi.org/10.1021/acs.orglett.9b00618 PubMedCrossRefGoogle Scholar
  38. Liu S, Wang W, Wang K, Zhang B, Li W, Shi J, Jiao R, Tan R, Ge H (2019b) Heterologous expression of a cryptic giant type I PKS gene cluster leads to the production of ansaseomycin. Org Lett 21(10):3785–3788.  https://doi.org/10.1021/acs.orglett.9b01237 PubMedCrossRefGoogle Scholar
  39. Liu Z, Zhao X, Bai F (2013b) Production of xylanase by an alkaline-tolerant marine-derived Streptomyces viridochromogenes strain and improvement by ribosome engineering. Appl Microbiol Biotechnol 97(10):4361–4368.  https://doi.org/10.1007/s00253-012-4290-y PubMedCrossRefGoogle Scholar
  40. Lopatniuk M, Myronovskyi M, Nottebrock A, Busche T, Kalinowski J, Ostash B, Fedorenko V, Luzhetskyy A (2019) Effect of "ribosome engineering" on the transcription level and production of S. albus indigenous secondary metabolites. Appl Microbiol Biotechnol 103(17):7097–7110.  https://doi.org/10.1007/s00253-019-10005-y PubMedCrossRefPubMedCentralGoogle Scholar
  41. Ma J, Huang H, Xie Y, Liu Z, Zhao J, Zhang C, Jia Y, Zhang Y, Zhang H, Zhang T, Ju J (2017) Biosynthesis of ilamycins featuring unusual building blocks and engineered production of enhanced anti-tuberculosis agents. Nat Commun 8(1):391.  https://doi.org/10.1038/s41467-017-00419-5
  42. Mahapatra GP, Raman S, Nayak S, Gouda S, Das G, Patra JK (2019) Metagenomics approaches in discovery and development of new bioactive compounds from marine Actinomycetes. Curr Microbiol:1–12.  https://doi.org/10.1007/s00284-019-01698-5
  43. Medema MH, Takano E, Breitling R (2013) Detecting sequence homology at the gene cluster level with MultiGeneBlast. Mol Biol Evol 30(5):1218–1223.  https://doi.org/10.1093/molbev/mst025 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Meng X, Wang W, Xie Z, Li P, Li Y, Guo Z, Lu Y, Yang J, Guan K, Lu Z, Tan H, Chen Y (2017) Neomycin biosynthesis is regulated positively by AfsA-g and NeoR in Streptomyces fradiae CGMCC 4.7387. Sci China Life Sci 60(9):980–991.  https://doi.org/10.1007/s11427-017-9120-8 PubMedCrossRefPubMedCentralGoogle Scholar
  45. Motohashi K, Toda T, Sue M, Furihata K, Shizuri Y, Matsuo Y, Kasai H, Shin-ya K, Takagi M, Izumikawa M, Horikawa Y, Seto H (2010) Isolation and structure elucidation of tumescenamides a and B, two peptides produced by Streptomyces tumescens YM23-260. J Antibiot 63(9):549–552.  https://doi.org/10.1038/ja.2010.73 PubMedCrossRefPubMedCentralGoogle Scholar
  46. Nakamura Y, Afendi FM, Parvin AK, Ono N, Tanaka K, Hirai Morita A, Sato T, Sugiura T, Altaf-Ul-Amin M, Kanaya S (2014) KNApSAcK metabolite activity database for retrieving the relationships between metabolites and biological activities. Plant Cell Physiol 55(1):e7.  https://doi.org/10.1093/pcp/pct176 PubMedCrossRefPubMedCentralGoogle Scholar
  47. Nam S-J, Kauffman CA, Paul LA, Jensen PR, Fenical W (2013) Actinoranone, a cytotoxic meroterpenoid of unprecedented structure from a marine adapted Streptomyces sp. Org Lett 15(21):5400–5403.  https://doi.org/10.1021/ol402080s PubMedPubMedCentralCrossRefGoogle Scholar
  48. Ningthoujam SS, Talukdar AD, Potsangbam KS, Choudhury MD (2012) Challenges in developing medicinal plant databases for sharing ethnopharmacological knowledge. J Ethnopharmacol 141(1):9–32.  https://doi.org/10.1016/j.jep.2012.02.042 PubMedCrossRefPubMedCentralGoogle Scholar
  49. Ochi K, Hosaka T (2013) New strategies for drug discovery: activation of silent or weakly expressed microbial gene clusters. Appl Microbiol Biotechnol 97(1):87–98.  https://doi.org/10.1007/s00253-012-4551-9 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Onaka H (2017) Novel antibiotic screening methods to awaken silent or cryptic secondary metabolic pathways in Actinomycetes. J Antibiot 70(8):865–870.  https://doi.org/10.1038/ja.2017.51 PubMedCrossRefGoogle Scholar
  51. Poli A, Finore I, Romano I, Gioiello A, Lama L, Nicolaus B (2017) Microbial diversity in extreme marine habitats and their biomolecules. Microorganisms 5(2).  https://doi.org/10.3390/microorganisms5020025
  52. Prieto C, García-Estrada C, Lorenzana D, Martín JF (2012) NRPSsp: non-ribosomal peptide synthase substrate predictor. Bioinformatics 28(3):426–427.  https://doi.org/10.1093/bioinformatics/btr659 PubMedCrossRefGoogle Scholar
  53. Raju R, Piggott AM, Barrientos Diaz LX, Khalil Z, Capon RJ (2010) Heronapyrroles A-C: farnesylated 2-nitropyrroles from an Australian marine-derived Streptomyces sp. Org Lett 12(22):5158–5161.  https://doi.org/10.1021/ol102162d PubMedCrossRefGoogle Scholar
  54. Reddy BV, Milshteyn A, Charlop-Powers Z, Brady SF (2014) eSNaPD: a versatile, web-based bioinformatics platform for surveying and mining natural product biosynthetic diversity from metagenomes. Chem Biol 21(8):1023–1033.  https://doi.org/10.1016/j.chembiol.2014.06.007 CrossRefGoogle Scholar
  55. Rodríguez H, Rico S, Díaz M, Santamaría RI (2013) Two-component systems in Streptomyces: key regulators of antibiotic complex pathways. Microb Cell Factories 12:127–110.  https://doi.org/10.1186/1475-2859-12-127 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Romero D, Traxler MF, Lopez D, Kolter R (2011) Antibiotics as signal molecules. Chem Rev 111(9):5492–5505.  https://doi.org/10.1021/cr2000509 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Ryu M-J, Hwang S, Kim S, Yang I, Oh D-C, Nam S-J, Fenical W (2019) Meroindenon and merochlorins E and F, antibacterial meroterpenoids from a marine-derived sediment bacterium of the genus Streptomyces. Org Lett 21(15):5779–5783.  https://doi.org/10.1021/acs.orglett.9b01440 PubMedCrossRefPubMedCentralGoogle Scholar
  58. Saha S, Zhang W, Zhang G, Zhu Y, Chen Y, Liu W, Yuan C, Zhang Q, Zhang H, Zhang L, Zhang W, Zhang C (2017) Activation and characterization of a cryptic gene cluster reveals a cyclization cascade for polycyclic tetramate macrolactams. Chem Sci 8(2):1607–1612.  https://doi.org/10.1039/c6sc03875a PubMedCrossRefPubMedCentralGoogle Scholar
  59. Sardar D, Schmidt EW (2016) Combinatorial biosynthesis of RiPPs: docking with marine life. Curr Opin Chem Biol 31:15–21.  https://doi.org/10.1016/j.cbpa.2015.11.016 PubMedCrossRefPubMedCentralGoogle Scholar
  60. Sekurova ON, Perez-Victoria I, Martin J, Degnes KF, Sletta H, Reyes F, Zotchev SB (2016) New deferoxamine glycoconjugates produced upon overexpression of pathway-specific regulatory gene in the marine sponge-derived Streptomyces albus PVA94–07. Molecules 21(9).  https://doi.org/10.3390/molecules21091131, New Deferoxamine Glycoconjugates Produced upon Overexpression of Pathway-Specific Regulatory Gene in the Marine Sponge-Derived Streptomyces albus PVA94-07PubMedCentralCrossRefGoogle Scholar
  61. Shen J, Fan Y, Zhu G, Chen H, Zhu W, Fu P (2019) Polycyclic macrolactams generated via intramolecular Diels-Alder reactions from an Antarctic Streptomyces species. Org Lett 21(12):4816–4820.  https://doi.org/10.1021/acs.orglett.9b01710 PubMedCrossRefPubMedCentralGoogle Scholar
  62. Shi J, Liu C, Zhang B, Guo W, Zhu J, Chang C, Zhao E, Jiao R, Tan R, Ge H (2019a) Genome mining and biosynthesis of kitacinnamycins as a STING activator. Chem Sci 10(18):4839–4846.  https://doi.org/10.1039/c9sc00815b PubMedPubMedCentralCrossRefGoogle Scholar
  63. Shi J, Zeng Y, Zhang B, Shao F, Chen YC, Xu X, Sun Y, Xu Q, Tan R, Ge H (2019b) Comparative genome mining and heterologous expression of an orphan NRPS gene cluster direct the production of ashimides. Chem Sci 10(10):3042–3048.  https://doi.org/10.1039/c8sc05670f PubMedPubMedCentralCrossRefGoogle Scholar
  64. Skinnider MA, Merwin NJ, Johnston CW, Magarvey NA (2017) PRISM 3: expanded prediction of natural product chemical structures from microbial genomes. Nucleic Acids Res 45(W1):W49–W54.  https://doi.org/10.1093/nar/gkx320 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Sproule A, Correa H, Decken A, Haltli B, Berrué F, Overy DP, Kerr RG (2019) Terrosamycins a and B, bioactive polyether ionophores from Streptomyces sp. RKND004 from Prince Edward Island sediment. Mar drugs 17(6).  https://doi.org/10.3390/md17060347 PubMedCentralCrossRefGoogle Scholar
  66. Sun C, Yang Z, Zhang C, Liu Z, He J, Liu Q, Zhang T, Ju J, Ma J (2019) Genome mining of Streptomyces atratus SCSIO ZH16: discovery of atratumycin and identification of its biosynthetic gene cluster. Org Lett 21(5):1453–1457.  https://doi.org/10.1021/acs.orglett.9b00208 PubMedCrossRefPubMedCentralGoogle Scholar
  67. Sung AA, Gromek SM, Balunas MJ (2017) Upregulation and identification of antibiotic activity of a marine-derived Streptomyces sp via co-cultures with human pathogens Mar Drugs:15(8).  https://doi.org/10.3390/md15080250 PubMedCentralCrossRefGoogle Scholar
  68. Tanaka Y, Kasahara K, Hirose Y, Murakami K, Kugimiya R, Ochi K (2013) Activation and products of the cryptic secondary metabolite biosynthetic gene clusters by rifampin resistance (rpoB) mutations in actinomycetes. J Bacteriol 195(13):2959–2970.  https://doi.org/10.1128/JB.00147-13 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Tawfike AF, Viegelmann C, Edrada-Ebel R (2013) Metabolomics and dereplication strategies in natural products. Methods Mol Biol 1055:227–244.  https://doi.org/10.1007/978-1-62703-577-4_17 Google Scholar
  70. Waksman SA, Woodruff HB (1941) Actinomyces antibioticus, a new soil organism antagonistic to pathogenic and non-pathogenic bacteria. J Bacteriol 42(2):231–249Google Scholar
  71. Wang B, Guo F, Dong S, Zhao H (2019) Activation of silent biosynthetic gene clusters using transcription factor decoys. Nat Chem Biol 15(2):111–114.  https://doi.org/10.1038/s41589-018-0187-0 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Wang Y, Bryant SH, Cheng T, Wang J, Gindulyte A, Shoemaker BA, Thiessen PA, He S, Zhang J (2017) PubChem BioAssay: 2017 update. Nucleic Acids Res 45:D955–D963.  https://doi.org/10.1093/nar/gkw1118 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Whittle M, Willett P, Klaffke W, van Noort P (2003) Evaluation of similarity measures for searching the dictionary of natural products database. J Chem Inf Comput Sci 43(2):449–457.  https://doi.org/10.1021/ci025591m PubMedCrossRefGoogle Scholar
  74. Xie Q, Yang Z, Huang X, Zhang Z, Li J, Ju J, Zhang H, Ma J (2019) Ilamycin C induces apoptosis and inhibits migration and invasion in triple-negative breast cancer by suppressing IL-6/STAT3 pathway. J Hematol Oncol 12(1):60.  https://doi.org/10.1186/s13045-019-0744-3
  75. Xiong Z, Wang Y (2012) Draft genome sequence of marine-derived Streptomyces sp strain AA0539, isolated from the yellow sea, China. J Bacteriol 194(23):6622–6623.  https://doi.org/10.1128/jb.01646-12 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Xu F, Wu Y, Zhang C, Davis KM, Moon K, Bushin LB, Seyedsayamdost MR (2019b) A genetics-free method for high-throughput discovery of cryptic microbial metabolites. Nat Chem Biol 15(2):161–168.  https://doi.org/10.1038/s41589-018-0193-2 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Xu N, Wei L, Liu J (2019a) Recent advances in the applications of promoter engineering for the optimization of metabolite biosynthesis. World J Microbiol Biotechnol 35(2):33–10.  https://doi.org/10.1007/s11274-019-2606-0
  78. Yang C, Huang C, Zhang W, Zhu Y, Zhang C (2015) Heterologous expression of fluostatin gene cluster leads to a bioactive heterodimer. Org Lett 17(21):5324–5327.  https://doi.org/10.1021/acs.orglett.5b02683 PubMedCrossRefPubMedCentralGoogle Scholar
  79. Yim G, Wang HH, Davies J (2007) Antibiotics as signalling molecules. Philos Trans R Soc Lond Biol Sci 362(1483):1195–1200.  https://doi.org/10.1098/rstb.2007.2044 CrossRefGoogle Scholar
  80. Yu M, Li Y, Banakar SP, Liu L, Shao C, Li Z, Wang C (2019) New metabolites from the co-culture of marine-derived actinomycete Streptomyces rochei MB037 and fungus Rhinocladiella similis 35. Front Microbiol 10:915.  https://doi.org/10.3389/fmicb.2019.00915
  81. Zhang B, Tang W, Wang S, Yan X, Jia X, Pierens GK, Chen W, Ma H, Deng Z, Qu X (2017d) Activation of natural products biosynthetic pathways via a protein modification level regulation. ACS Chem Biol 12(7):1732–1736.  https://doi.org/10.1021/acschembio.7b00225 PubMedCrossRefPubMedCentralGoogle Scholar
  82. Zhang W, Che Q, Tan H, Qi X, Li J, Li D, Gu Q, Zhu T, Liu M (2017a) Marine Streptomyces sp. derived antimycin analogues suppress HeLa cells via depletion HPV E6/E7 mediated by ROS-dependent ubiquitin-proteasome system. Sci rep 7:42180.  https://doi.org/10.1038/srep42180
  83. Zhang X, Chen L, Chai W, Lian X-Y, Zhang Z (2017b) A unique indolizinium alkaloid streptopertusacin a and bioactive bafilomycins from marine-derived Streptomyces sp HZP-2216E. Phytochemistry 144:119–126.  https://doi.org/10.1016/j.phytochem.2017.09.010 PubMedCrossRefPubMedCentralGoogle Scholar
  84. Zhang Y, Huang H, Xu S, Wang B, Ju J, Tan H, Li W (2015) Activation and enhancement of fredericamycin a production in deepsea-derived Streptomyces somaliensis SCSIO ZH66 by using ribosome engineering and response surface methodology. Microb Cell Factories 14:64.  https://doi.org/10.1186/s12934-015-0244-2
  85. Zhang Y, Liu B, Zheng X, Huang X, Li H, Zhang Y, Zhang T, Sun D, Lin B, Zhou G (2017c) Anandins a and B, two rare steroidal alkaloids from a marine Streptomyces anandii H41-59. Mar Drugs 15(11).  https://doi.org/10.3390/md15110355 PubMedCentralCrossRefGoogle Scholar
  86. Zhou J, He H, Wang X, Lu J, Zhou X, Cai M, Zhang Y (2015a) Optimization of nutrients for dinactin production by a marine Streptomyces sp from the high latitude Arctic. Biotechnol Bioproc E 20(4):725–732.  https://doi.org/10.1007/s12257-015-0050-z CrossRefGoogle Scholar
  87. Zhou Z, Xu Q, Bu Q, Guo Y, Liu S, Liu Y, Du Y, Li Y (2015b) Genome mining-directed activation of a silent angucycline biosynthetic gene cluster in Streptomyces chattanoogensis. Chembiochem 16(3):496–502.  https://doi.org/10.1002/cbic.201402577 PubMedCrossRefPubMedCentralGoogle Scholar
  88. Zhu S, Duan Y, Huang Y (2019) The application of ribosome engineering to natural product discovery and yield improvement in Streptomyces. Antibiotics (Basel) 8(3).  https://doi.org/10.3390/antibiotics8030133 PubMedCentralCrossRefGoogle Scholar
  89. Ziemert N, Podell S, Penn K, Badger JH, Allen E, Jensen PR (2012) The natural product domain seeker NaPDoS: a phylogeny based bioinformatic tool to classify secondary metabolite gene diversity. PLoS One 7(3):e34064.  https://doi.org/10.1371/journal.pone.0034064 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations