Applied Microbiology and Biotechnology

, Volume 103, Issue 23–24, pp 9607–9618 | Cite as

Obtaining an Ent35-MccV derivative with mutated hinge region that exhibits increased activity against Listeria monocytogenes and Escherichia coli

  • S. A. Navarro
  • L. Lanza
  • N. S. Ríos Colombo
  • M. Fernandez de Ullivarri
  • L. Acuña
  • B. Sosa-Padilla
  • G. Picariello
  • A. Bellomio
  • Miriam C. ChalónEmail author
Applied genetics and molecular biotechnology


The present paper describes the generation of derivatives from the hybrid peptide called Ent35-MccV, active against Gram-positive and Gram-negative bacteria. This peptide has a triple glycine hinge region between enterocin CRL35 and microcin V. In order to obtain variants of Ent35-MccV with greater biotechnological potential, a saturation mutagenesis was carried out in the hinge region. As a result, we obtained a bank of E. coli strains expressing different mutated hybrid bacteriocins in the central position of the hinge region. From all these variants, we found that the one bearing a tyrosine in the central region of the hinge (Ent35-GYG-MccV) is 2-fold more active against E. coli and 4-fold more active against Listeria than the original peptide Ent35-MccV. This derivative was purified and characterized. The development and evaluation of alternative hinges for Ent35-MccV represents a step forward in the bioengineering of antimicrobial peptides. This approach fosters the rational design of peptides with enhanced antimicrobial activity.




Funding information

This study was funded by grants PICT 4610 from the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), PIP 06906 CO from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and PIUNT D641/1 from the Secretaría de Ciencia, Arte e Innovación Tecnológica (SCAIT) from Universidad Nacional de Tucumán (UNT). S.A.N, L.L, N.S.R.C, M.F.U, are recipients of CONICET fellowship. S.A.N has received an ANPCyT fellowship. L.A, A.B and M.C.CH are career investigators of CONICET. B.S.P is CPA form CONICET.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2019_10187_MOESM1_ESM.pdf (378 kb)
ESM 1 (PDF 377 kb)


  1. Acuña L, Corbalan NS, Fernandez-No IC, Morero RD, Barros-Velazquez J, Bellomio A (2015) Inhibitory effect of the hybrid Bacteriocin Ent35-MccV on the growth of Escherichia coli and Listeria monocytogenes in model and food systems. Food Bioprocess Technol 8:1063–1075. CrossRefGoogle Scholar
  2. Acuña L, Morero RD, Bellomio A (2011) Development of wide-Spectrum hybrid Bacteriocins for food biopreservation. Food Bioprocess Technol 4:1029–1049. CrossRefGoogle Scholar
  3. Acuña L, Picariello G, Sesma F, Morero RD, Bellomio A (2012) A new hybrid bacteriocin, Ent35-MccV, displays antimicrobial activity against pathogenic gram-positive and gram-negative bacteria. FEBS Open Bio 2:12–19. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Alvarez-Sieiro P, Montalbán-López M, Mu D, Kuipers OP (2016) Bacteriocins of lactic acid bacteria: extending the family. Appl Microbiol Biotechnol 100:2939–2951. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Arbulu S, Jiménez JJ, Gútiez L, Feito J, Cintas LM, Herranz C, Hernández PE (2019) Cloning and expression of synthetic genes encoding native, hybrid- and bacteriocin-derived chimeras from mature class IIa bacteriocins, by Pichia pastoris (syn. Komagataella spp.). Food research international. CrossRefGoogle Scholar
  6. Azpiroz MF, Laviña M (2007) Modular structure of microcin H47 and colicin V. Antimicrob Agents Chemother 51:2412–2419. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Barraza DE, Ríos Colombo NS, Galván AE, Acuña L, Minahk CJ, Bellomio A, Chalón MC (2017) New insights into enterocin CRL35; mechanism of action and immunity revealed by heterologous expression in Escherichia coli. Mol Microbiol. CrossRefGoogle Scholar
  8. Bédard F, Hammami R, Zirah S, Rebuffat S, Fliss I, Biron E (2018) Synthesis, antimicrobial activity and conformational analysis of the class IIa bacteriocin pediocin PA-1 and analogs thereof. Sci Rep 8:9029–9013. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bellomio, A, Minahk, C.J, Dupuy, F (2015) Broad-Spectrum hybrid and engineered Bacteriocins for food biopreservation: what will be the future of Bacteriocins? In: | microbial food safety and preservation techniques |. CRC Press, Estados UnidosCrossRefGoogle Scholar
  10. Buchan DWA, Jones DT (2019) The PSIPRED protein analysis workbench: 20 years on. Nucleic Acids Res 47:W402–W407. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chikindas ML, Weeks R, Drider D, Chistyakov VA, Dicks LM (2018) Functions and emerging applications of bacteriocins. Curr Opin Biotechnol 49:23–28. CrossRefPubMedGoogle Scholar
  12. Cui Y, Zhang C, Wang Y, Shi J, Zhang L, Ding Z, Qu X, Cui H (2012) Class IIa bacteriocins: diversity and new developments. Int J Mol Sci 13:16668–16707. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Farías ME, Farías RN, de Ruiz Holgado AP, Sesma F (1996) Purification and N-terminal amino acid sequence of Enterocin CRL 35, a “pediocin-like” bacteriocin produced by Enterococcus faecium CRL 35. Lett Appl Microbiol 22:417–419CrossRefGoogle Scholar
  14. Field D, Connor PMO, Cotter PD, Hill C, Ross RP (2008) The generation of nisin variants with enhanced activity against specific gram-positive pathogens. Mol Microbiol 69:218–230. CrossRefPubMedGoogle Scholar
  15. Field D, Quigley L, O’Connor PM, Rea MC, Daly K, Cotter PD, Hill C, Ross RP (2010) Studies with bioengineered Nisin peptides highlight the broad-spectrum potency of Nisin V. Microb Biotechnol 3:473–486. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fimland G, Blingsmo OR, Sletten K, Jung G, Nes IF, Nissen-Meyer J (1996) New biologically active hybrid bacteriocins constructed by combining regions from various pediocin-like bacteriocins: the C-terminal region is important for determining specificity. Appl Environ Microbiol 62:3313–3318PubMedPubMedCentralGoogle Scholar
  17. Fimland G, Eijsink VGH, Nissen-Meyer J (2002) Comparative studies of immunity proteins of pediocin-like bacteriocins. Microbiology (Reading, Engl) 148:3661–3670. CrossRefGoogle Scholar
  18. Fink J, Boman A, Boman HG, Merrifield RB (1989) Design, synthesis and antibacterial activity of cecropin-like model peptides. Int J Pept Protein Res 33:412–421CrossRefGoogle Scholar
  19. Fregeau Gallagher NL, Sailer M, Niemczura WP, Nakashima TT, Stiles ME, Vederas JC (1997) Three-dimensional structure of leucocin a in trifluoroethanol and dodecylphosphocholine micelles: spatial location of residues critical for biological activity in type IIa bacteriocins from lactic acid bacteria. Biochemistry 36:15062–15072. CrossRefPubMedGoogle Scholar
  20. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gérard F, Pradel N, Wu L-F (2005) Bactericidal activity of colicin V is mediated by an inner membrane protein, SdaC, of Escherichia coli. J Bacteriol 187:1945–1950. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gratia (1925) Sur un remarquable example d’antagonisme entre deux souches de colibacille. Compt Rend Soc Biol 93:1040–1042Google Scholar
  23. Holak TA, Engström A, Kraulis PJ, Lindeberg G, Bennich H, Jones TA, Gronenborn AM, Clore GM (1988) The solution conformation of the antibacterial peptide cecropin a: a nuclear magnetic resonance and dynamical simulated annealing study. Biochemistry 27:7620–7629CrossRefGoogle Scholar
  24. Hosseini H (1969) Bacterial sensitivity to antibiotics, 1964-1968. Curr Ther Res Clin Exp 11:397–405PubMedGoogle Scholar
  25. Johnsen L, Fimland G, Eijsink V, Nissen-Meyer J (2000) Engineering increased stability in the antimicrobial peptide pediocin PA-1. Appl Environ Microbiol 66:4798–4802CrossRefGoogle Scholar
  26. Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202. CrossRefPubMedGoogle Scholar
  27. Krokhin OV, Antonovici M, Ens W, Wilkins JA, Standing KG (2006) Deamidation of -Asn-Gly- sequences during sample preparation for proteomics: consequences for MALDI and HPLC-MALDI analysis. Anal Chem 78:6645–6650. CrossRefPubMedGoogle Scholar
  28. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132. CrossRefPubMedGoogle Scholar
  29. Li Q, Montalban-Lopez M, Kuipers OP (2018) Increasing the Antimicrobial Activity of Nisin-Based Lantibiotics against Gram-Negative Pathogens Appl Environ Microbiol:84.
  30. Pomares MF, Salomón RA, Pavlova O, Severinov K, Farías R, Vincent PA (2009) Potential applicability of chymotrypsin-susceptible microcin J25 derivatives to food preservation. Appl Environ Microbiol 75:5734–5738. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Rihakova J, Petit VW, Demnerova K, Prévost H, Rebuffat S, Drider D (2009) Insights into structure-activity relationships in the C-terminal region of divercin V41, a class IIa bacteriocin with high-level antilisterial activity. Appl Environ Microbiol 75:1811–1819. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ríos Colombo NS, Chalón MC, Dupuy FG, Gonzalez CF, Bellomio A (2019) The case for class II bacteriocins: a biophysical approach using “suicide probes” in receptor-free hosts to study their mechanism of action. Biochimie 165:183–195. CrossRefPubMedGoogle Scholar
  33. Ríos Colombo NS, Chalón MC, Navarro SA, Bellomio A (2018) Pediocin-like bacteriocins: new perspectives on mechanism of action and immunity. Curr Genet 64:345–351. CrossRefPubMedGoogle Scholar
  34. Saavedra L, Minahk C, de Ruiz Holgado AP, Sesma F (2004) Enhancement of the enterocin CRL35 activity by a synthetic peptide derived from the NH2-terminal sequence. Antimicrob Agents Chemother 48:2778–2781. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Salvucci E, Saavedra L, Sesma F (2007) Short peptides derived from the NH2-terminus of subclass IIa bacteriocin enterocin CRL35 show antimicrobial activity. J Antimicrob Chemother 59:1102–1108. CrossRefPubMedGoogle Scholar
  36. Schägger H (2006) Tricine-SDS-PAGE. Nat Protoc 1:16–22. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Shin SY, Kang JH, Jang SY, Kim Y, Kim KL, Hahm KS (2000) Effects of the hinge region of cecropin a(1-8)-magainin 2(1-12), a synthetic antimicrobial peptide, on liposomes, bacterial and tumor cells. Biochim Biophys Acta 1463:209–218CrossRefGoogle Scholar
  38. Steffens DL, Williams JGK (2007) Efficient site-directed saturation mutagenesis using degenerate oligonucleotides. J Biomol Tech 18:147–149PubMedPubMedCentralGoogle Scholar
  39. Tiwari BK, Valdramidis VP, O’ Donnell CP, Muthukumarappan K, Bourke P, Cullen PJ (2009) Application of natural antimicrobials for food preservation. J Agric Food Chem 57:5987–6000 . doi: CrossRefGoogle Scholar
  40. Uteng M, Hauge HH, Markwick PRL, Fimland G, Mantzilas D, Nissen-Meyer J, Muhle-Goll C (2003) Three-dimensional structure in lipid micelles of the pediocin-like antimicrobial peptide sakacin P and a sakacin P variant that is structurally stabilized by an inserted C-terminal disulfide bridge. Biochemistry 42:11417–11426. CrossRefPubMedGoogle Scholar
  41. van der Spoel D (1998) The solution conformations of amino acids from molecular dynamics simulations of Gly-X-Gly peptides: comparison with NMR parameters. Biochem Cell Biol 76:164–170CrossRefGoogle Scholar
  42. Yuan J, Zhang Z-Z, Chen X-Z, Yang W, Huan L-D (2004) Site-directed mutagenesis of the hinge region of nisinZ and properties of nisinZ mutants. Appl Microbiol Biotechnol 64:806–815. CrossRefPubMedGoogle Scholar
  43. Zaschke-Kriesche J, Reiners J, Lagedroste M, Smits SHJ (2019) Influence of nisin hinge-region variants on lantibiotic immunity and resistance proteins. Bioorg Med Chem 27:3947–3953. CrossRefPubMedGoogle Scholar
  44. Zhou L, van Heel AJ, Kuipers OP (2015) The length of a lantibiotic hinge region has profound influence on antimicrobial activity and host specificity. Front Microbiol 6.

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • S. A. Navarro
    • 1
  • L. Lanza
    • 1
  • N. S. Ríos Colombo
    • 1
  • M. Fernandez de Ullivarri
    • 1
  • L. Acuña
    • 2
  • B. Sosa-Padilla
    • 3
  • G. Picariello
    • 4
  • A. Bellomio
    • 1
  • Miriam C. Chalón
    • 1
    Email author
  1. 1.Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica “Dr. Bernabé Bloj”, Facultad de Bioquímica, Química y FarmaciaUniversidad Nacional de TucumánSan Miguel de TucumánArgentina
  2. 2.Instituto de Patología Experimental (IPE-CONICET-UNSa)Universidad Nacional de SaltaSaltaArgentina
  3. 3.Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET)TucumánArgentina
  4. 4.Istituto di Scienze dell’Alimentazione – Consiglio Nazionale delle Ricerche (CNR)AvellinoItaly

Personalised recommendations