Emerging technologies for the pretreatment of lignocellulosic materials for bio-based products

  • Nasir Ali
  • Quan Zhang
  • Zi-Yong Liu
  • Fu-Li Li
  • Ming LuEmail author
  • Xiang-Chen FangEmail author


Exploring a cheap and clean renewable energy has become a common destination round the world with the depletion of oil resources and the concerns of increasing energy demands. Lignocellulosic biomass is the most abundant renewable resource in the biosphere, and the total biomass formed by plant photosynthesis reached more than 200 billion tons every year. Cellulase and hemicellulose and lignin degradation enzymes, the efficient biocatalyst, could efficiently convert the lignocellulosic biomass into sugars that could be further processed into biofuels, biochemical, and biomaterial for human requirement. The utilization and conversion of cellulosic biomass has great significance to solve the problems such as environmental pollution and energy crisis. Lignocellulosic materials are widely considered as important sources to produce sugar streams that can be fermented into ethanol and other organic chemicals. Pretreatment is a necessary step to overcome its intrinsic recalcitrant nature prior to the production of important biomaterial that has been investigated for nearly 200 years. Emerging research has focused in order of economical, eco-friendly, and time-effective solutions, for large-scale operational approach. These new mentioned technologies are promising for lignocellulosic biomass degradation in a huge scale biorefinery. This review article has briefly explained the emerging technologies especially the consolidated bioprocessing, chemistry, and physical base pretreatment and their importance in the valorization of lignocellulosic biomass conversion.


Biofuel Digestibility Lignocellulose Pretreatment Natural products Gasification 



This work was supported by the National Natural Science Foundation of China (No. 31770077) and the “Transformational Technologies for Clean Energy and Demonstration,” Strategic Priority Research Program of the Chinese Academy of Sciences (XDA 21060400). Nasir Ali was supported by the CAS President’s International Fellowship Initiative Program.

Compliance with ethical standards

Conflict of interests

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Abrini J, Naveau H, Nyns EJ (1994) Clostridium autoethanogenum, an anerobic bacterium that produces ethanol from carbon monoxide. Archiv Microbiol 161:345–351CrossRefGoogle Scholar
  2. Ahmed A, Lewis RL (2007) Fermentation of biomass generated synthesis gas: effects of nitric oxide. Biotechnol Bioeng 97(5):1080–1086PubMedCrossRefGoogle Scholar
  3. Akcapinar GB, Gul O, Sezerman U (2011) Effect of codon optimization on the expression of Trichoderma reesei endoglucanase 1 in Pichia pastoris. Biotechnol Prog 27(5):1257–1263PubMedCrossRefGoogle Scholar
  4. Ali N, Ting Z, Minnan L (2015) Heterogeneous expression and functional characterization of cellulose-degrading enzymes from Aspergillus niger for enzymatic hydrolysis of alkali pretreated bamboo biomass. Mol Biotechnol 57:859–867PubMedPubMedCentralCrossRefGoogle Scholar
  5. Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314:1565–1568PubMedCrossRefGoogle Scholar
  6. Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861PubMedCrossRefGoogle Scholar
  7. Bai Y, Guo R, Yu H, Jiao L, Ding S, Jia Y (2011) Cloning of endo-β-glucanase I gene and expression in Pichia pastoris. Front Agricult China 5(2):196–200CrossRefGoogle Scholar
  8. Bajpai P, (2016) Pretreatment of lignocellulosic biomass for biofuel production. Springer NatureGoogle Scholar
  9. Balat MK (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Convers Management 52(2):858–875CrossRefGoogle Scholar
  10. Balat MK, Balat H (2009) Recent trends in global production and utilization of bio-ethanol fuel. Appl Energy 86(11):2273–2282CrossRefGoogle Scholar
  11. Bawa Z, Darby RAJ (2009) Optimising Pichia pastoris induction. In: Recombinant Protein Production in Yeast: Methods and Protocols, Methods Mol Biol 866Google Scholar
  12. Beguin P, Aubert JP (2004) The biological degradation of cellulose. FEMS Microbiology Reviews 13(1):25–58CrossRefGoogle Scholar
  13. Cara C, Ruiz E, Ballesteros I, Negro MJ, Castro E (2006) Enhanced enzymatic hydrolysis of olive tree wood by steam explosion and alkaline peroxide delignification. Process Bioch 41:423–429CrossRefGoogle Scholar
  14. Cereghino JL, Cregg JM (2008) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Reviews 24:45–46CrossRefGoogle Scholar
  15. Cervero JM, Skovgaard PA, Felby C, Sorensen HR, Jorgensen H (2010) Enzymatic hydrolysis and fermentation of palm kernel press cake for production of bioethanol. Enzyme Microbial Technol 46:177–184CrossRefGoogle Scholar
  16. Chandel A, da Silva S (2013) Sustainable degradation of lignocellulosic biomass techniques, applications and commercialization. InTech, RijekaCrossRefGoogle Scholar
  17. Chen H (2011) Cellulosic biomass technology. Chemical Industry Press, BeijingGoogle Scholar
  18. Cregg JM, Vedvick TS, Raschke WC (2013) Recent advances in the expression of foreign genes in Pichia pastoris. Biotechnol 8:905–910Google Scholar
  19. Daniel SL, Hsu T, Dean SI, Drake HL (2009) Characterization of the hydrogen and carbon monoxide-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui. J Bacteriol 172(4464):4471Google Scholar
  20. Datar RP, Shenkman RM, Cateni BG, Huhnke RL, Lewis RS (2004) Fermentation of biomass-generated producer gas to ethanol. Biotechnol Bioeng 86:587–594PubMedCrossRefGoogle Scholar
  21. Daza-Serna LV, Orrego Alzate CE, Alzate CAC (2016) Supercritical fluids as a green technology for the pretreatment of lignocellulosic biomass. Bioresour Technol 199:113–120PubMedCrossRefGoogle Scholar
  22. Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27(3):297–306PubMedCrossRefGoogle Scholar
  23. Devendra P, Maurya Ankit S, Negi S (2015) An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. Biotechnol 6:597–609Google Scholar
  24. Ding SY, Xu Q, Ali MK (2006) Versatile derivatives of carbohydrate-binding modules for imaging of complex carbohydrates approaching the molecular level of resolution. Biotech 41(4):435–443CrossRefGoogle Scholar
  25. Drake HL, Kusel K, Matthies C (2006) Acetogenic prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The Prokaryotes. Springer, NewYork, pp 354–420CrossRefGoogle Scholar
  26. Drake HL, Gossner AS, Daniel SL (2008) Old acetogens, new light. Ann. N. Y Acad Sci 1125:100–128PubMedCrossRefGoogle Scholar
  27. Duque A, Manzanares P, Ballesteros M (2017) Extrusion as a pretreatment for lignocellulosic biomass: fundamentals and applications. Renew Energy 114B:1427–1441CrossRefGoogle Scholar
  28. Duzhong J, Shui-fang Z, Wensheng H (2002) Pichia expression of foreign genes into the System. Biotechnol Bull 4:7–11Google Scholar
  29. Fast AG, Papoutsakis ET (2012) Stoichiometric and energetic analyses of non-photosynthetic CO2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals. Curr Opin Chem Eng 1:380–395CrossRefGoogle Scholar
  30. Ferreira S, Duarte AP, Ribeiro MHL, Queiroz JA, Domingues FC (2009) Response surface optimization of enzymatic hydrolysis of Cistus ladanifer and Cytisus striatus for bioethanol production. Biochem Eng J 45:192–200CrossRefGoogle Scholar
  31. Florenzano G, Poulain M (2004) A study of acetate production from cellulose using Clostridium thermocellum. Biomass 4:295–303CrossRefGoogle Scholar
  32. Fockedey E, Wilde JD, Gerin PA (2008) Separation of chemicals produced by acidogenic fermentation. The 2008 Annual Meeting Philadelphia, PAGoogle Scholar
  33. Fritz SE, Hood KR, Hood EE (1991) Hydroxyproline-rich glycoproteins in cell walls of pericarp from maize. Plant Sci 1991(79):13–22Google Scholar
  34. Generoso WC, Malago-Jr W, Pereira NJ, Henrique-Silva F (2012) Recombinant expression and characterization of an endoglucanase III (cel12a) from Trichoderma harzianum (Hypocreaceae) in the yeast Pichia pastoris. Gen Mol Res 11(2):1544–1557CrossRefGoogle Scholar
  35. Genthner BRS, Bryant MP (1987) Additional characteristics of one-carboncompound utilization by Eubacterium limosum and Acetobacterium woodii. Appl Env Microbiol 53:471–476Google Scholar
  36. Gray KA, Zhao L, Emptage M (2006) Bioethanology. Curr Opin Chem Biol 10(2):141–146PubMedCrossRefPubMedCentralGoogle Scholar
  37. Grethlein HE (2004) Pretreatment for enhanced hydrolysis of cellulosic biomass. Biotechnol Adv 2(1):43–62CrossRefGoogle Scholar
  38. Gyalai-Korpos M, Mangel R, Alvira P, Dienes D, Ballesteros M, Reczey K (2011) Cellulase production using different streams of wheat grain- and wheat straw-based ethanol processes. J Ind Microbiol Biotechnol 38(7):791–802PubMedCrossRefGoogle Scholar
  39. Hahn-Hagerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74:937–953PubMedCrossRefGoogle Scholar
  40. Hasler P, Nussbaumer T (1999) Gas cleaning for IC engine applications from fixed bed biomass gasification. Biom Bioener 16:385–395CrossRefGoogle Scholar
  41. Henrissat B (2004) Cellulases and their interaction with cellulose. Cellul 1:169–196CrossRefGoogle Scholar
  42. Henstra AM, Sipma J, Rinzema A, Stams AJM (2007) Microbiology of synthesis gas fermentation for biofuel production. Curr Opin Biotechnol 18:200–206PubMedCrossRefGoogle Scholar
  43. Hoshino E, Kanda T (2007) Scope and mechanism of cellulase action on different cellulosic substrates. Oyo Toshitsu Kagaku 44(1):87–104Google Scholar
  44. Houghton J, Weatherwax S, Ferrell J (2006) Breaking the biological barriers to cellulosic ethanol: a joint research agenda, DOE/SC-0095. US Department of Energy, Washington DCCrossRefGoogle Scholar
  45. Igarashi K, Wada M, Hori R, Samejima M (2006a) Surface density of cellobiohydrolase on crystalline celluloses. A critical parameter to evaluate enzymatic kinetics at a solid-liquid interface. FEBS J 273(13):2869–2878PubMedCrossRefGoogle Scholar
  46. Igarashi K, Wada M, Samejima M (2006b) Enzymatic kinetics at a solid-liquid interface: hydrolysis of crystalline celluloses by cellobiohydrolase. Cellul Comm 13(4):173–177Google Scholar
  47. Igarashi K, Wada M, Samejima M (2007) Activation of crystalline cellulose to cellulose III(I) results in efficient hydrolysis by cellobiohydrolase. FEBS J 274(7):1785–1792PubMedCrossRefGoogle Scholar
  48. Ikeda Y, Park EY (2006) Okuda N. Bioconversion of waste office paper to gluconic acid in a turbine blade reactor by the filamentous fungus Aspergillus niger. Bioresour Technol 97(8):1030–1035PubMedCrossRefGoogle Scholar
  49. Ilmen M, den Haan RB, Penttila M (2011) High level secretion of cellobiohydrolases by Saccharomyces cerevisiae. Biotechnol Biofue 4:30CrossRefGoogle Scholar
  50. Imkamp F, Muller V (2007) “Acetogenic bacteria” in Encyclopedia of Life Sciences. John Wiley & Sons, Ltd., ChichesterGoogle Scholar
  51. Jensen JR, Morinelly JE, Gossen KR, Brodeur-Campbell MJ, Shonnard DR (2010) Effects of dilute acid pretreatment conditions on enzymatic hydrolysis monomer and oligomer sugar yields for aspen, balsam, and switchgrass. Bioresour Technol 101:2317–2325PubMedPubMedCentralCrossRefGoogle Scholar
  52. Johnsen U, Dambeck M, Zaiss H, Fuhrer T, Soppa J, Sauer U, Schönheit P (2009) D-xylose degradation pathway in the halophilic archaeon Haloferax volcanii. Biol Chem 284:27290–27303CrossRefGoogle Scholar
  53. Jonsson LJ, Martín C (2016) Pretreatment of lignocellulose: formation of inhibitory byproducts and strategies for minimizing their effects. Bioresour Technol 199:103–112PubMedCrossRefGoogle Scholar
  54. Jonsson LJ, Alriksson B, Nilvebrant NO (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6:6–16CrossRefGoogle Scholar
  55. Kanda T, Wakabayashi K, Nisizawa K (2008) Modes of action of exo/endo-cellulases in the degradation of celluloses I and II. J Biochem 87(6):1635–1639CrossRefGoogle Scholar
  56. Kanokratana P, Chantasingh D, Champreda V, Tanapongpipat S, Pootanakit K, Eurwilaichitr L (2008) Identification and expression of cellobiohydrolase gene from an endophytic fungus, Fusicoccum sp. (BCC4124) in Pichia pastoris. Protein Expres Purif 58(1):148–153CrossRefGoogle Scholar
  57. Khramtsov N, McDade L, Amerik A, Yu E, Divatia K, Tikhonov A, Minto M, Kabongo-Mubalamate G, Markovic Z, Ruiz-Martinez M, Henck S (2011) Industrial yeast strain engineered to ferment ethanol from lignocellulosic biomass. Bioresour Technol 102(17):8310–8313PubMedCrossRefGoogle Scholar
  58. Ko CH, Tsai CH, Lin PH, Chang KC, Tu J, Wang YN, Yang CY (2010) Characterization and pulp refining activity of a Paenibacillus campinasensis cellulase expressed in Escherichia coli. Bioresour Technol 101:7882–7888PubMedCrossRefGoogle Scholar
  59. Kovacs K, Szakacs G, Zacchi G (2009a) Comparative enzymatic hydrolysis of pretreated spruce by supernatants, whole fermentation broths and washed mycelia of Trichoderma reesei and Trichoderma atroviride. Bioresourc Technol 100(3):1350–1357CrossRefGoogle Scholar
  60. Kovacs K, Szakacs G, Zacchi G (2009b) Enzymatic hydrolysis and simultaneous saccharification and fermentation of steam-pretreated spruce using crude Trichoderma reesei and Trichoderma atroviride enzymes. Process Biochem 44:1323–1329CrossRefGoogle Scholar
  61. Krumholz LR, Bryant MP (1995) Clostridium pfennigii. uses methoxyl groups of monobenzenoids and produces butyrate. International J Systematic Bacteriol 35:454–456CrossRefGoogle Scholar
  62. Kumar S, Singh SP, Mishra IM, Adhikari DK (2009) Recent advances in production of bioethanol from lignocellulosic biomass. Chem Eng Technol 32(4):517–526CrossRefGoogle Scholar
  63. Latif H, Zeidan AA, Nielsen AT, Zengler K (2014) Trash to treasure: production of biofuels and commodity chemicals via syngas fermenting microorganisms. Curr Opin Biotechnol 27:79–87PubMedCrossRefGoogle Scholar
  64. Lee JW, Kim HY, Koo BW, Choi DH, Kwon M, Choi IG (2008) Enzymatic saccharification of biologically pretreated Pinus densiflora using enzymes from brown rot fungi. J Biosc Bioeng 106:162–167CrossRefGoogle Scholar
  65. Li B, Zhuang G, Lin J (2006) Cellulase gene copy number in Pichia influences its expression. Bioproce 4(4):1217 Google Scholar
  66. Li YL, Li H, Li AN, Li DC (2009) Cloning of a gene encoding thermostable cellobiohydrolase from the thermophilic fungus Chaetomium thermophilumand its expression in Pichia pastoris. J Appl Microbiol 106(6):1867–1875PubMedCrossRefGoogle Scholar
  67. Liou JSC, Balkwill DL, Drake GR, Tanner RS (2005) Clostridium carboxidivorans, a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei. Inter J System Evol Microbiol 55:2085–2091CrossRefGoogle Scholar
  68. Liu E, Hu Y (2010) Construction of a xylose-fermenting Saccharomyces cerevisiae strain by combined approaches of genetic engineering, chemical mutagenesis and evolutionary adaptation. Biochem Eng 48:204–210CrossRefGoogle Scholar
  69. Liu T, Tianhong W, Xian L (2003) Development of Trichoderma reesei cbh1 promoter to improve heterologous gene expression. Chine J Biochem Mol Biol 12:736–742Google Scholar
  70. Liu YS, Zeng Y, Luo Y (2009) Does the cellulose-binding module move on the cellulose surface. Cellul 16(4):587–597CrossRefGoogle Scholar
  71. Liu H, Liu K, Yan M, Xu L (2011) Ouyang, P. gTME for improved adaptation of Saccharomyces cerevisiae to corn cob acid hydrolysate. Appl Biochem Biotechnol 164:1150–1159PubMedCrossRefGoogle Scholar
  72. Liu ZS, Wu XL, Kida K, Tang YQ (2012a) Corn stover saccharification with concentrated sulfuric acid: effects of saccharification conditions on sugar recovery and by-product generation. Bioresour Technol 119:224–233PubMedCrossRefGoogle Scholar
  73. Liu ZL, Weber SA, Cotta MA (2012b) Isolation and characterization of a β-glucosidase from a Clavispora strain with potential applications in bioethanol production from cellulosic materials. BioEner Resear 6(1):65–74CrossRefGoogle Scholar
  74. Ljungdahl LG (1986) The autotrophic pathway of acetate synthesis in acetogenic bacteria. Annu. Rev Microbiol. 40:415–450PubMedCrossRefGoogle Scholar
  75. Lorowitz WH, Bryant MP (1984) Peptostreptococcus productus strain that grows rapidly with CO as the energy source. Appl Env Microbiol 47:961–964Google Scholar
  76. Lu J, Huimin W, Ping W, Ping H, Moon C, Wu L, Xiaorong N (2007) 5'-transcribed sequences alterations improve Pichia expression of antimicrobial peptides. Second Military Medical University 28(12):1329–1334Google Scholar
  77. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Reviews 66(3):506–577CrossRefGoogle Scholar
  78. Ma L, Zhang J, Zou G, Wang C, Zhou Z (2011) Improvement of cellulase activity in Trichoderma reesei by heterologous expression of a beta-glucosidase gene from Penicillium decumbens. Enz Microbial Technol 49(4):366–371CrossRefGoogle Scholar
  79. Ma J, Zhang K, Liao H, Hector SB, Shi X, Li J (2016) Genomic and secretomic insight into lignocellulolytic system of an endophytic bacterium Pantoea ananatis Sd-1. Biotechnol Biofuels 9:25PubMedPubMedCentralCrossRefGoogle Scholar
  80. Macauley-Patrick S, Fazenda ML, McNeilm B, Harveym LM (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22:249–270PubMedCrossRefGoogle Scholar
  81. Mai Z, Yang J, Tian X, Li J, Zhang S (2013) Gene cloning and characterization of a novel salt-tolerant and glucose-enhanced beta-glucosidase from a marine Streptomycete. Appl Biochem Biotechnol 169(5):1512–1522PubMedCrossRefGoogle Scholar
  82. Mishima D, Tateda M, Ike M, Fujita M (2006) Comparative study on chemical pretreatments to accelerate enzymatic hydrolysis of aquatic macrophyte biomass used in water purification processes. Bioresour Technol 97(16):2166–2172PubMedCrossRefGoogle Scholar
  83. Miyauchi S, Teo VS, Bergquist PL, Nevalainen KM (2013) Expression of a bacterial xylanase in Trichoderma reesei under the egl2 and cbh2 glycosyl hydrolase gene promoters. New Biotechnol 30:523–530CrossRefGoogle Scholar
  84. Nitsos C, Rova U (2017) Organosolv fractionation of softwood biomass for biofuel and biorefinery applications. Energ 11:50Google Scholar
  85. Noparat P, Prasertsan P, O-Thong S, Pang X (2017) Sulfite pretreatment to overcome recalcitrance of lignocellulose for enzymatic hydrolysis of oil palm trunk. Energy Procedia 138:1122–1127CrossRefGoogle Scholar
  86. Nuc P, Nuc K (2006) Recombinant protein production in Escherichia coli. Postepy Biochem 52(4):448–456PubMedGoogle Scholar
  87. Panttila ME, Andre L, Saloheimo M, Lehtovaara P, Knowles JKC (2007) Expression of two Trichoderma reesei endoglucanases in the yeast Saccharomyces cerevisiae. Yeast 3(3):175–185CrossRefGoogle Scholar
  88. Paralikar KM, Betrabet SM (2007) Electron-diffraction technique for determination of cellulose crystallinity. J Appl Polym Sci 21(4):899–903CrossRefGoogle Scholar
  89. Parshina SN, Sipma J, Nakashimada Y, Henstra AM, Smidt H, Lysenko AM, Lens PNL, Lettinga G, Stams AJM (2005) Desulfotomaculum carboxydivorans, a novel sulfate-reducing bacterium capable of growth at 100% CO. International Journal of Systematic and Evol Microbiol 55:2159–2165CrossRefGoogle Scholar
  90. Peterson R, Nevalainen H (2012) Trichoderma reesei RUT-C30--thirty years of strain improvement. Microbiol 158:58–68CrossRefGoogle Scholar
  91. Pielhop T, Amgarten J, Von Rohr R, Studer MH (2016) Steam explosion pretreatment of softwood: the effect of the explosive decompression on enzymatic digestibility. Biotechnol Biofuels 9:152PubMedPubMedCentralCrossRefGoogle Scholar
  92. Puls J, Wood TM (2011) The degradation pattern of cellulose by extracellular cellulases of aerobic and anaerobic microorganisms. Bioresour Technol 36(1):15–19CrossRefGoogle Scholar
  93. Ragsdale SW, Pierce E (2008) Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation. Biochim Biophys Acta 1784:1873–1898PubMedPubMedCentralCrossRefGoogle Scholar
  94. Rajagopalan S, Datar RP, Lewis RS (2002) Formation of ethanol from carbon monoxide via a new microbial catalyst. Biomass Bioenerg 23:487–493CrossRefGoogle Scholar
  95. Ravinder T, Swamy MV, Seenayya G, Reddy G (2001) Clostridium lentocellum SG6-a potential organism for fermentation of cellulose to acetic acid. Bioresour Technol 80:171–177PubMedCrossRefGoogle Scholar
  96. Rizzi M, Klein C, Schulze C, Bui-Thanh NA, Dellweg H (1989) Xylose fermentation by yeasts. 5. Use of ATP balances for modeling oxygen-limited growth and fermentation of yeast Pichia stipitis with xylose as carbon source. Biotechnol Bioeng 34:509–514PubMedCrossRefGoogle Scholar
  97. Saha BC, Cotta MA (2008) Lime pretreatment, enzymatic saccharification and fermentation of rice hulls to ethanol. Biomass Bioener 32:971–977CrossRefGoogle Scholar
  98. Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40(12):3693–3700CrossRefGoogle Scholar
  99. Sato M, Matsuura K, Fujii T (2001) Ethanol separation from ethanol-water solution by ultrasonic atomization and its proposed mechanism based on parametric decay instability of capillary wave. J Chemical Phy 114(5):2382–2386CrossRefGoogle Scholar
  100. Savage MD, Wu ZG, Daniel SL, Lundie LL, Drake HL (2007) Carbon monoxide dependent chemo lithotrophic growth of Clostridium thermoautotrophicum. Appl Env Microbiol 53:1902–1906Google Scholar
  101. Schauder R, Preu R, Jetten M, Fuchs G (1989) Oxidative and reductive acetyl-CoA/carbon monoxide dehydrogenase pathway in Desulfobacterium autotrophicum. 2. Demonstration of the enzymes of the pathway and comparison of CO dehydrogenase. Arch Microbiol 151:84–89CrossRefGoogle Scholar
  102. Schell DJ, Riley CJ, Dowe N, Farmer J, Ibsen KN, Ruth MF, Toon ST, Lumpkin RE (2004) A bioethanol process development unit: initial operating experiences and results with a corn fiber feedstock. Bioresour Technol 91:179–188PubMedCrossRefGoogle Scholar
  103. Scorer CA, Buckholz RG, Clare JJ, Romanes MA (2009) The intracellular production and secretion of HIV-1 envelope protein in the methylotrophic yeast Pichia pastoris. Gene 136(1-2):111–119CrossRefGoogle Scholar
  104. Scotcher MC, Rudolph FB, Bennett GN (2005) Expression of abrB310 and sinR, and effects of decreased abrB310 expression on the transition from acidogenesis to solventogenesis, in Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 71:1987–1995PubMedPubMedCentralCrossRefGoogle Scholar
  105. Sharma SK, Kalra KL, Kocher GS (2004) Fermentation of enzymatic hydrolysate of sunflower hulls for ethanol production and its scale-up. Biom Bioener 27:399–402CrossRefGoogle Scholar
  106. Shen GJ, Shieh JS, Grethlein AJ, Jain MK, Zeikus JH (1999) Biochemical basis for carbon monoxide tolerance and butonol production by Butyribacterium methylotrophicum. Appl Microbial Biotechnol 51:827–832CrossRefGoogle Scholar
  107. Sim JH, Kamaruddin AH, Long WS, Najafpour G (2007) Clostridium aceticum—a potential organism in catalyzing carbon monoxide to acetic acid: application of response surface methodology. Enz Microbial Technol 40:1234–1243CrossRefGoogle Scholar
  108. Slepova TV, Sokolova TG, Lysenko AM, Tourova TP, Kolganova TV, Kamzolkina OV, Karpov GA, Bonch-Osmolovskaya EA (2006) Carboxydocella sporoproducens, a novel anaerobic CO-utilizing/H2-producing thermophilic bacterium from a Kamchatka hot spring. Intern J System Evol Microbiol 56:797CrossRefGoogle Scholar
  109. Somerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 329(5993):790–792PubMedPubMedCentralCrossRefGoogle Scholar
  110. Stephens C, Christen B, Fuchs T, Sundaram V, Watanabe K, Jenal U (2007) Genetic analysis of a novel pathway for D-xylose metabolism in Caulobacter crescentus. Bacteriol 189:2181–2185CrossRefGoogle Scholar
  111. Stone J, Scallan A, Donefer E, Ahlgren E (2009) Digestibility as a simple function of a molecule of a similar size to a cellulase enzyme. Adv Chem Series 95:219–241CrossRefGoogle Scholar
  112. Sun S, Sun S, Cao X, Sun R (2016) The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour Technol 199:49–58PubMedCrossRefGoogle Scholar
  113. Taipakova SM, Ischenko A, Saparbayev M, Bissenbaev AK (2011) Cloning and expression of Lentinula edodes cellobiohydrolase CEL6B gene in E. coli. Intern J Biol Chem (1):19-26Google Scholar
  114. Takashima S, Iikura H, Nakamura A, Hidaka M, Masaki H, Uozumi T (2008) Overproduction of recombinant Trichoderma reesei cellulases by Aspergillus oryzae and their enzymatic properties. Biotechnol 65(2-3):163–131Google Scholar
  115. Tang B, Pan H, Zhang Q, Ding L (2009) Cloning and expression of cellulase gene EG1 from Rhizopus stolonifer var. reflexus TP-02 in Escherichia coli. Bioresour Technol 100(23):6129–6132PubMedCrossRefGoogle Scholar
  116. Tanner RS, Miller LM, Yang D (1993) Clostridium ljungdahlii, an acetogenic species in clostridial ribosomal-RNA homology group-I. Intern J System Bacteriol 43:232–236CrossRefGoogle Scholar
  117. Tao MA, Mei-hu (2006) Progress cellulosic material production of alcohol. Chinese brewing 8:11–15Google Scholar
  118. Tarantili PA, Koullas DP, Christakopoulos P, Kekos D, Koukios EG, Macris BJ (2006) Cross-synergism in enzymic hydrolysis of lignocellulosics: mathematical correlations according to a hyperbolic model. Biomass Bioenerg 10(4):213–219CrossRefGoogle Scholar
  119. Terpe K (2006) Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 72(2):211–222PubMedCrossRefGoogle Scholar
  120. Turn SQ, Kinoshita CM, Jakeway LA, Jenkins BM, Baxter LL, Wu BC, Blevins LG (2003) Fuel characteristics of processed, high-fiber sugarcane. Fuel Process Technol 81:35–55CrossRefGoogle Scholar
  121. Valjamae P (2002) The kinetics of cellulose enzymatic hydrolysis: implications of the synergism between enzymes. PhD thesis. Uppsala University, Uppsala, SwedenGoogle Scholar
  122. Van-Wyk N, den Haan R, van Zyl WH (2010) Heterologous co-production of Thermobifida fusca Cel9A with other cellulases in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 87(5):1813–1820PubMedCrossRefGoogle Scholar
  123. Verduyn C, Kleef R, Frank Jzn J, Schreuder H, Dijken JP, Scheffers WA (1985) NAD (P) H-dependent aldose reductase from the xylose-fermenting yeast Pichia stipitis. Antonie Van Leeuwenhoek 51:562–562CrossRefGoogle Scholar
  124. Wang PY, Johnson BF, Schneider H (1980) Fermentation of D-xylose by yeasts using glucose isomerase in the medium to convert D-xylose to D-xylulose. Biotechnol Lett 2:273–278CrossRefGoogle Scholar
  125. Wang W, Wang P, Hu RA (2011) Novel screening method of cellulase-producing bacteria based on Phytophthora parasitica var. nicotianae. Appl Biochem Microbiol 47(1):58–60CrossRefGoogle Scholar
  126. Wang S, Liu G, Wang J, Yu J, Huang B, Xing M (2013) Enhancing cellulase production in Trichoderma reesei RUT C30 through combined manipulation of activating and repressing genes. Indust Microbiol Biotechnol 4:177–185Google Scholar
  127. Waterham HR, Digan ME, Koutz PJ, Lair SV, Cregg JM (2007) Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene 186(1):37–44CrossRefGoogle Scholar
  128. Wegner GH (2010) Emerging applications of the methylotrophic yeasts. FEMS Microbiol Lett 87(3-4):279–283CrossRefGoogle Scholar
  129. Wong KKY, Deverell KF, Mackie KL, Clark TA, Donaldson LA (2008) The relationship between fiber-porosity and cellulose digestibility in steam-exploded Pinus radiata. Biotechnol Bioeng 31(5):447–456CrossRefGoogle Scholar
  130. Wood HG (1991) Life with CO or CO2 and H2 as a source of carbon and energy. Fed Am Soc Exp Biol 5:156–163PubMedGoogle Scholar
  131. Wu H, Fu Q, Giles R, Bartle J (2008) Production of mallee biomass in Western Australia: energy balance analysis. Energ Fuels 22(1):190–198CrossRefGoogle Scholar
  132. Wyman CE (2007) What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol 25(4):153–157PubMedCrossRefGoogle Scholar
  133. Xiong XQ, Liao HD, Ma JS, Liu XM, Zhang LY, Shi XW, Yang XL, Lu XN, Zhu YH (2014) Isolation of a rice endophytic bacterium, Pantoea sp. Sd-1, with ligninolytic activity and characterization of its rice straw degradation ability. Lett Appl Microbiol 58:123–129PubMedCrossRefGoogle Scholar
  134. Xu Q, Tucker MP, Arenkiel P (2009) Labeling the planar face of crystalline cellulose using quantum dots directed by type-I carbohydrate-binding modules. Cellulose 16(1):19–26CrossRefGoogle Scholar
  135. Yamashita Y, Shono M, Sasaki C, Nakamura Y (2010) Alkaline peroxide pretreatment for efficient enzymatic saccharification of bamboo. Carbohy Polym 79:914–920CrossRefGoogle Scholar
  136. Yang J, Bae JY, Lee YM, Kwon H, Moon HY, Kang HA, Yee SB, Kim W, Choi W (2011) Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance. Biotechnol Bioeng 108:1776–1787PubMedCrossRefGoogle Scholar
  137. Yang S, Hua C, Yan Q, Li Y, Jiang Z (2013) Biochemical properties of a novel glycoside hydrolase family-1 beta-glucosidase (PtBglu1) from Paecilomyces thermophila expressed in Pichia pastoris. Carbohy Polym 92(1):784–791CrossRefGoogle Scholar
  138. Yoo CG, Pu Y, Ragauskas AJ, Turner C, Wang J (2017) Ionic liquids: promising green solvents for lignocellulosic biomass utilization. Curr Opin Green Sustain Chem 5:5–11CrossRefGoogle Scholar
  139. Yu H, Guo G, Zhang X, Yan K, Xu C (2009) The effect of biological pretreatment with the selective white-rot fungus Echinodontium taxodii on enzymatic hydrolysis of softwoods and hardwoods. Bioresour Technol 100:5170–5175PubMedCrossRefGoogle Scholar
  140. Zhang Q, Cai W (2008) Enzymatic hydrolysis of alkali-pretreated rice straw by Trichoderma reesei ZM4–F3. Biomass Bioener 32:1130–1135CrossRefGoogle Scholar
  141. Zhang C, Su X, Xiong X, Hu Q, Amartey S, Tan X, Qin W (2016a) 60Co-γ radiation-induced changes in the physical and chemical properties of rapeseed straw. Biomass Bioener 85:207–214CrossRefGoogle Scholar
  142. Zhang CW, Xia SQ, Ma PS (2016b) Facile pretreatment of lignocellulosic biomass using deep eutectic solvents. Bioresour Technol 219:1–5PubMedCrossRefGoogle Scholar
  143. Zhuang X, Wang W, Yu Q, Qi W, Wang Q, Tan X, Zhou G, Yuan Z (2016) Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products. Bioresour Technol 199:68–75PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
  2. 2.Sinopec Dalian (Fushun) Research Institute of Petroleum and PetrochemicalsDalianChina
  3. 3.Dalian National Laboratory for Clean EnergyDalianChina

Personalised recommendations