Advertisement

Autophagy suppression enhances DNA damage and cell death upon treatment with PARP inhibitor Niraparib in laryngeal squamous cell carcinoma

  • Yunxiang Ji
  • Qian Wang
  • Qian Zhao
  • Shuwei Zhao
  • Li LiEmail author
  • Guangbin SunEmail author
  • Li YeEmail author
Applied genetics and molecular biotechnology
  • 22 Downloads

Abstract

Although poly (ADP-ribose) polymerase (PARP) inhibitors, as anti-tumor drugs targeting the DNA damage response (DDR), have been used for the therapy of various tumors, few researches reported their effect on laryngeal squamous cell carcinoma (LSCC). Here, we first discovered that the PARP-1/2 inhibitor Niraparib could simultaneously induce cell growth inhibition and autophagy in LSCC TU212 and TU686 cells. Niraparib decelerated cell cycle of LSCC by arresting G1 phase and preventing the cells from entering S phase. DNA lesions were also observed upon Niraparib treatment as evidenced by the accumulation of γH2AX and abatement of pRB expression. In addition, autophagy generation was confirmed by the observation of autophagosomes, LC3-positive autophagy-like vacuoles, and obvious conversion of LC3-I to LC3-II. Moreover, blocking autophagy enhanced Niraparib-induced growth inhibition and DNA lesions. Further studies suggested that autophagy suppression could obstruct the activation of checkpoint kinase 1 (Chk1) through elevating proteasomal activity and then impair the capacity of homologous recombination (HR), thereby improving the anti-LSCC efficiency of Niraparib. Collectively, these findings suggested that simultaneous targeting of Niraparib and autophagy might be a promising therapeutic schedule for LSCC in clinic.

Keywords

Laryngeal squamous cell carcinoma Poly (ADP-ribose) polymerase Autophagy Homologous recombination DNA damage 

Notes

Funding information

This study was funded by the Project of Shanghai Health and Family Planning Commission (grant number 201444), Natural Science Foundation of Shanghai (grant number 17ZR1438900), and Scientific and Innovative Action Plan of Shanghai (CN) (grant number 18431902800).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Argiris A, Karamouzis MV, Raben D, Ferris RL (2008) Head and neck cancer. Lancet 371(9625):1695–1709.  https://doi.org/10.1016/S0140-6736(08)60728-X CrossRefPubMedGoogle Scholar
  2. Arun B, Akar U, Gutierrez-Barrera AM, Hortobagyi GN, Ozpolat B (2015) The PARP inhibitor AZD2281 (Olaparib) induces autophagy/mitophagy in BRCA1 and BRCA2 mutant breast cancer cells. Int J Oncol 47(1):262–268.  https://doi.org/10.3892/ijo.2015.3003 CrossRefPubMedGoogle Scholar
  3. Bae H, Guan JL (2011) Suppression of autophagy by FIP200 deletion impairs DNA damage repair and increases cell death upon treatments with anticancer agents. Mol Cancer Res 9(9):1232–1241.  https://doi.org/10.1158/1541-7786.MCR-11-0098 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K, Guldberg P, Sehested M, Nesland JM, Lukas C, Orntoft T, Lukas J, Bartek J (2005) DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434(7035):864–870.  https://doi.org/10.1038/nature03482 CrossRefPubMedGoogle Scholar
  5. Bray I, Brennan P, Boffetta P (2000) Projections of alcohol- and tobacco-related cancer mortality in Central Europe. Int J Cancer 87(1):122–128CrossRefGoogle Scholar
  6. Chen MJ, Cheng AC, Lee MF, Hsu YC (2018) Simvastatin induces G1 arrest by up-regulating GSK3beta and down-regulating CDK4/cyclin D1 and CDK2/cyclin E1 in human primary colorectal cancer cells. J Cell Physiol 233(6):4618–4625.  https://doi.org/10.1002/jcp.26156 CrossRefPubMedGoogle Scholar
  7. Diaz-Moralli S, Tarrado-Castellarnau M, Miranda A, Cascante M (2013) Targeting cell cycle regulation in cancer therapy. Pharmacol Ther 138(2):255–271.  https://doi.org/10.1016/j.pharmthera.2013.01.011 CrossRefPubMedGoogle Scholar
  8. Eliopoulos AG, Havaki S, Gorgoulis VG (2016) DNA damage response and autophagy: a meaningful partnership. Front Genet 7:204.  https://doi.org/10.3389/fgene.2016.00204 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, Martin NM, Jackson SP, Smith GC, Ashworth A (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434(7035):917–921.  https://doi.org/10.1038/nature03445 CrossRefPubMedGoogle Scholar
  10. Gao W, Zhang C, Li W, Li H, Sang J, Zhao Q, Bo Y, Luo H, Zheng X, Lu Y, Shi Y, Yang D, Zhang R, Li Z, Cui J, Zhang Y, Niu M, Li J, Wu Z, Guo H, Xiang C, Wang J, Hou J, Zhang L, Thorne RF, Cui Y, Wu Y, Wen S, Wang B (2018) Promoter methylation-regulated mir-145-5p inhibits laryngeal squamous cell carcinoma progression by targeting FSCN1. Mol Ther.  https://doi.org/10.1016/j.ymthe.2018.09.018 CrossRefGoogle Scholar
  11. Gomes LR, Menck CFM, Leandro GS (2017) Autophagy roles in the modulation of DNA repair pathways. Int J Mol Sci 18(11).  https://doi.org/10.3390/ijms18112351 CrossRefGoogle Scholar
  12. Grant GD, Kedziora KM, Limas JC, Cook JG, Purvis JE (2018) Accurate delineation of cell cycle phase transitions in living cells with PIP-FUCCI. Cell Cycle 17(21-22):2496–2516.  https://doi.org/10.1080/15384101.2018.1547001 CrossRefPubMedGoogle Scholar
  13. Hartwell LH, Szankasi P, Roberts CJ, Murray AW, Friend SH (1997) Integrating genetic approaches into the discovery of anticancer drugs. Science 278(5340):1064–1068CrossRefGoogle Scholar
  14. Hottiger MO, Hassa PO, Luscher B, Schuler H, Koch-Nolte F (2010) Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem Sci 35(4):208–219.  https://doi.org/10.1016/j.tibs.2009.12.003 CrossRefPubMedGoogle Scholar
  15. Hyttinen JMT, Blasiak J, Niittykoski M, Kinnunen K, Kauppinen A, Salminen A, Kaarniranta K (2017) DNA damage response and autophagy in the degeneration of retinal pigment epithelial cells-implications for age-related macular degeneration (AMD). Ageing Res Rev 36:64–77.  https://doi.org/10.1016/j.arr.2017.03.006 CrossRefPubMedGoogle Scholar
  16. Ishak CA, Coschi CH, Roes MV, Dick FA (2017) Disruption of CDK-resistant chromatin association by pRB causes DNA damage, mitotic errors, and reduces Condensin II recruitment. Cell Cycle 16(15):1430–1439.  https://doi.org/10.1080/15384101.2017.1338984 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kraus WL (2015) PARPs and ADP-ribosylation: 50 years ... and counting. Mol Cell 58(6):902–910.  https://doi.org/10.1016/j.molcel.2015.06.006 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Lallemand-Breitenbach V, de The H (2010) PML nuclear bodies. Cold Spring Harb Perspect Biol 2(5):a000661.  https://doi.org/10.1101/cshperspect.a000661 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Langelier MF, Riccio AA, Pascal JM (2014) PARP-2 and PARP-3 are selectively activated by 5′ phosphorylated DNA breaks through an allosteric regulatory mechanism shared with PARP-1. Nucleic Acids Res 42(12):7762–7775.  https://doi.org/10.1093/nar/gku474 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Leemans CR, Braakhuis BJ, Brakenhoff RH (2011) The molecular biology of head and neck cancer. Nat Rev Cancer 11(1):9–22.  https://doi.org/10.1038/nrc2982 CrossRefGoogle Scholar
  21. Leon-Ortiz AM, Panier S, Sarek G, Vannier JB, Patel H, Campbell PJ, Boulton SJ (2018) A distinct class of genome rearrangements driven by heterologous recombination. Mol Cell 69(2):292–305 e6.  https://doi.org/10.1016/j.molcel.2017.12.014 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Liu EY, Xu N, O’Prey J, Lao LY, Joshi S, Long JS, O’Prey M, Croft DR, Beaumatin F, Baudot AD, Mrschtik M, Rosenfeldt M, Zhang Y, Gillespie DA, Ryan KM (2015) Loss of autophagy causes a synthetic lethal deficiency in DNA repair. Proc Natl Acad Sci U S A 112(3):773–778.  https://doi.org/10.1073/pnas.1409563112 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9(3):153–166.  https://doi.org/10.1038/nrc2602 CrossRefPubMedGoogle Scholar
  24. Mason KA, Raju U, Buchholz TA, Wang L, Milas ZL, Milas L (2014) Poly (ADP-ribose) polymerase inhibitors in cancer treatment. Am J Clin Oncol 37(1):90–100.  https://doi.org/10.1097/COC.0b013e3182467dce CrossRefPubMedGoogle Scholar
  25. Metzger MJ, Stoddard BL, Monnat RJ Jr (2013) PARP-mediated repair, homologous recombination, and back-up non-homologous end joining-like repair of single-strand nicks. DNA Repair (Amst) 12(7):529–534.  https://doi.org/10.1016/j.dnarep.2013.04.004 CrossRefGoogle Scholar
  26. Murai J, Huang SY, Das BB, Renaud A, Zhang Y, Doroshow JH, Ji J, Takeda S, Pommier Y (2012) Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res 72(21):5588–5599.  https://doi.org/10.1158/0008-5472.CAN-12-2753 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Nickoloff JA, Jones D, Lee SH, Williamson EA, Hromas R (2017) Drugging the cancers addicted to DNA repair. J Natl Cancer Inst 109(11).  https://doi.org/10.1093/jnci/djx059
  28. Peri S, Izumchenko E, Schubert AD, Slifker MJ, Ruth K, Serebriiskii IG, Guo T, Burtness BA, Mehra R, Ross EA, Sidransky D, Golemis EA (2017) NSD1- and NSD2-damaging mutations define a subset of laryngeal tumors with favorable prognosis. Nat Commun 8(1):1772–1710.  https://doi.org/10.1038/s41467-017-01877-7 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Pickering MT, Kowalik TF (2006) Rb inactivation leads to E2F1-mediated DNA double-strand break accumulation. Oncogene 25(5):746–755.  https://doi.org/10.1038/sj.onc.1209103 CrossRefPubMedGoogle Scholar
  30. Pilie PG, Tang C, Mills GB, Yap TA (2019) State-of-the-art strategies for targeting the DNA damage response in cancer. Nat Rev Clin Oncol 16(2):81–104.  https://doi.org/10.1038/s41571-018-0114-z CrossRefPubMedGoogle Scholar
  31. Roos WP, Thomas AD, Kaina B (2016) DNA damage and the balance between survival and death in cancer biology. Nat Rev Cancer 16(1):20–33.  https://doi.org/10.1038/nrc.2015.2 CrossRefPubMedGoogle Scholar
  32. Rubinsztein DC, Shpilka T, Elazar Z (2012) Mechanisms of autophagosome biogenesis. Curr Biol 22(1):R29–R34.  https://doi.org/10.1016/j.cub.2011.11.034 CrossRefPubMedGoogle Scholar
  33. Schreiber V, Dantzer F, Ame JC, de Murcia G (2006) Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7(7):517–528.  https://doi.org/10.1038/nrm1963 CrossRefPubMedGoogle Scholar
  34. Shamma A, Takegami Y, Miki T, Kitajima S, Noda M, Obara T, Okamoto T, Takahashi C (2009) Rb Regulates DNA damage response and cellular senescence through E2F-dependent suppression of N-ras isoprenylation. Cancer Cell 15(4):255–269.  https://doi.org/10.1016/j.ccr.2009.03.001 CrossRefGoogle Scholar
  35. Shamma A, Suzuki M, Hayashi N, Kobayashi M, Sasaki N, Nishiuchi T, Doki Y, Okamoto T, Kohno S, Muranaka H, Kitajima S, Yamamoto K, Takahashi C (2013) ATM mediates pRB function to control DNMT1 protein stability and DNA methylation. Mol Cell Biol 33(16):3113–3124.  https://doi.org/10.1128/MCB.01597-12 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA Cancer J Clin 69(1):7–34.  https://doi.org/10.3322/caac.21551 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Singh I, Ozturk N, Cordero J, Mehta A, Hasan D, Cosentino C, Sebastian C, Kruger M, Looso M, Carraro G, Bellusci S, Seeger W, Braun T, Mostoslavsky R, Barreto G (2015) High mobility group protein-mediated transcription requires DNA damage marker gamma-H2AX. Cell Res 25(7):837–850.  https://doi.org/10.1038/cr.2015.67 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Sorensen CS, Hansen LT, Dziegielewski J, Syljuasen RG, Lundin C, Bartek J, Helleday T (2005) The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair. Nat Cell Biol 7(2):195–201.  https://doi.org/10.1038/ncb1212 CrossRefPubMedGoogle Scholar
  39. Sullivan-Reed K, Bolton-Gillespie E, Dasgupta Y, Langer S, Siciliano M, Nieborowska-Skorska M, Hanamshet K, Belyaeva EA, Bernhardy AJ, Lee J, Moore M, Zhao H, Valent P, Matlawska-Wasowska K, Muschen M, Bhatia S, Bhatia R, Johnson N, Wasik MA, Mazin AV, Skorski T (2018) Simultaneous targeting of PARP1 and RAD52 triggers dual synthetic lethality in BRCA-deficient tumor cells. Cell Rep 23(11):3127–3136.  https://doi.org/10.1016/j.celrep.2018.05.034 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Vigneswaran N, Williams MD (2014) Epidemiologic trends in head and neck cancer and aids in diagnosis. Oral Maxillofac Surg Clin N Am 26(2):123–141.  https://doi.org/10.1016/j.coms.2014.01.001 CrossRefGoogle Scholar
  41. Wang Y, Zhang N, Zhang L, Li R, Fu W, Ma K, Li X, Wang L, Wang J, Zhang H, Gu W, Zhu WG, Zhao Y (2016) Autophagy regulates chromatin ubiquitination in DNA damage response through elimination of SQSTM1/p62. Mol Cell 63(1):34–48.  https://doi.org/10.1016/j.molcel.2016.05.027 CrossRefPubMedGoogle Scholar
  42. Wang Q, Guo Y, Jiang S, Dong M, Kuerban K, Li J, Feng M, Chen Y, Ye L (2018) A hybrid of coumarin and phenylsulfonylfuroxan induces caspase-dependent apoptosis and cytoprotective autophagy in lung adenocarcinoma cells. Phytomedicine 39:160–167.  https://doi.org/10.1016/j.phymed.2017.12.029 CrossRefPubMedGoogle Scholar
  43. Wei H, Wang C, Croce CM, Guan JL (2014) p62/SQSTM1 synergizes with autophagy for tumor growth in vivo. Genes Dev 28(11):1204–1216.  https://doi.org/10.1101/gad.237354.113 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Wirth M, Joachim J, Tooze SA (2013) Autophagosome formation--the role of ULK1 and Beclin1-PI3KC3 complexes in setting the stage. Semin Cancer Biol 23(5):301–309.  https://doi.org/10.1016/j.semcancer.2013.05.007 CrossRefPubMedGoogle Scholar
  45. Xie Z, Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9(10):1102–1109.  https://doi.org/10.1038/ncb1007-1102 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Otorhinolaryngology-Head and Neck Surgery, Huashan HospitalFudan UniversityShanghaiChina
  2. 2.Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina
  3. 3.Department of Biological Medicines, School of PharmacyFudan UniversityShanghaiChina
  4. 4.Department of Otolaryngology, Changzheng HospitalThe Second Military Medical UniversityShanghaiChina

Personalised recommendations