Cacti for production of metabolites: current state and perspectives

  • María del Socorro Santos-DíazEmail author
  • Nancy Gabriela Camarena-Rangel


The Cactaceae family is native from the American continent but is distributed in the arid and semiarid regions worldwide. Cacti exhibit different morphological (succulent body, extended root system, presence of spines, thick waterproof epidermis) and physiological adaptations (crassulacean acid metabolism) that allow growth in adverse conditions intolerable for most C3 and C4 crops. In addition, these plants produce a wide range of secondary metabolites involved in defense mechanism against biotic and abiotic stresses. The present review focused on the content of alkaloids, phenolic compounds, and terpenes present in cacti plants. Data were limited to those compounds clearly characterized by chromatographic and/or spectrometric techniques in both globular and columnar cacti. Additional information about their pharmacological or biological activities, validated by in vitro or in vivo assays, is also presented. Data revealed that the level of some chemical constituents could give value added to these species from a nutritional, pharmacological, and biological point of view.


Cacti Secondary metabolites Alkaloids Terpenes Phenolics 


Compliance with ethical standards

The authors are aware with the ethical responsibilities required by the journal and are committed to comply them.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals.


  1. Abdul Malek SN, Shin SK, Abdul Wahab N, Yaacob H (2009) Cytotoxic components of Pereskia bleo (Kunt) DC (Cactaceae) leaves. Molecules 14:1713–1724. CrossRefGoogle Scholar
  2. Abdulazeem L, Al-Alaq TF, Alrubaei HA, Al-Mawlah YH, Alwan WK (2018) Anti-cancer activity of Opuntia polyacantha alkaloid extract on human breast cancer cell line. J Pharm Sci Res 10:1753–1754Google Scholar
  3. Akiba M, Koyama K, Takahashi K, Kondo N, Yuasa H (1998) Antinociceptive effect of triterpenes from cacti. Pharm Biol 36:50–57. CrossRefGoogle Scholar
  4. Altesor A, Ezcurra E (2003) Functional morphology and evolution of stem succulence in cacti. J Arid Environ 53:557–567. CrossRefGoogle Scholar
  5. Anderson EF (2001) The cactus family. Timber Press, PortlandGoogle Scholar
  6. Andrade-Cetto A, Wiedenfeld H (2011) Anti-hyperglycemic effect of Opuntia streptacantha Lem. Ethnopharm 133:940–943. CrossRefGoogle Scholar
  7. Antunes-Ricardo M, Moreno-García BE, Gutiérrez-Uribe JA, Aráiz-Hernández D, Alvarez MM, Serna-Saldivar SO (2014) Induction of apoptosis in colon cancer cells treated with isorhamnetin glycosides from Opuntia ficus-indica Pads. Plant Foods Hum Nutr 69:331–336. CrossRefGoogle Scholar
  8. Antunes-Ricardo M, Gutiérrez-Uribe JA, López-Pacheco F, Alvarez MM, Serna-Saldívar SO (2015) In vivo anti-inflammatory effects of isorhamnetin glycosides isolated from Opuntia ficus-indica (L.) Mill cladodes. Ind Crop Prod 76:803–808. CrossRefGoogle Scholar
  9. Astello-García MG, Cervantes I, Nair V, Reyes-Agüero A, Santos-Díaz MS, Guéraud F, Negre-Salvayre A, Rossignol M, Cisneros-Zevallos L, de la Rosa AP B (2015) Chemical composition and phenolic compounds profile of Opuntia ssp. cultivars with different domestication grade. J Food Compos Anal 43:119–130. CrossRefGoogle Scholar
  10. Baldassano S, Tesoriere L, Rotondo A, Serio R, Livrea MA, Mule F (2010) Inhibition of the mechanical activity of mouse ileum by cactus pear (Opuntia ficus indica, L, Mill.) fruit extract and its pigment indicaxanthin. J Agric Food Chem 58:7565–7571. CrossRefGoogle Scholar
  11. Becerra-Jiménez J, Andrade-Cetto A (2012) Effect of Opuntia streptacantha Lem. on alpha-glucosidase activity. J Ethnopharmacol 139:493–496. CrossRefGoogle Scholar
  12. Benayad Z, Martinez-Villaluenga C, Frias J, Gomez-Cordoves C, Es-Safi NE (2014) Phenolic composition, antioxidant and anti-inflammatory activities of extracts from Moroccan Opuntia ficus-indica flowers obtained by different extraction methods. Ind Crop Prod 62:412–420.
  13. Boudet AM (2007) Evolution and current status of research in phenolic compounds. Phytochem 68:2722–2735. CrossRefGoogle Scholar
  14. Bruhn JG, Bruhn C (1973) Alkaloids and ethnobotany of Mexican peyote cacti and related species. Econ Bot 27:241–251. CrossRefGoogle Scholar
  15. Butera D, Tesoriere L, Di Gaudio F, Bongiorno A, Allegra M, Pintaudi AM, Kohen R, Livrea MA (2002) Antioxidant activities of Sicilian prickly pear (Opuntia ficus indica) fruit extracts and reducing properties of its betalains: betanin and indicaxanthin. J Agric Food Chem 50:6895–6901. CrossRefGoogle Scholar
  16. Cabañas-García E, Areche C, Jáuregui-Rincón J, Cruz-Sosa F, Pérez-Molphe Balch E (2019) Phytochemical profiling of Coryphantha macromeris (Cactaceae) growing in greenhouse conditions using ultra-high-performance liquid chromatography–tandem mass spectrometry. Molecules 24:705. CrossRefGoogle Scholar
  17. Campbell CE, Kircher HW (1980) Senita cactus: a plant with interrupted sterol biosynthetic pathways. Phytochem 19:2777–2779. CrossRefGoogle Scholar
  18. Cassels BK (2019) Alkaloids of the Cactaceae - the classics. Nat Prod Comm.
  19. Cassels BK, Sáez-Briones P (2018) Dark classics in chemical neuroscience: mescaline. ACS Chem Neurosci 9:2448–2458. CrossRefGoogle Scholar
  20. Cassidy A, Hanley B, Lamuela-Raventos RM (2000) Review: isoflavones, lignans and stilbenes -origins, metabolism and potential importance to human health. J Sci Food Agric 80:1044–1062.<1044::AID-JSFA586>3.0.CO;2-N CrossRefGoogle Scholar
  21. Castellanos-Santiago E, Yahia EM (2008) Identification and quantification of betalains from the fruits of 10 Mexican prickly pear cultivars by high-performance liquid chromatography and electrospray ionization mass spectrometry. J Agric Food Chem 56:5758–5764. CrossRefGoogle Scholar
  22. Castellar R, Obon JJ, Alacid M, Fernández-López JA (2003) Color properties and stability of betacyanins from Opuntia fruits. J Agric Food Chem 51:2772–2776. CrossRefGoogle Scholar
  23. Castro-Campos-Pinto N, Nascimento Duque AP, Ramos-Pacheco N, Freitas-Mendes R, Silva Motta EV, Quaglio Bellozi PM, Ribeiro A, Elita Scio MJS (2015) Pereskia aculeata: a plant food with antinociceptive activity. J Pharma Biol 53:1780–1785. CrossRefGoogle Scholar
  24. Céspedes CL, Salazar JR, Martínez M, Aranda E (2005) Insect growth regulatory effects of some extracts and sterols from Myrtillocactus geometrizans (Cactaceae) against Spodoptera frugiperda and Tenebrio molitor. Phytochem 66:2481–2493. CrossRefGoogle Scholar
  25. Chahdoura H, Barreira JCM, Barros L, Santos-Buelga C, Ferreira ICFR, Achour L (2014) Phytochemical characterization and antioxidant activity of Opuntia microdasys (Lehm.) Pfeiff flowers in different stages of maturity. Food Funct 9:27–37. CrossRefGoogle Scholar
  26. Chahdoura H, Barreira JCM, Adouni K, Mhadhebi L, Calhelha RC, Snoussi M, Majdoub H, Flamini G, Ferreira ICFR, Achour L (2017) Bioactivity and chemical characterization of Opuntia macrorhiza Engelm. seed oil: potential food and pharmaceutical applications. Food Funct 8:2739–2747. CrossRefGoogle Scholar
  27. Cheynier V (2012) Phenolic compounds: from plants to foods. Phytochem Rev 11:153–177. 10.1039/C7FO00731KCrossRefGoogle Scholar
  28. Dok-Go H, Lee KH, Kim HJ, Lee EH, Lee J, Song YS, Lee YH, Jin C, Lee YS, Cho J (2003) Neuroprotective effects of antioxidative flavonoids, quercetin, (1)-dihydroquercetin and quercetin 3-methyl ether, isolated from Opuntia ficus-indica var. saboten. Brain Res 965:130–136. CrossRefGoogle Scholar
  29. Dominguez XA, Pugliese CA (1967) Chemical study of Mammillaria runyoni. The isolation of acetovanillone and anew triterpenoid, mamillarol. Planta Med 15:401–403CrossRefGoogle Scholar
  30. Domínguez XA, Ramírez RH, Ugaz OL, García J, Ketcham R (1968) Chemical study of the cactus Ariocarpus retusus. Planta Med 16:182–183CrossRefGoogle Scholar
  31. Dykes L, Rooney L (2007) Phenolic compounds in cereal grains and their health benefits. Cereal Foods World 52:105–111. Google Scholar
  32. Echeverría J, Niemeyer H (2012) Phenylethylamines from Browningia candelaris (Cactaceae). BLACPMA 11:341–344Google Scholar
  33. El-Shamahy SK, Youssef KM, Moussa-Ayoub TE (2009) Producing ice cream with concentrated cactus pear pulp: a preliminary study. JPACD 11:1–12Google Scholar
  34. Ferrigni NR, Sweetana SA, McLaughlin JL (1984) Identification of new cactus alkaloids in Backebergia militaris by tandem mass spectrometry. J Nat Prod 47:839–845. CrossRefGoogle Scholar
  35. Flores-Ortiz CM, Dávila P, Portilla H (2003) Alkaloids from Neobuxbaumia species (Cactaceae). Biochem Syst Ecol 31:581–585. CrossRefGoogle Scholar
  36. Galati EM, Mondello MR, Giuffrida D, Dugo G, Miceli N, Pergolizzi S, Taviano MF (2003) Chemical characterization and biological effects of Sicilian Opuntia ficus indica (L.) Mill. fruit juice: antioxidant and antiulcerogenic activity. J Agric Food Chem 51:4903–4908. CrossRefGoogle Scholar
  37. Garoby-Salom S, Guéraud F, Camaré C, Barba de la Rosa AP, Rossignol M, Santos-Díaz MS, Salvayre R, Negre-Salvayre A (2016) Dietary cladode powder from wild type and domesticated Opuntia species reduces atherogenesis in apoE knock-out mice. J Physiol Biochem 72:59–70. CrossRefGoogle Scholar
  38. Ghansah E, Kopsombut P, Malleque MA, Brossi A (1993) Effects of mescaline and some of its analogs on cholinergic neuromuscular transmission. Neuropharmacol 32:169–174 10.1016/0028-3908(93)90097-MCrossRefGoogle Scholar
  39. Gibson AC, Nobel PS (1986) The cactus primer. Harvard University Press, CambridgeCrossRefGoogle Scholar
  40. Gleason FK, Chollet R (2012) Plant biochemistry. Jones & Bartlett Learning, LLC, BurlingtonGoogle Scholar
  41. Helmlin HJ, Bourquin D, Brenneisen R (1992) Determination of phenylethylamines in hallucinogenic cactus species by high performance liquid chromatography with photodiode-array detection. J Chromatogr 623:381–385. CrossRefGoogle Scholar
  42. Hernández HM, Bárcenas RT (1996) Endangered cacti in the Chihuahuan Desert: II. Biogeography and conservation. Conserv Biol 10:1200–1209. CrossRefGoogle Scholar
  43. Hernández HM, Godínez H (1994) Contribución al conocimiento de las cactáceas mexicanas amenazadas. Acta Bot Mex 26:33–52. CrossRefGoogle Scholar
  44. Jiang J, Li Y, Chen Z, Min Z, Lou F (2006) Two novel C29-5β-sterols from the stems of Opuntia dillenii. Steroids 71:1073–1077. CrossRefGoogle Scholar
  45. Kakuta K, Baba M, Ito S, Kinoshita K, Koyama K, Takahashia K (2012) New triterpenoid saponins from cacti and anti-type I allergy activity of saponins from cactus. Bioorg Med Chem Lett 22:4793–4800. CrossRefGoogle Scholar
  46. Keller WJ, McLaughlin JL, Brady LR (1973) Cactus alkaloids XV: β-phenethylamine derivatives from Coryphantha macromeris var. runyonii. J Pharm Sci 62:408–411. CrossRefGoogle Scholar
  47. Keller J, Camaré C, Bernis C, Astello-García M, Barba de la Rosa AP, Rossignol M, Santos Díaz MS, Salvayre R, Negre-Salvayre A, Guéraud F (2015) Antiatherogenic and antitumoral properties of Opuntia cladodes: inhibition of low density lipoprotein oxidation by vascular cells, and protection against the cytotoxicity of lipid oxidation product 4-hydroxynonenal in a colorectal cancer cellular model. J Physiol Biochem 71:577–587. CrossRefGoogle Scholar
  48. Khan MI, Giridhar P (2015) Plant betalains: chemistry and biochemistry. Phytochem 117:267–295. CrossRefGoogle Scholar
  49. Kim HK, Tan CP, Karim R, Ariffin AA, Bakar J (2010) Chemical composition and DSC thermal properties of two species of Hylocereus cacti seed oil: Hylocereus undatus and Hylocereus polyrhizus. Food Chem 119:1326–1331. CrossRefGoogle Scholar
  50. Kinoshita K, Koyama K, Takahashi K (1992) New triterpenes from Trichocereus bridgesii. J Nat Prod 55:953–955CrossRefGoogle Scholar
  51. Kinoshita K, Akiba M, Saitoh M, Ye Y, Koyama K, Takahashi K, Kondo N, Yuasa H (1998) Antinociceptive effect of triterpenes from cacti. Pharm Biol 36:50–55. CrossRefGoogle Scholar
  52. Kinoshita K, Koyama K, Takahashi K, Kondo N, Yuasa H (2000) A new triterpenoid saponin from Isolatocereus dumortieri. J Nat Prod 635:701–703. CrossRefGoogle Scholar
  53. Knox MJ, Clark WD, Link SO (1983) Quantitative analysis of fi-phenethylamines in two Mammillaria species (Cactaceae). J Chromatogr A 265:357–362. CrossRefGoogle Scholar
  54. Kobayashi N, Schmidt J, Nimtz M, Wray V, Schliemann W (2000) Betalains from Christmas cactus. Phytochem 54:419–426. CrossRefGoogle Scholar
  55. Lanuzza F, Occhiuto F, Monforte MT, Tripodo MM, D’Angelo V, Galati EM (2017) Antioxidant phytochemicals of Opuntia ficus-indica (L.) Mill. cladodes with potential anti-spasmodic activity. J Pharmacogn Mag 13:S424–S429. CrossRefGoogle Scholar
  56. Lee EH, Kim HJ, Song YS, Jin C, Lee KT, Cho J, Lee YS (2003) Constituents of the stems and fruits of Opuntia ficus-indica var. saboten. Arch Pharm Res 26(12):1018–1023. CrossRefGoogle Scholar
  57. Lema-Rumińska J, Kulus D (2014) Micropropagation of cacti - a review. Haseltonia 19:46–63. CrossRefGoogle Scholar
  58. Mi-Na C, Hyun-Il J, Won-Jae L, Min-Ji K, Myung-Kon K, Young-Soo K (2013) Chemical composition and antioxidant activity of Korean cactus (Opuntia humifusa) fruit. Food Sci Biotechnol 22:523–529. CrossRefGoogle Scholar
  59. Núñez-Gastélum JA, González-Fernández R, Hernández Herrera A, Campas-Baypoli ON, Rodríguez-Ramírez R, Lobo-Galo N, Valero-Galván J (2018) Morphological characteristics, chemical composition and antioxidant activity of seeds by four wild Opuntia species from north of Mexico. JPACD 20:23–33Google Scholar
  60. Ogunbodede O, McCombs D, Trout K, Daley P, Terry M (2010) New mescaline concentrations from 14 taxa/cultivars of Echinopsis spp. (Cactaceae) (“San Pedro”) and their relevance to shamanic practice. J Ethnopharmacol 131:356–362. CrossRefGoogle Scholar
  61. Okazaki S, Kinoshita K, Ito S, Koyam K, Yuasa H, Takahashi K (2011) Triterpenoid saponins from Echinopsis macrogona (Cactaceae). Phytochem 72:136–146. CrossRefGoogle Scholar
  62. Ortega-Baes P, Godínez-Alvarez H (2006) Global diversity and conservation priorities in the Cactaceae. Biodivers Conserv 15:817–827. CrossRefGoogle Scholar
  63. Osorio-Esquivel O, Ortiz-Moreno A, Garduño-Siciliano L, Álvarez VB, Hernández-Navarro MD (2012) Antihyperlipidemic effect of methanolic extract from Opuntia joconostle seeds in mice fed a hypercholesterolemic diet. Plant Foods Hum Nutr 67:365–370. CrossRefGoogle Scholar
  64. Pérez-Molphe-Balch E, Santos-Díaz MS, Ramírez-Malagón R, Ochoa-Alejo N (2015) Tissue culture of ornamental cacti. Sci Agric 72:540–556. CrossRefGoogle Scholar
  65. Piatelli M, Minale L (1964) Pigments of Centrospermae I. Betacyanins from Phylocactus hybridus Hort. and Opuntia ficus-indica Mill. Phytochem 3:307–311. CrossRefGoogle Scholar
  66. Piga A (2004) Cactus pear: a fruit of nutraceutical and functional importance. JPACD 6: 9–22Google Scholar
  67. Pummangura S, McLaughlin JL, Davis DV, Cooks RG (1982) Cactus alkaloids. XLIX. New trace alkaloids (dehydrosalsolidine and heliamine) from the saguaro, Carnegiea gigantea, and confirmation by Mikes (MS/MS). J Nat Prod 45:277–282. CrossRefGoogle Scholar
  68. Ramadan MF, Mörse JT (2003) Recovered lipids from prickly pear [Opuntia ficus-indica (L) Mill.] peel: a good source of polyunsaturated fatty acids, natural antioxidant vitamins and sterols. Food Chem 83(83):447–486. CrossRefGoogle Scholar
  69. Rodriguez-Rodriguez C, Torres N, Gutierrez-Uribe JA, Noriega LG, Torre-Villalvazo I, Leal-Diaz AM, Antunes-Ricardo M, Marquez-Mota C, Ordaz G, Chavez-Santoscoy RA, Serna-Saldivar SO, Tovar AR (2015) Effect of isorhamnetin glycosides extracted from Opuntia ficus-indica in a mouse model of diet induced obesity. Food Funct 6:805–815. CrossRefGoogle Scholar
  70. Salazar JR, Céspedes CL (2013) Phytoecdysteroids and related sterols isolated from Mexican cacti: their potential use as natural insecticides. In: Céspedes CL, Sampietro DA, Seigler DS, Rai M (eds) Natural antioxidants and biocides from wild medicinal plants. CABI, Oxfordshire, pp 167–175CrossRefGoogle Scholar
  71. Salt TA, Tocker JE, Adler JH (1987) Dominance of ∆5-sterols in eight species of the Cactaceae. Phytochem 26:731–733. CrossRefGoogle Scholar
  72. Salvayre R, Negre-Salvayre A, Camaré C (2016) Oxidative theory of atherosclerosis and antioxidants. Biochim 125:281–296. CrossRefGoogle Scholar
  73. Sanchez-Gonzalez N, Jaime-Fonseca M, San Martin-Martinez E, Gerardo Zepeda L (2013) Extraction, stability, and separation of betalains from Opuntia joconostle cv. using response surface methodology. J Agric Food Chem 61:11995–12004. CrossRefGoogle Scholar
  74. Santos-Díaz MS, Pérez-Molphe E, Ramírez-Malagón R, Núñez-Palenius HG, Ochoa-Alejo N (2010) Mexican threatened cacti: current status and strategies for their conservation. In: Tepper GH (ed) Species diversity and extintion. Nova Science Publishers, Inc, Hauppauge, pp 1–60Google Scholar
  75. Santos-Zea L, Gutiérrez-Uribe J, Serna-Saldívar SO (2011) Comparative analysis of total phenols, antioxidant activity, and flavonol glycoside profile of cladode flours from different varieties of Opuntia spp. Agric Food Chem 59:7054–7061. CrossRefGoogle Scholar
  76. Serra AT, Poejo J, Matias A, Bronze MR, Duarte CMM (2013) Evaluation of Opuntia spp. derived products as antiproliferative agents in human colon cancer cell line (HT29). Food Res Int 54:892–901. CrossRefGoogle Scholar
  77. Silva-Barbosa A, Goodger JQD, Woodrow IE, Pereira de Andrade A, Alcântara-Bruno RL, Souza-Aquino I (2017) Elucidation of the betalainic chromoalkaloid profile of Pilosocereus catingicola (Gürke) Byles & Rowley subsp. Salvadorensis (Werderm.) Zappi (Cactaceae) from Paraíba, Brazil. Afr J Agric Res 12:1236–1243. Google Scholar
  78. Sitrit Y, Ninio R, Bar E, Golan E, Larkov O, Ravid U, Lewinsohn E (2004) S-Linalool synthase activity in developing fruit of the columnar cactus koubo [Cereus peruvianus (L.) Miller]. Plant Sci 167:1257–1262CrossRefGoogle Scholar
  79. Sreekanth D, Arunasree MK, Roy KR, Reddy TC, Reddy GV, Reddanna P (2007) Betanin a betacyanin pigment purified from fruits of Opuntia ficus-indica induces apoptosis in human chronic myeloid leukemia cell line-K562. Phytomed 14:739–746. CrossRefGoogle Scholar
  80. Sri Nurestri AM, Sim KS, Norhanom AW (2009) Phytochemical and cytotoxic investigations of Pereskia grandifolia Haw. (Cactaceae) leaves. J Biol Sci 9:488–493. CrossRefGoogle Scholar
  81. Štarha R, Chybidziurová A, Zdeněk L (1999) Constituents of Turbinicarpus alonsoi Glass & Arias (Cactaceae). Acta Univ Palacki Olomu 38:71–73Google Scholar
  82. Stintzing FC, Carle R (2004) Functional properties of anthocyanins and betalains in plants, food, and in human nutrition. Trends Food Sci Technol 15:19–38. CrossRefGoogle Scholar
  83. Stintzing FC, Schieber A, Carle R (2002) Identification of betalains from yellow beet (Beta vulgaris L.) and cactus pear [Opuntia ficus-indica (l.) Mill.] by high-performance liquid chromatography−electrospray ionization mass spectrometry. J Agric Food Chem 50:2302–2307. CrossRefGoogle Scholar
  84. Stintzing FC, Herbach KM, Mosshammer MR, Carle R, Yi W, Sellappan S, Akoh CC, Bunch R, Felker P (2005) Color, betalain pattern, and antioxidant properties of cactus pear (Opuntia spp.) clones. J Agric Food Chem 53:442–451. CrossRefGoogle Scholar
  85. Sutariya B, Saraf M (2017) Betanin, isolated from fruits of Opuntia elatior Mill attenuates renal fibrosis in diabetic rats through regulating oxidative stress and TGF-β pathway. J Ethnopharmacol 198:432–443. CrossRefGoogle Scholar
  86. Takizawa T, Kjnoshita K, Koyama K, Takahashi K (1993) A new type of triterpene from Trichocereus pachanoi. J Nat Prod 56:183–2185. CrossRefGoogle Scholar
  87. Terrazas T, Mauseth JD (2002) Shoot anatomy and morphology. In: Nobel PS (ed) The cacti: biology and uses. California University Press, Berkeley, pp 23–40Google Scholar
  88. Tesoriere L, Butera D, Allegra M, Fazzari M, Livrea MA (2005) Distribution of betalain pigments in red blood cells after consumption of cactus pear fruits and increased resistance of the cells to ex vivo induced oxidative hemolysis in humans. J Agric Food Chem 53:1266–1270. CrossRefGoogle Scholar
  89. Thi Tran TM, Nguyen Thanh B, Moussa-Ayoub TE, Rohn S, Jerz G (2019, 2019) Profiling of polar metabolites in fruits of Opuntia stricta var. dillenii by ion-pair high-performance countercurrent chromatography and off-line electrospray mass-spectrometry injection. J Chromatogr A.
  90. Trout K (2014) Cactus chemistry by species. Accessed 9 Jan 2014
  91. Unger SE, Cooks RG, Mata R, McLaughlin JL (1980) Chemotaxonomy of columnar Mexican cacti by mass spectrometry/mass spectrometry. J Nat Prod 43:288–293. CrossRefGoogle Scholar
  92. Wright CR, Setzer WN (2014) Chemical composition of volatiles from Opuntia littoralis, Opuntia ficus-indica and Opuntia prolifera growing on Catalina Island, California. J Nat Prod Res 28:208–211. CrossRefGoogle Scholar
  93. Wybraniec S, Mizrahi Y (2002) Fruit flesh betacyanin pigments in Hylocereus cacti. J Agric Food Chem 50:6086–6089. CrossRefGoogle Scholar
  94. Wybraniec S, Novak-Wydra B (2007) Mammillarinin: a new malonylated betacyanin from fruits of Mammillaria. J Agric Food Chem 55:8138–8143. CrossRefGoogle Scholar
  95. Wybraniec S, Stalica P, Jerz G, Klose B, Gebers N, Winterhalter P, Spórna A, Szaleniec M, Mizrahid J (2009) Separation of polar betalain pigments from cacti fruits of Hylocereus polyrhizus by ion-pair high-speed countercurrent chromatography. J Chromatogr A 1216:6890–6899. CrossRefGoogle Scholar
  96. Ye Y, Kinoshita K, Koyama K, Takahashi K, Kondo N, Yuasa H (1998) New triterpenes from Machaerocereus eruca. J Nat Prod 61:456–460. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Facultad de Ciencias QuímicasUASLPSan Luis PotosíMexico

Personalised recommendations