Advertisement

Applied Microbiology and Biotechnology

, Volume 103, Issue 21–22, pp 8963–8975 | Cite as

C16-Fengycin A affect the growth of Candida albicans by destroying its cell wall and accumulating reactive oxygen species

  • Yanan Liu
  • Jing Lu
  • Jing Sun
  • Xiaoyu Zhu
  • Libang Zhou
  • Zhaoxin LuEmail author
  • Yingjian LuEmail author
Applied microbial and cell physiology

Abstract

Candida albicans is the most common clinical pathogenic fungus, which is highly susceptible to immunodeficiency. Development of novel antifungal agents has become a growing trend in the treatment of Candida infections. C16-Fengycin A, a lipopeptide isolated from Bacillus amyloliquefaciens fmb60 showed significant fungicidal activity against C. albicans. In the study, we explored the possible antifungal mode of C16-Fengycin A. It was predicted that C16-Fengycin A had the ability to disrupt the cell wall due to its alterations of cell ultrastructure, and reduction of cell wall hydrophobicity. This was further confirmed by the changes in the exposure of the cell wall components and down-regulation of the genes related in the cell wall synthesis. Meanwhile, with the treatment of C16-Fengycin A, the levels of reactive oxygen species (ROS) increased, resulting in mitochondrial dysfunction in the cells. We hypothesized that the antifungal mechanism of C16-Fengycin A might be via the destruction of the cell wall and the accumulation of ROS, which could activate the High-Osmolarity Glycerol Mitogen-Activated Protein Kinase (HOG-MAPK) pathway. Our findings indicated that C16-Fengycin A could be a potential antifungal agent that could be used to treat candida infections.

Keywords

Antifungal Candida albicans Cell wall ROS 

Notes

Funding

This work was financially supported by grants from the National Natural Science Foundation of China (No. 31571887).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Supplementary material

253_2019_10117_MOESM1_ESM.pdf (206 kb)
ESM 1 (PDF 205 kb)

References

  1. An AM, Francois IE, Meert EM, Li QT, Cammue BP, Thevissen K (2007) The antifungal activity of RsAFP2, a plant defensin from Raphanus sativus, involves the induction of reactive oxygen species in Candida albicans. J Mol Microbiol Biotechnol 13(4):243–247.  https://doi.org/10.1159/000104753 CrossRefGoogle Scholar
  2. Anderson JB (2005) Evolution of antifungal-drug resistance: mechanisms and pathogen fitness. Nat Rev Microbiol 3(7):547–556.  https://doi.org/10.1038/nrmicro1179 CrossRefGoogle Scholar
  3. Andres MT, Viejo-Diaz M, Fierro JF (2008) Human lactoferrin induces apoptosis-like cell death in Candida albicans: critical role of K+-channel-mediated K+ efflux. Antimicrob Agents Chemother 52(11):4081–4088.  https://doi.org/10.1128/aac.01597-07 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Arima K, Kakinuma A, Tamura G (1968) Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 31(3):488–494.  https://doi.org/10.1016/0006-291X(68)90503-2 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bauer KD (1993) Quality control issues in DNA content flow cytometry. Ann N Y Acad Sci 677:59–77.  https://doi.org/10.1111/j.1749-6632.1993.tb38765.x CrossRefPubMedGoogle Scholar
  6. Bayhan GI, Garipardic M, Karaman K, Akbayram S (2016) Voriconazole-associated visual disturbances and hallucinations. Cutan Ocul Toxicol 35(1):80–82.  https://doi.org/10.3109/15569527.2015.1020544 CrossRefGoogle Scholar
  7. Besson F, Peypoux F, Michel G, Delcambe L (1976) Characterization of iturin a in antibiotics from various strains of Bacillus subtilis. J Antibiot 29(10):1043–1049.  https://doi.org/10.7164/antibiotics.29.1043 CrossRefPubMedGoogle Scholar
  8. Brewster JL, de Valoir T, De DND, Winter E, Gustin MC (1993) An osmosensing signal transduction pathway in yeast. Science 259(5102):1760–1763.  https://doi.org/10.1126/science.7681220 CrossRefPubMedGoogle Scholar
  9. Calderone R, Sun N, Gay-Andrieu F, Groutas W, Weerawarna P, Prasad S, Alex D, Li D (2014) Antifungal drug discovery: the process and outcomes. Future Microbiol 9(6):791–805.  https://doi.org/10.2217/fmb.14.32 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cheetham J, MacCallum DM, Doris KS, da Silva Dantas A, Scorfield S, Odds F, Smith DA, Quinn J (2011) MAPKKK-independent regulation of the Hog1 stress-activated protein kinase in Candida albicans. J Biol Chem 286(49):42002–42016.  https://doi.org/10.1074/jbc.M111.265231 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cheng W, Feng YQ, Ren J, Jing D, Wang C (2016) Anti-tumor role of Bacillus subtilis fmbJ-derived fengycin on human colon cancer HT29 cell line. Neoplasma 63(2):215–222.  https://doi.org/10.4149/206_150518N270 CrossRefPubMedGoogle Scholar
  12. Chin VK, Lee TY, Rusliza B, Chong PP (2016) Dissecting Candida albicans infection from the perspective of C. albicans virulence and omics approaches on host-pathogen interaction: a review. Int J Mol Sci 17(10):1643.  https://doi.org/10.3390/ijms17101643 CrossRefPubMedCentralGoogle Scholar
  13. Costa V, Moradas-Ferreira P (2001) Oxidative stress and signal transduction in Saccharomyces cerevisiae: insights into ageing, apoptosis and diseases. Mol Asp Med 22(4):217–246.  https://doi.org/10.1016/S0098-2997(01)00012-7 CrossRefGoogle Scholar
  14. Ene IV, Walker LA, Schiavone M, Lee KK, Martin-Yken H, Dague E, Gow NA, Munro CA, Brown AJ (2015) Cell wall remodeling enzymes modulate fungal cell wall elasticity and osmotic stress resistance. MBio 6(4):e00986.  https://doi.org/10.1128/mBio.00986-15 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fernandes C, Anjos J, Walker LA, Silva BM, Cortes L, Mota M, Munro CA, Gow NA, Gonçalves T (2014) Modulation of Alternaria infectoria cell wall chitin and glucan synthesis by cell wall synthase inhibitors. Antimicrob Agents Chemother 58(5):2894–2904.  https://doi.org/10.1128/AAC.02647-13 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ford CB, Funt JM, Abbey D, Issi L, Guiducci C, Martinez DA, Delorey T, Li BY, White TC, Cuomo C, Rao RP, Berman J, Thompson DA, Regev A (2015) The evolution of drug resistance in clinical isolates of Candida albicans. Elife 4:e00662.  https://doi.org/10.7554/eLife.00662 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gregori C, Schuller C, Roetzer A, Schwarzmuller T, Ammerer G, Kuchler K (2007) The high-osmolarity glycerol response pathway in the human fungal pathogen Candida glabrata strain ATCC 2001 lacks a signaling branch that operates in baker's yeast. Eukaryot Cell 6(9):1635–1645.  https://doi.org/10.1128/EC.00106-07 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Helmerhorst EJ, Troxler RF, Oppenheim FG (2001) The human salivary peptide histatin 5 exerts its antifungal activity through the formation of reactive oxygen species. Proc Natl Acad Sci U S A 98(25):14637–14642.  https://doi.org/10.1073/pnas.141366998 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Horowitz S, Griffin WM (1991) Structural analysis of Bacillus licheniformis 86 surfactant. J Ind Microbiol 7(1):45–52CrossRefGoogle Scholar
  20. Hultmark D, Engstrom Å, Bennich H, Kapur R, Boman HG (1982) Insect immunity: isolation and structure of cecropin D and four minor antibacterial components from Cecropia pupae. Eur J Biochem 127(1):207–217.  https://doi.org/10.1111/j.1432-1033.1982.tb06857.x CrossRefGoogle Scholar
  21. Hwang B, Hwang JS, Lee J, Lee DG (2010) Antifungal properties and mode of action of psacotheasin, a novel knottin-type peptide derived from Psacothea hilaris. Biochem Biophys Res Commun 400(3):352–357.  https://doi.org/10.1016/j.bbrc.2010.08.063 CrossRefPubMedGoogle Scholar
  22. Kullberg BJ, Arendrup MC (2015) Invasive candidiasis. N Engl J Med 373(15):1445–1456.  https://doi.org/10.1056/NEJMra1315399 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lee HS, Kim Y (2017) Paeonia lactiflora inhibits cell wall synthesis and triggers membrane depolarization in Candida albicans. J Microbiol Biotechnol 27(2):395–404.  https://doi.org/10.4014/jmb.1611.11064 CrossRefPubMedGoogle Scholar
  24. Liu Y, Lu J, Sun J, Lu F, Bie X, Lu Z (2019) Membrane disruption and DNA binding of Fusarium graminearum cell induced by C16-Fengycin A produced by Bacillus amyloliquefaciens. Food Control 102:206–213.  https://doi.org/10.1016/j.foodcont.2019.03.031 CrossRefGoogle Scholar
  25. Lu Y, Su C, Unoje O, Liu H (2014) Quorum sensing controls hyphal initiation in Candida albicans through Ubr1-mediated protein degradation. Proc Natl Acad Sci U S A 111(5):1975–1980.  https://doi.org/10.1073/pnas.1318690111 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lu H, Qian S, Muhammad U, Jiang X, Han J, Lu Z (2016) Effect of fructose on promoting fengycin biosyntesis in Bacillus amyloliquefaciens fmb-60. J Appl Microbiol 121(6):1653–1664.  https://doi.org/10.1111/jam.13291 CrossRefGoogle Scholar
  27. Mandal SM, Porto WF, Dey P, Maiti MK, Ghosh AK, Franco OL (2013) The attack of the phytopathogens and the trumpet solo: identification of a novel plant antifungal peptide with distinct fold and disulfide bond pattern. Biochimie 95(10):1939–1948.  https://doi.org/10.1016/j.biochi.2013.06.027 CrossRefPubMedGoogle Scholar
  28. Miao H, Zhao L, Li C, Shang Q, Lu H, Fu Z, Wang L, Jiang Y, Cao Y (2012) Inhibitory effect of Shikonin on Candida albicans growth. Biol Pharm Bull 35(11):1956–1963.  https://doi.org/10.1248/bpb.b12-00338 CrossRefGoogle Scholar
  29. Mouyna I, Fontaine T, Vai M, Monod M, Fonzi WA, Diaquin M, Popolo L, Hartland RP, Latge JP (2000) Glycosylphosphatidylinositol-anchored glucanosyltransferases play an active role in the biosynthesis of the fungal cell wall. J Biol Chem 275(20):14882–14889.  https://doi.org/10.1074/jbc.275.20.14882 CrossRefPubMedGoogle Scholar
  30. Naito Y, Tohda H, Okuda K, Takazoe I (1993) Adherence and hydrophobicity of invasive and noninvasive strains of Porphyromonas gingivalis. Oral Microbiol Immunol 8(4):195–202.  https://doi.org/10.1111/j.1399-302X.1993.tb00559.x CrossRefPubMedGoogle Scholar
  31. Newman DJ (2008) Natural products as leads to potential drugs: an old process or the new hope for drug discovery? J Med Chem 51(9):2589–2599.  https://doi.org/10.1021/jm0704090 CrossRefPubMedGoogle Scholar
  32. Nishikiori T, Naganawa H, Muraoka Y, Aoyagi T, Umezawa H (1986) Plipastatins: new inhibitors of phospholipase A2, produced by Bacillus Cereus BMG302-fF67. III. Structural elucidation of plipastins. J Antibiot 39(6):755–761.  https://doi.org/10.7164/antibiotics.39.755 CrossRefPubMedGoogle Scholar
  33. Odds FC, Brown AJ, Gow NA (2003) Antifungal agents: mechanisms of action. Trends Microbiol 11(6):272–279.  https://doi.org/10.1016/S0966-842X(03)00117-3 CrossRefGoogle Scholar
  34. Papon N, Courdavault V, Clastre M, Bennett RJ (2013) Emerging and emerged pathogenic Candida species: beyond the Candida albicans paradigm. PLoS Pathog 9(9):e1003550.  https://doi.org/10.1371/journal.ppat.1003550 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Peleg AY, Hogan DA, Mylonakis E (2010) Medically important bacterial-fungal interactions. Nat Rev Microbiol 8(5):340–349.  https://doi.org/10.1038/nrmicro2313 CrossRefPubMedGoogle Scholar
  36. Perlin DS (2015) Mechanisms of echinocandin antifungal drug resistance. Ann N Y Acad Sci 1354:1–11.  https://doi.org/10.1111/nyas.12831 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Pfaller MA, Diekema DJ (2010) Epidemiology of invasive mycoses in North America. Crit Rev Microbiol 36(1):1–53.  https://doi.org/10.3109/10408410903241444 CrossRefPubMedGoogle Scholar
  38. Phillips AJ, Sudbery I, Ramsdale M (2003) Apoptosis induced by environmental stresses and amphotericin B in Candida albicans. Proc Natl Acad Sci U S A 100(24):14327–14332.  https://doi.org/10.1073/pnas.2332326100 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Qi X, Zhou C, Li P, Xu W, Cao Y, Ling H, Ning Chen W, Ming Li C, Xu R, Lamrani M, Mu Y, Leong SS, Wook Chang M, Chan-Park MB (2010) Novel short antibacterial and antifungal peptides with low cytotoxicity: efficacy and action mechanisms. Biochem Biophys Res Commun 398(3):594–600.  https://doi.org/10.1016/j.bbrc.2010.06.131 CrossRefPubMedGoogle Scholar
  40. Rajasekharan SK, Kamalanathan C, Ravichandran V, Ray AK, Satish AS, Mohanvel SK (2018) Mannich base limits Candida albicans virulence by inactivating Ras-cAMP-PKA pathway. Sci Rep 8(1):14972.  https://doi.org/10.1038/s41598-018-32935-9 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Shai Y (1995) Molecular recognition between membrane-spanning polypeptides. Trends Biochem Sci 20(11):460–464.  https://doi.org/10.1016/S0968-0004(00)89101-X CrossRefPubMedGoogle Scholar
  42. Sherrington SL, Sorsby E, Mahtey N, Kumwenda P, Lenardon MD, Brown I, Ballou ER, MacCallum DM, Hall RA (2017) Adaptation of Candida albicans to environmental pH induces cell wall remodelling and enhances innate immune recognition. PLoS Pathog 13(5):e1006403.  https://doi.org/10.1371/journal.ppat.1006403 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56(4):845–857.  https://doi.org/10.1111/j.1365-2958.2005.04587.x CrossRefPubMedGoogle Scholar
  44. Sun L, Lu Z, Bie X, Lu F, Yang S (2006) Isolation and characterization of a co-producer of fengycins and surfactins, endophytic Bacillus amyloliquefaciens ES-2, from Scutellaria baicalensis Georgi. World J Microbiol Biotechnol 22(12):1259–1266.  https://doi.org/10.1007/s11274-006-9170-0 CrossRefGoogle Scholar
  45. Tang Q, Bie X, Lu Z, Lv F, Tao Y, Qu X (2014) Effects of fengycin from Bacillus subtilis fmbJ on apoptosis and necrosis in Rhizopus stolonifer. J Microbiol 52(8):675–680.  https://doi.org/10.1007/s12275-014-3605-3 CrossRefPubMedGoogle Scholar
  46. Turner SA, Butler G (2014) The Candida pathogenic species complex. Cold Spring Harb Perspect Med 4(9):a019778.  https://doi.org/10.1101/cshperspect.a019778 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Vanittanakom N, Loeffler W, Koch U, Jung G (1986) Fengycin-A novel antifungal lipopeptide antibiotic produced by Bacillus Subtillis F-29-3. J Antibiot 39(7):888–901.  https://doi.org/10.7164/antibiotics.39.888 CrossRefGoogle Scholar
  48. Vincent BM, Lancaster AK, Scherz-Shouval R, Whitesell L, Lindquist S (2013) Fitness trade-offs restrict the evolution of resistance to amphotericin B. PLoS Biol 11(10):e1001692.  https://doi.org/10.1371/journal.pbio.1001692 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Wei YH, Wang LC, Chen WC, Chen SY (2010) Production and characterization of fengycin by indigenous Bacillus subtilis F29-3 originating from a potato farm. Int J Mol Sci 11(11):4526–4538.  https://doi.org/10.3390/ijms11114526 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Yin H, Guo C, Wang Y, Liu D, Lv Y, Lv F, Lu Z (2013) Fengycin inhibits the growth of the human lung cancer cell line 95D through reactive oxygen species production and mitochondria-dependent apoptosis. Anti-Cancer Drugs 24(6):587–598.  https://doi.org/10.1097/CAD.0b013e3283611395 CrossRefPubMedGoogle Scholar
  51. Zhu X, Zhang L, Wang J, Ma Z, Xu W, Li J, Shan A (2015) Characterization of antimicrobial activity and mechanisms of low amphipathic peptides with different alpha-helical propensity. Acta Biomater 18:155–167.  https://doi.org/10.1016/j.actbio.2015.02.023 CrossRefPubMedGoogle Scholar
  52. Zoratti M, Szabo I (1995) The mitochondrial permeability transition. Biochim Biophys Acta 1241(2):139–176.  https://doi.org/10.1016/0304-4157(95)00003-A CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Food Science and TechnologyNanjing Agricultural UniversityNanjingChina
  2. 2.College of Food Science and EngineeringNanjing University of Finance and EconomicsNanjingChina

Personalised recommendations