Geobacillus strains that have potential value in microbial enhanced oil recovery

  • Jia-Hui Lin
  • Kun-Cheng Zhang
  • Wei-Yi Tao
  • Dan Wang
  • Shuang LiEmail author


Bacteria from the genus Geobacillus are generally obligately thermophilic, with a unique bioenergy production capacity and unique enzymes. Geobacillus species were isolated primarily from hot springs, oilfields, and associated soils. They often exhibit unique survival patterns in these extreme oligotrophic environments. With the development of the microbial resources found in oilfields, Geobacillus spp. have been proven as valuable bacteria in many reports related to oilfields. After the isolation of Geobacillus by culture methods, more evidence was found that they possess the abilities of hydrocarbon utilization and bioemulsifier production. This paper mainly summarizes some characteristics of the Geobacillus species found in the oilfield environment, focusing on the inference and analysis of hydrocarbon degradation and bioemulsifier synthesis based on existing research, which may reveal their potential value in microbial enhanced oil recovery. It also provides references for understanding microbes in extreme environments.


Geobacillus Thermophiles Hydrocarbon degradation EPS Bioemulsifier MEOR 


Funding information

This work was supported by the National Natural Science Foundation of China (No. 51774188) and the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Abol Fotouh DM, Bayoumi RA, Hassan MA (2016) Production of thermoalkaliphilic lipase from Geobacillus thermoleovorans DA2 and application in leather industry. Enzyme Res.
  2. Aliyu H, Lebre P, Blom J, Cowan D, Maayer PD (2016) Phylogenomic re-assessment of the thermophilic genus Geobacillus. Syst Appl Microbiol 39(8):527–533CrossRefGoogle Scholar
  3. An C, Anna E, Gillian H, Liesbeth L, Paul DV, Anita VL, Niall A (2012) Taxonomic revision of the genus Geobacillus: emendation of Geobacillus, G. stearothermophilus, G. jurassicus, G. toebii, G. thermodenitrificans and G. thermoglucosidans (nom. corrig., formerly ‘thermoglucosidasius’); transfer of Bacillus thermantarcticus to the genus as G. thermantarcticus comb. nov.; proposal of Caldibacillus debilis gen. nov., comb. nov.; transfer of G. tepidamans to Anoxybacillus as A. tepidamans comb. nov.; and proposal of Anoxybacillus caldiproteolyticus sp. nov. Int J Syst Evol Micr 62: 1470–1485Google Scholar
  4. Bezuidt OK, Rian P, Gomri AM, Fiyin A, Makhalanyane TP, Karima K, Don A (2016) The Geobacillus pan-genome: implications for the evolution of the genus. Front Microbiol 7:723CrossRefGoogle Scholar
  5. Banat IM, Marchant R, Rahman TJ (2004) Geobacillus debilis sp nov., a novel obligately thermophilic bacterium isolated from a cool soil environment, and reassignment of Bacillus pallidus to Geobacillus pallidus comb. nov. Int Yst Vol Micr 54:197–2201Google Scholar
  6. Barnard D, Casanueva A, Tuffin M, Cowan D (2010) Extremophiles in biofuel synthesis. Environ Technol 31(8–9):871–888CrossRefGoogle Scholar
  7. Boonmak C, Takahashi Y, Morikawa M (2014) Cloning and expression of three ladA-type alkane monooxygenase genes from an extremely thermophilic alkane-degrading bacterium Geobacillus thermoleovorans B23. Extremophiles 18(3):515–523CrossRefGoogle Scholar
  8. Bostwick A, Speck F, Seyller T, Horn K, Polini M, Asgari R (2014) Geobacillus icigianus sp. nov. a new thermophilic bacterium isolated from Valley of Geysers, Kamchatka. Int J Syst Evol Microbiol 500:14–00342Google Scholar
  9. Brown LR (2010) Microbial enhanced oil recovery (MEOR). Curr Opin Microbiol 13(3):316–320CrossRefGoogle Scholar
  10. Burgess SA, Flint SH, Lindsay D, Cox MP, Biggs PJ (2017) Insights into the Geobacillus stearothermophilus species based on phylogenomic principles. BMC Microbiol 17:140CrossRefGoogle Scholar
  11. Chang T, Yao S (2011) Thermophilic, lignocellulolytic bacteria for ethanol production: current state and perspectives. Appl Microbiol Biotechnol 92(1):13–27CrossRefGoogle Scholar
  12. Chen Y, Jiang B, Xing Y, Zhang N, Lian L, Lu P (2018) Identification and characterization on PAHs-degrading microorganisms via cultivation-independent approaches. China Environ Sci 38(9):3562–3575Google Scholar
  13. Cihan AC, Ozcan B, Tekin N, Cokmus C (2011) Phylogenetic diversity of isolates belonging to genera Geobacillus and Aeribacillus isolated from different geothermal regions of Turkey.W J Microbiol Biotechnol 27(11): 2683–2696Google Scholar
  14. Correa-Llanten DN, Munoz-Ibacache SA, Castro ME, Munoz PA, Blamey JM (2013) Gold nanoparticles synthesized by Geobacillus sp strain ID17 a thermophilic bacterium isolated from Deception Island, Antarctica. Microb Cell Factories 12:75CrossRefGoogle Scholar
  15. Cripps RE, Eley K, Leak DJ, Rudd B, Taylor M, Todd M, Boakes S, Martin S, Atkinson T (2009) Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production. Metab Eng 11(6):398–408CrossRefGoogle Scholar
  16. Dinsdale AE, Halket G, Coorevits A, Van-Landschoot A, Busse HJ, De-Vos P, Logan NA (2011) Emended descriptions of Geobacillus thermoleovorans and Geobacillus thermocatenulatus. Int J Syst Evol Microbiol 61(Pt 8):1802–1810CrossRefGoogle Scholar
  17. Dong Y, Du H, Gao C, Ma T, Feng L (2012) Characterization of two long-chain fatty acid CoA ligases in the Gram-positive bacterium Geobacillus thermodenitrificans NG80-2. Microbiol Res 167(10):602–607CrossRefGoogle Scholar
  18. Donk PJ (1920) A highly resistant thermophilic organism. J Bacteriol 5(4):373Google Scholar
  19. Edward F,Stephen L,Erko S,Fabiano T (2014) The Prokaryotes,fourthed. Berlin HeidelbergGoogle Scholar
  20. Elumalai P, Parthipan P, Narenkumar J, Anandakumar B, Madhavan J, Oh B-T, Rajasekar A (2019) Role of thermophilic bacteria (Bacillus and Geobacillus) on crude oil degradation and biocorrosion in oil reservoir environment. 3. Biotech 9(3):79Google Scholar
  21. Feng L, Wang W, Cheng J, Ren Y, Zhao G, Gao C, Tang Y, Liu X, Han W, Peng X, Liu R, Wang L (2007) Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. P Natl Acad Sci USA 104(13):5602–5607CrossRefGoogle Scholar
  22. Freitas F, Alves VD, Reis MA (2011) Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol 29(8):388–398CrossRefGoogle Scholar
  23. Gao C (2018) Experiences of microbial enhanced oil recovery in Chinese oil fields. J Pet Sci Eng 166:55–62CrossRefGoogle Scholar
  24. Galina N, Victoria S, Olga M, (2018) Geobacillus bacteria: potential commercial applications in industry, bioremediation, and bioenergy production[Online First], IntechOpen
  25. Garg N, Tang W, Goto Y, Nair SK, van der Donk WA (2012) Lantibiotics from Geobacillus thermodenitrificans. P Natl Acad Sci USA 109(14):5241–5246CrossRefGoogle Scholar
  26. Geetha SJ, Banat IM, Joshi SJ (2018) Biosurfactants: production and potential applications in microbial enhanced oil recovery (MEOR). Biocatal Agricul Biotechnol 14:23–32CrossRefGoogle Scholar
  27. Ghosal D, Ghosh S, Dutta TK, Ahn Y (2016) Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Front Microbiol 7:1369Google Scholar
  28. Gugliandolo C, Spano A, Lentini V, Arena A, Maugeri TL (2014) Antiviral and immunomodulatory effects of a novel bacterial exopolysaccharide of shallow marine vent origin. J Appl Microbiol 116(4):1028–1034CrossRefGoogle Scholar
  29. Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169(1–3):1–15CrossRefGoogle Scholar
  30. Han HY, Zhu WY, Song ZY (2017) Mechanisms of oil displacement by Geobacillus stearothermophilus producing bio-emulsifier for MEOR. Pet Sci Technol 35(17):1791–1798CrossRefGoogle Scholar
  31. Jia X, Ye X, Chen J, Lin X, Vasseur L, You M (2018) Purification and biochemical characterization of a cyclodextrin glycosyltransferase from CHB1. Starch - Stärke 70(1–2):1700016CrossRefGoogle Scholar
  32. Kambourova M, Mandeva R, Dimova D, Poli A, Nicoaus B, Tommonaro G (2009) Production and characterization of a microbial glucan, synthesized by Geobacillus tepidamans V264 isolated from Bulgarian hot spring. Carbohydr Polym 77(2):338–343CrossRefGoogle Scholar
  33. Kananaviciute R, Citavicius D (2015) Genetic engineering of Geobacillus spp. J Microbiol Methods 111:31–39CrossRefGoogle Scholar
  34. Lazar I, Petrisor IG, Yen TF (2007) Microbial enhanced oil recovery (MEOR). Pet Sci Technol 25(11):1353–1366Google Scholar
  35. Le JJ, Wu XL, Wang R, Zhang JY, Bai LL, Hou ZW (2015) Progress in pilot testing of microbial-enhanced oil recovery in the Daqing oilfield of North China. Int Biodeterior Biodegradation 97:188–194CrossRefGoogle Scholar
  36. Li G, Ji K, Li J, Liu Y, Liang F, Ma T (2014) Bio-emulsifier produced by a thermophilic hydrocarbon-degrading strain DM-2. Microbiol China 41(4):585–591Google Scholar
  37. Li X, Li Y, Wei D, Li P, Wang L, Feng L (2010) Characterization of a broad-range aldehyde dehydrogenase involved in alkane degradation in Geobacillus thermodenitrificans NG80-2. Microbiol Res 165(8):706–712CrossRefGoogle Scholar
  38. Li ZZ, Zhang YM, Lin JZ, Wang WD, Li S (2019) High-yield Di-rhamnolipid roduction by Pseudomonas aeruginosa YM4 and its potential application in MEOR. Molecules 2019(24):1433CrossRefGoogle Scholar
  39. Liang C, Huang Y, Wang H (2019) pahE, a functional marker gene for polycyclic aromatic hydrocarbon-degrading bacteria. Appl Environ Microbiol 85(3):e02399–e02318Google Scholar
  40. Lin PP, Rabe KS, Takasumi JL, Kadisch M, Arnold FH, Liao JC (2014) Isobutanol production at elevated temperatures in thermophilic Geobacillus thermoglucosidasius. Metab Eng 24:1–8CrossRefGoogle Scholar
  41. Liu Q, Lin J, Wang W, Huang H, Li S (2015) Production of surfactin isomers by Bacillus subtilis BS-37and its applicability to enhanced oil recovery under laboratory conditions. Biochem Eng J 93:31–37CrossRefGoogle Scholar
  42. Liu QK, Wang J, Li GQ, Ma T, Liang FL, Liu RL (2008) Characterization of a thermophilic Geobacillus strain DM-2 degrading hydrocarbons. HJKX China 29(12):3554–3560Google Scholar
  43. Liu X, Dong Y, Zhang J, Zhang A, Wang L, Feng L (2009) Two novel metal-independent long-chain alkyl alcohol dehydrogenases from Geobacillus thermodenitrificans NG80-2. Microbiol-Sgm 155:2078–2085CrossRefGoogle Scholar
  44. Ma K, Conrad R, Lu Y (2012) Responses of methanogen mcrA genes and their transcripts to an alternate dry/wet cycle of paddy field soil. Appl Environ Microbiol 78(2):445–454Google Scholar
  45. Marchant R, Sharkey FH, Banat IM, Rahman TJ, Perfumo A (2006) The degradation of n-hexadecane in soil by thermophilic Geobacilli. FEMS Microbiol Ecol 56(1):44–54Google Scholar
  46. Minana-Galbis D, Pinzon DL, Loren JG, Manresa A, Oliart-Ros RM (2010) Reclassification of Geobacillus pallidus (Scholz et al. 1988) Banat et al. 2004 as Aeribacillus pallidus gen. nov., comb. nov. Int J Syst Evol Microbiol 60(Pt 7):1600–1604CrossRefGoogle Scholar
  47. Nazina TN, Lebedeva EV, Poltaraus AB, Tourova TP, Grigoryan AA, Sokolova DS, Lysenko AM, Osipov GA (2004) Geobacillus gargensis sp nov., a novel thermophile from a hot spring, and the reclassification of Bacillus vulcani as Geobacillus vulcani comb. nov. Int J Syst Evol Microbiol 54:2019–2024CrossRefGoogle Scholar
  48. Nazina TN, Tourova TP, Poltaraus AB, Novikova EV, Grigoryan AA, Ivanova AE, Lysenko AM, Petrunyaka VV, Osipov GA, Belyaev SS, Ivanov MV (2001) Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp nov and Geobacillus uzenensis sp nov from petroleum reservoirs and transfer of Bacillus stearothermophilus,Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G-stearothermophilus, G-thermocatenulatus, G-thermoleovorans, G-kaustophilus, G-thermoglucosidasius and G-thermodenitrificans. Int J Syst Evol Micr 51: 433–446Google Scholar
  49. Nzila A (2018) Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons under anaerobic conditions: overview of studies, proposed pathways and future perspectives. Environ Pollut 239:788–802CrossRefGoogle Scholar
  50. Olson DG, Sparling R, Lynd LR (2015) Ethanol production by engineered thermophiles. Curr Opin Biotechnol 33:130–141CrossRefGoogle Scholar
  51. Panosyan H, Di Donato P, Poli A, Nicolaus B (2018) Production and characterization of exopolysaccharides by Geobacillus thermodenitrificans ArzA-6 and Geobacillus toebii ArzA-8 strains isolated from an Armenian geothermal spring. Extremophiles 22(5):725–737CrossRefGoogle Scholar
  52. Poli A, Guven K, Romano I, Pirinccioglu H, Guven RG, Euzeby JPM, Matpan F, Acer O, Orlando P, Nicolaus B (2012) Geobacillus subterraneus subsp aromaticivorans subsp nov., a novel thermophilic and alkaliphilic bacterium isolated from a hot spring in Sirnak, Turkey. J Gen Appl Microbiol 58(6):437–446CrossRefGoogle Scholar
  53. Poli A, Laezza G, Gul-Guven R, Orlando P, Nicolaus B (2011) Geobacillus galactosidasius sp. nov., a new thermophilic galactosidase-producing bacterium isolated from compost. Syst Appl Microbiol 34(6):419–423CrossRefGoogle Scholar
  54. Rastogi G, Bhalla A, Adhikari A, Bischoff KM, Hughes SR, Christopher LP, Sani RK (2010) Characterization of thermostable cellulases produced by Bacillus and Geobacillus strains. Bioresour Technol 101(22):8798–8806CrossRefGoogle Scholar
  55. Saborimanesh N, Mulligan CN (2018) Dispersion of weathered biodiesel, diesel, and light crude oil in the presence of sophorolipid biosurfactant in seawater. J Environ Eng 144(5):04018028CrossRefGoogle Scholar
  56. Sarilmiser HK, Ates O, Ozdemir G, Arga KY, Oner ET (2015) Effective stimulating factors for microbial levan production by Halomonas smyrnensis AAD6(T). J Biosci Bioeng 119(4):455–463CrossRefGoogle Scholar
  57. Sharkey FH, Banat IM, Marchant R (2004) A rapid and effective method of extracting fully intact RNA from thermophilic geobacilli that is suitable for gene expression analysis. Extremophiles 8(1):73–77CrossRefGoogle Scholar
  58. Sheng L, Kovacs K, Winzer K, Zhang Y, Minton NP (2017) Development and implementation of rapid metabolic engineering tools for chemical and fuel production in Geobacillus thermoglucosidasius NCIMB 11955. Biotechnol Biofuels 10(1):5CrossRefGoogle Scholar
  59. Spormann AM, Widdel F (2000) Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria. Biodegradation 11(2–3):85–105CrossRefGoogle Scholar
  60. Suzuki H (2018) Peculiarities and biotechnological potential of environmental adaptation by Geobacillus species. Appl Microbiol Biotechnol 102(24):10425–10437CrossRefGoogle Scholar
  61. Takami H, Takaki Y, Chee GJ, Nishi S, Shimamura S, Suzuki H, Matsui S, Uchiyama I (2004) Thermoadaptation trait revealed by the genome sequence of thermophilic Geobacillus kaustophilus. Nucleic Acids Res 32(21):6292–6303CrossRefGoogle Scholar
  62. Tourova TP, Sokolova DS, Semenova EM, Poltaraus AB, Nazina TN (2018) Diversity of the alkB genes of n-alkane biodegradation in thermophilic hydrocarbon-oxidizing bacteria of the genera Geobacillus, Parageobacillus, and Aeribacillus. Microbiology 87(3):301–307CrossRefGoogle Scholar
  63. Tourova TP, Sokolova DS, Semenova EM, Shumkova ES, Korshunova AV, Babich TL, Poltaraus AB, Nazina TN (2016) Detection of n-alkane biodegradation genes alkB and ladA in thermophilic hydrocarbon-oxidizing bacteria of the genera Aeribacillus and Geobacillus. Microbiology 85(6):693–707CrossRefGoogle Scholar
  64. Wang J, Goh KM, Salem, DR, Sani RK (2019) Genome analysis of a thermophilic exopolysaccharide-producing bacterium - Geobacillus sp. WSUCF1. Sci Rep-UK 9Google Scholar
  65. Wang L, Tang Y, Wang S, Liu RL, Liu MZ, Zhang Y, Liang FL, Feng L (2006) Isolation and characterization of a novel thermophilic Bacillus strain degrading long-chain n-alkanes. Extremophiles 10(4):347–356CrossRefGoogle Scholar
  66. Weimin Z, Shizhong Y, Nazina TN, Bozhong MU (2005) Progress in Geobacillus study. J Mirobiol CHN 25(3):46–49Google Scholar
  67. Wentzel A, Ellingsen TE, Kotlar HK, Zotchev SB, Throne-Holst M (2007) Bacterial metabolism of long-chain n-alkanes. Appl Microbiol Biotechnol 76(6):1209–1221CrossRefGoogle Scholar
  68. Xia W, Dong H, Yu L (2012) Oil-degrading characterization of thermophilic and halotolerant strain Geobacillus sp.WJ-2. J Cent South Univ 43(1):8–16Google Scholar
  69. Yildiz H, Karatas N (2018) Microbial exopolysaccharides: resources and bioactive properties. Process Biochem 72:41–46CrossRefGoogle Scholar
  70. Yu HY, Yang H (2012) Structure, function and expression regulation of hydrocarbon-degrading enzymes and their encoding genes. Chin J Appl Environ Biol 18(6):1066–1074CrossRefGoogle Scholar
  71. Zhang J, Zhang X, Liu J, Li R, Shen B (2012) Isolation of a thermophilic bacterium, Geobacillus sp. SH-1, capable of degrading aliphatic hydrocarbons and naphthalene simultaneously, and identification of its naphthalene degrading pathway. Bioresour Technol 124:83–89CrossRefGoogle Scholar
  72. Zheng C, He J, Wang Y, Wang M, Huang Z (2011) Hydrocarbon degradation and bioemulsifier production by thermophilic Geobacillus pallidus strains. Bioresour Technol 102(19):9155–9161CrossRefGoogle Scholar
  73. Zhou JF, Gao PK, Dai XH, Cui XY, Tian HM, Xie JJ, Li GQ, Ma T (2018) Heavy hydrocarbon degradation of crude oil by a novel thermophilic Geobacillus stearothermophilus strain A-2. Int Biodeterior Biodegrad 126:224–230CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina

Personalised recommendations