Applied Microbiology and Biotechnology

, Volume 103, Issue 19, pp 8051–8062 | Cite as

Biochemical and structural characterization of a highly active branched-chain amino acid aminotransferase from Pseudomonas sp. for efficient biosynthesis of chiral amino acids

  • Xinxin Zheng
  • Yinglu Cui
  • Tao Li
  • Ruifeng Li
  • Lu Guo
  • Defeng Li
  • Bian WuEmail author
Biotechnologically relevant enzymes and proteins


Aminotransferases (ATs) are important biocatalysts for the synthesis of chiral amines because of their capability of introducing amino group into ketones or keto acids as well as their high enantioselectivity, high regioselectivity. Among all ATs, branched-chain amino acid aminotransferase (BCAT) can use branched-chain amino acids (BCAAs) as substrate, including L-valine, L-leucine, and L-isoleucine, with α-ketoglutarate to form the corresponding α-keto acids and L-glutamate. Alternatively, BCATs have been used for the biosynthesis of unnatural amino acids, such as L-tert-leucine and L-norvaline. In the present study, the BCAT from Pseudomonas sp. (PsBCAT) was cloned and expressed in Escherichia coli for biochemical and structural analyses. The optimal reaction temperature and pH of PsBCAT were 40 °C and 8.5, respectively. PsBCAT exhibited a comparatively broader substrate spectrum and showed remarkably high activity with bulked aliphatic L-amino acids (kcat up to 220 s−1). Additionally, PsBCAT had activities with aromatic L-amino acids, L-histidine, L-lysine, and L-threonine. This substrate promiscuity is unique for the BCAT family and could prove useful in industrial applications. To analyze the catalytic mechanism of PsBCAT with the broad substrate spectrum, the crystal structure of PsBCAT was also determined. Based on the determined crystal structure, we found some differences in the organization of the substrate binding cavity, which may influence the substrate specificity of the enzyme. Finally, conjugated with the ornithine aminotransferase (OrnAT) to shift the reaction equilibrium towards the product formation, the coupled system was applied to the asymmetric synthesis of L-tert-leucine and L-norvaline. In summary, the structural and functional characteristics of PsBCAT were analyzed in detail, and this information will be conducive to industrial production of enantiopure chiral amino acids by aminotransferase.


Branched-chain amino acid aminotransferase Pseudomonas sp. crystal structure Chiral amino acids 



We would like to thank Juncai Ma and Linhuan Wu from Institute of Microbiology, Chinese Academy of Sciences, for submitting our sequence to the GCM Type strain genome database.

Funding information

This work is supported by the National Key R&D Program of China (Grant No. 2018YFA0901600), the National Natural Science Foundation of China (Grant Nos. 21603013, 31870055, 31822002), Beijing Natural Science Foundation (8194074), and the Biological Resources Programme (KFJ-BRP-009) from the Chinese Academy of Sciences.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical statement

This article does not contain any studies with human participants performed by any of the authors.

Supplementary material

253_2019_10105_MOESM1_ESM.pdf (732 kb)
ESM 1 (PDF 731 kb)


  1. Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX: a comprehensive python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66(pt 2):213–221. CrossRefGoogle Scholar
  2. Bezsudnova EY, Stekhanova TN, Suplatov DA, Mardanov AV, Ravin NV, Popov VO (2016) Experimental and computational studies on the unusual substrate specificity of branched-chain amino acid aminotransferase from Thermoproteus uzoniensis. Arch Biochem Biophys 607:27–36. CrossRefGoogle Scholar
  3. Bezsudnova EY, Boyko KM, Popov VO (2017) Properties of bacterial and archaeal branched-chain amino acid aminotransferases. Biochemistry (Mosc) 82(13):1572–1591. CrossRefGoogle Scholar
  4. Bu Y, Cui Y, Peng Y, Hu M, Tian Y, Tao Y, Wu B (2018) Engineering improved thermostability of the GH11 xylanase from Neocallimastix patriciarum via computational library design. Appl Microbiol Biotechnol 102(8):3675–3685. CrossRefGoogle Scholar
  5. Buß O, Buchholz PCF, Gräff M, Klausmann P, Rudat J, Pleiss J (2018) The ω-transaminase engineering database (oTAED): A navigation tool in protein sequence and structure space. Proteins 86(5):566–580. CrossRefGoogle Scholar
  6. Calvelage S, Dörr M, Höhne M, Bornscheuer UT (2017) A systematic analysis of the substrate scope of (S)- and (R)-selective amine transaminases. Adv Synth Catal 359(23):4235–4243. CrossRefGoogle Scholar
  7. Chen CD, Lin CH, Chuankhayan P, Huang YC, Hsieh YC, Huang TF, Guan HH, Liu MY, Chang WC, Chen CJ (2012) Crystal structures of complexes of the branched-chain aminotransferase from Deinococcus radiodurans complexes with alpha-ketoisocaproate and L-glutamate suggest its radio-resistance for catalysis. J Bacteriol 194(22):6206–6216. CrossRefGoogle Scholar
  8. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60(pt 12):2126–2132. CrossRefGoogle Scholar
  9. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M (2014) Pfam: the protein families database. Nucleic Acids Res 42(D1):D222–D230. CrossRefGoogle Scholar
  10. Gentilucci L, De Marco R, Cerisoli L (2010) Chemical modifications designed to improve peptide stability: incorporation of non-natural amino acids, pseudo-peptide bonds, and cyclization. Curr Pharm Design 16(28):3185–3203. CrossRefGoogle Scholar
  11. Gerlt JA, Bouvier JT, Davidson DB, Imker HJ, Sadkhin B, Slater DR, Whalen KL (2015) Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST): a web tool for generating protein sequence similarity networks. Biochim Biophys Acta 1854(8):1019–1037. CrossRefGoogle Scholar
  12. Ghislieri D, Turner NJ (2014) Biocatalytic approaches to the synthesis of enantiomerically pure chiral amines. Top Catal 57(5):284–300. CrossRefGoogle Scholar
  13. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA III, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345. CrossRefGoogle Scholar
  14. Goto M, Miyahara I, Hayashi H, Kagamiyama H, Hirotsu K (2003) Crystal structures of branched-chain amino acid aminotransferase complexed with glutamate and glutarate: true reaction intermediate and double substrate recognition of the enzyme. Biochemistry 42(13):3725–3733. CrossRefGoogle Scholar
  15. Goto M, Miyahara I, Hirotsu K, Conway M, Yennawar N, Islam MM, Hutson SM (2005) Structural determinants for branched-chain aminotransferase isozyme-specific inhibition by the anticonvulsant drug gabapentin. J Biol Chem 280(44):37246–37256. CrossRefGoogle Scholar
  16. Hong EY, Cha MH, Yun H, Kim BG (2010) Asymmetric synthesis of L-tert-leucine and L-3-hydroxyadamantylglycine using branched chain aminotransferase. J Mol Catal B-Enzym 66(1-2):228–233. CrossRefGoogle Scholar
  17. Hwang BY, Cho BK, Yun H, Koteshwar K, Kim BG (2005) Revisit of aminotransferase in the genomic era and its application to biocatalysis. J Mol Catal B-Enzym 37(1-6):47–55. CrossRefGoogle Scholar
  18. Jansonius JN (1998) Structure, evolution and action of vitamin B6-dependent enzymes. Curr Opin Struct Biol 8(6):759–769. CrossRefGoogle Scholar
  19. Kabsch W (2010) XDS. Acta Crystallogr D Biol Crystallog 66(pt 2):125–132. CrossRefGoogle Scholar
  20. Kagamiyama H, Hayashi H (2000) Branched-chain amino-acid aminotransferase of Escherichia coli. Methods Enzymol 324:103–113. CrossRefGoogle Scholar
  21. Li T, Kootstra AB, Fotheringham IG (2002) Nonproteinogenic α-amino acid preparation using equilibrium shifted transamination. Org Process Res Dev 6(4):533–538. CrossRefGoogle Scholar
  22. Li R, Wijma HJ, Song L, Cui Y, Otzen M, Tian Y, Du J, Li T, Niu D, Chen Y, Feng J, Han J, Chen H, Tao Y, Janssen DB, Wu B (2018) Computational redesign of enzymes for regio- and enantioselective hydroamination. Nat Chem Biol 14(7):664–670. CrossRefGoogle Scholar
  23. Liu S, Zhang X, Liu F, Xu M, Yang T, Long M, Zhou J, Osire T, Yang S, Rao Z (2019) Designing of a cofactor self-sufficient whole-cell biocatalyst system for production of 1,2-amino alcohols from epoxides. ACS Synth Biol 8(4):734–743. CrossRefGoogle Scholar
  24. Marienhagen J, Kennerknecht N, Sahm H, Eggeling L (2005) Functional analysis of all aminotransferase proteins inferred from the genome sequence of Corynebacterium glutamicum. J Bacteriol 187(22):7639–7646. CrossRefGoogle Scholar
  25. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) Phaser crystallographic software. J Appl Crystallogr 40(pt 4):658–674. CrossRefGoogle Scholar
  26. Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P, Bridge A, Brown SD, Chang HY, El-Gebali S, Fraser MI, Gough J, Haft DR, Huang H, Letunic I, Lopez R, Luciani A, Madeira F, Marchler-Bauer A, Mi H, Natale DA, Necci M, Nuka G, Orengo C, Pandurangan AP, Paysan-Lafosse T, Pesseat S, Potter SC, Qureshi MA, Rawlings ND, Redaschi N, Richardson LJ, Rivoire C, Salazar GA, Sangrador-Vegas A, Sigrist CJA, Sillitoe I, Sutton GG, Thanki N, Thomas PD, Tosatto SCE, Yong SY, Finn RD (2019) InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res 47(D1):D351–D360. CrossRefGoogle Scholar
  27. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791. CrossRefGoogle Scholar
  28. Park ES, Shin JS (2015) Biocatalytic cascade reactions for asymmetric synthesis of aliphatic amino acids in a biphasic reaction system. J Mol Catal B-Enzym 121:9–14. CrossRefGoogle Scholar
  29. Park ES, Kim M, Shin JS (2012) Molecular determinants for substrate selectivity of ω-transaminases. Appl Microbiol Biotechnol 93(6):2425–2435. CrossRefGoogle Scholar
  30. Patel RN (2013) Biocatalytic synthesis of chiral alcohols and amino acids for development of pharmaceuticals. Biomolecules 3(4):741–777. CrossRefGoogle Scholar
  31. Paul CE, Rodríguez-Mata M, Busto E, Lavandera I, Gotor-Fernandez V, Gotor V, García-Cerrada S, Mendiola J, de Frutos O, Collado I (2014) Transaminases applied to the synthesis of high added-value enantiopure amines. Org Process Res Dev 18(6):788–792. CrossRefGoogle Scholar
  32. Ruan J, Hu J, Yin A, Wu W, Cong X, Feng X, Li S (2012) Structure of the branched-chain aminotransferase from Streptococcus mutans. Acta Crystallogr D Biol Crystallogr 68(pt 8):996–1002. CrossRefGoogle Scholar
  33. Rudat J, Brucher BR, Syldatk C (2012) Transaminases for the synthesis of enantiopure beta-amino acids. AMB Express 2:11. CrossRefGoogle Scholar
  34. Seo YM, Yun H (2011) Enzymatic synthesis of L-tert-leucine with branched chain aminotransferase. J Microbiol Biotechnol 21(10):1049–1052. CrossRefGoogle Scholar
  35. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. CrossRefGoogle Scholar
  36. Shao J, Tanner SW, Thompson N, Cheatham TE (2007) Clustering molecular dynamics trajectories: 1. characterizing the performance of different clustering algorithms. J Chem Theory Comput 3(6):2312–2334. CrossRefGoogle Scholar
  37. Simon RC, Mutti FG, Kroutil W (2013) Biocatalytic synthesis of enantiopure building blocks for pharmaceuticals. Drug Discov Today Technol 10(1):e37–e44. CrossRefGoogle Scholar
  38. Steffen-Munsberg F, Vickers C, Thontowi A, Schätzle S, Meinhardt T, Humble MS, Land H, Berglund P, Bornscheuer UT, Höhne M (2013) Revealing the structural basis of promiscuous amine transaminase activity. ChemCatChem 5(1):154–157. CrossRefGoogle Scholar
  39. Stekhanova T, Rakitin AL, Mardanov AV, Bezsudnova EY, Popov VO (2017) A novel highly thermostable branched-chain amino acid aminotransferase from the crenarchaeon Vulcanisaeta moutnovskia. Enzyme Microb Technol 96:127–134. CrossRefGoogle Scholar
  40. Taylor PP, Pantaleone DP, Senkpeil RF, Fotheringham IG (1998) Novel biosynthetic approaches to the production of unnatural amino acids using transaminases. Trends Biotechnol 16(10):412–418. CrossRefGoogle Scholar
  41. Toney MD (2014) Aspartate aminotransferase: an old dog teaches new tricks. Arch Biochem Biophys 544:119–127. CrossRefGoogle Scholar
  42. Tremblay LW, Blanchard JS (2009) The 1.9 Å structure of the branched-chain amino-acid transaminase (IlvE) from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun 65(pt 11):1071–1077. CrossRefGoogle Scholar
  43. Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AG, McCoy A, McNicholas SJ, Murshudov GN, Pannu NS, Potterton EA, Powell HR, Read RJ, Vagin A, Wilson KS (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67(pt 4):235–242. CrossRefGoogle Scholar
  44. Xing RY, Whitman WB (1992) Characterization of amino acid aminotransferases of Methanococcus aeolicus. J Bacteriol 174(2):541–548. CrossRefGoogle Scholar
  45. Xue YP, Cao CH, Zheng YG (2018) Enzymatic asymmetric synthesis of chiral amino acids. Chem Soc Rev 47(4):1516–1561. CrossRefGoogle Scholar
  46. Yennawar N, Dunbar J, Conway M, Hutson S, Farber G (2001) The structure of human mitochondrial branched-chain aminotransferase. Acta Crystallogr D Biol Crystallogr 57(pt 4):506–515. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Life Sciences and TechnologyXinjiang UniversityXinjiangPeople’s Republic of China
  2. 2.CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial ResourcesInstitute of Microbiology, Chinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.University of Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations