Advertisement

CRISPR-Cas9-assisted native end-joining editing offers a simple strategy for efficient genetic engineering in Escherichia coli

  • Chaoyong Huang
  • Tingting Ding
  • Jingge Wang
  • Xueqin Wang
  • Liwei Guo
  • Jialei Wang
  • Lin Zhu
  • Changhao Bi
  • Xueli Zhang
  • Xiaoyan Ma
  • Yi-Xin HuoEmail author
Applied genetics and molecular biotechnology
  • 97 Downloads

Abstract

Unlike eukaryotes, prokaryotes are less proficient in homologous recombination (HR) and non-homologous end-joining (NHEJ). All existing genomic editing methods for Escherichia coli (E. coli) rely on exogenous HR or NHEJ systems to repair DNA double-strand breaks (DSBs). Although an E. coli native end-joining (ENEJ) system has been reported, its potential in genetic engineering has not yet been explored. Here, we present a CRISPR-Cas9-assisted native end-joining editing and show that ENEJ-dependent DNA repair can be used to conduct rapid and efficient deletion of chromosome fragments up to 83 kb or gene inactivation. Moreover, the positive rate and editing efficiency are independent of high-efficiency competent cells. The method requires neither exogenous DNA repair systems nor introduced editing template. The Cas9-sgRNA complex is the only foreign element in this method. This study is the first successful engineering effort to utilize ENEJ mechanism in genomic editing and provides an effective strategy for genetic engineering in bacteria that are inefficient in HR and NHEJ.

Keywords

Escherichia coli Genetic engineering CRISPR-Cas9 End-joining Large-fragment deletion 

Notes

Funding information

The work finished in Beijing Institute of Technology was supported by the National Key R&D Program of China (grant No. 2017YFD0201400), the National Natural Science Foundation of China (grant No. 21676026), and Fundamental Research Funds for the Central Universities.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Supplementary material

253_2019_10104_MOESM1_ESM.pdf (8 mb)
ESM 1 (PDF 7.95 MB)

References

  1. Amarh V, White MA, Leach DRF (2018) Dynamics of RecA-mediated repair of replication-dependent DNA breaks. J Cell Biol 217:2299–2307.  https://doi.org/10.1083/jcb.201803020 CrossRefGoogle Scholar
  2. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:8.  https://doi.org/10.1038/msb4100050 CrossRefGoogle Scholar
  3. Chayot R, Montagne B, Mazel D, Ricchetti M (2010) An end-joining repair mechanism in Escherichia coli. Proc Natl Acad Sci U S A 107:2141–2146.  https://doi.org/10.1073/pnas.0906355107 CrossRefGoogle Scholar
  4. Cho S, Choe D, Lee E, Kim SC, Palsson B, Cho BK (2018) High-level dCas9 expression induces abnormal cell morphology in Escherichia coli. ACS Synth Biol 7:1085–1094.  https://doi.org/10.1021/acssynbio.7b00462 CrossRefGoogle Scholar
  5. Chung ME, Yeh IH, Sung LY, Wu MY, Chao YP, Ng IS, Hu YC (2017) Enhanced integration of large DNA into E. coli chromosome by CRISPR/Cas9. Biotechnol Bioeng 114:172–183.  https://doi.org/10.1002/bit.26056 CrossRefGoogle Scholar
  6. Cui L, Bikard D (2016) Consequences of Cas9 cleavage in the chromosome of Escherichia coli. Nucleic Acids Res 44:4243–4251.  https://doi.org/10.1093/nar/gkw223 CrossRefGoogle Scholar
  7. Daniel R, Greger JG, Katz RA, Taganow KD, Wu X, Kappes JC, Skalka AM (2004) Evidence that stable retroviral transduction and cell survival following DNA integration depend on components of the nonhomologous end joining repair pathway. J Virol 78:8573–8581.  https://doi.org/10.1128/JVI.78.16.8573-8581.2004 CrossRefGoogle Scholar
  8. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645.  https://doi.org/10.1073/pnas.120163297 CrossRefGoogle Scholar
  9. Della M, Palmbos PL, Tseng HM, Tonkin LM, Daley JM, Topper LM, Pitcher RS, Tomkinson AE, Wilson TE, Doherty AJ (2004) Mycobacterial Ku and ligase proteins constitute a two-component NHEJ repair machine. Science 306:683–685.  https://doi.org/10.1126/science.1099824 CrossRefGoogle Scholar
  10. Esvelt KM, Wang HH (2013) Genome-scale engineering for systems and synthetic biology. Mol Syst Biol 9:641.  https://doi.org/10.1038/msb.2012.66 CrossRefGoogle Scholar
  11. Gai T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405.  https://doi.org/10.1016/j.tibtech.2013.04.004 CrossRefGoogle Scholar
  12. Gu P, Yang F, Su T, Wang Q, Liang Q, Qi Q (2015) A rapid and reliable strategy for chromosomal integration of gene(s) with multiple copies. Sci Rep 5:9684.  https://doi.org/10.1038/srep09684 CrossRefGoogle Scholar
  13. Hu JH, Miller SM, Geruts MH, Tang W, Chen L, Sun N, Zeina CM, Gao X, Rees HA, Lin Z, Liu D (2018) Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556:57–63.  https://doi.org/10.1038/nature26155 CrossRefGoogle Scholar
  14. Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA (2013) RNA-guided editing of bacterial genomes using CRISCR-Cas systems. Nat Biotechnol 31:233–239.  https://doi.org/10.1038/nbt.2508 CrossRefGoogle Scholar
  15. Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S (2015) Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol 81:2506–2514.  https://doi.org/10.1128/AEM.04023-14 CrossRefGoogle Scholar
  16. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821.  https://doi.org/10.1126/science.1225829 CrossRefGoogle Scholar
  17. Labun K, Montague TG, Gagnon JA, Thyme SB, Valen E (2016) CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res 44:W272–W276.  https://doi.org/10.1093/nar/gkw398 CrossRefGoogle Scholar
  18. Labun K, Montague TG, Krause M, Torres Cleuren YN, Tjeldnes H, Valen E (2019) CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Res 47:W171–W174.  https://doi.org/10.1093/nar/gkz365 CrossRefGoogle Scholar
  19. Li Y, Lin Z, Huang C, Zhang Y, Wang Z, Tang Y, Chen T, Zhao H (2015) Metabolic engineering of Escherichia coli using CRISPR–Cas9 meditated genome editing. Metab Eng 31:13–21.  https://doi.org/10.1016/j.ymben.2015.06.006 CrossRefGoogle Scholar
  20. Malyarchuk S, Wright D, Castore R, Klepper E, Weiss B, Doherty AJ, Harrison L (2007) Expression of Mycobacterium tuberculosis Ku and Ligase D in Escherichia coli results in RecA and RecB-independent DNA end-joining at regions of microhomology. DNA Repair 6:1413–1424.  https://doi.org/10.1016/j.dnarep.2007.04.004 CrossRefGoogle Scholar
  21. Montague TG, Cruz JM, Gagnon JA, Church GM, Valen E (2014) CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res 42:W401–W407.  https://doi.org/10.1093/nar/gku410 CrossRefGoogle Scholar
  22. Pines G, Freed EF, Winkler JD, Gill RT (2015a) Bacterial recombineering: genome engineering via phage-based homologous recombination. ACS Synth Biol 4:1176–1185.  https://doi.org/10.1021/acssynbio.5b00009 CrossRefGoogle Scholar
  23. Pines G, Pines A, Garst AD, Zeitoun RI, Lynch SA, Gill RT (2015b) Codon compression algorithms for saturation mutagenesis. ACS Synth Biol 4:604–614.  https://doi.org/10.1021/sb500282v CrossRefGoogle Scholar
  24. Ronda C, Pedersen LE, Sommer MO, Nielsen AT (2016) CRMAGE: CRISPR optimized MAGE recombineering. Sci Rep 6:19452.  https://doi.org/10.1038/srep19452 CrossRefGoogle Scholar
  25. Sambrook J, Russell DW (2006) The inoue method for preparation and transformation of competent E. coli: “ultra-competent” cells. CSH Protoc 2006:418–424.  https://doi.org/10.1101/pdb.prot3944
  26. Santos CN, Regitsky DD, Yoshikuni Y (2013) Implementation of stable and complex biological systems through recombinase-assisted genome engineering. Nat Commun 4:2503.  https://doi.org/10.1038/ncomms3503 CrossRefGoogle Scholar
  27. Shou J, Li J, Liu Y, Wu Q (2018) Precise and predictable CRISPR chromosomal rearrangements reveal principles of Cas9-mediated nucleotide insertion. Mol Cell 71:498–509.  https://doi.org/10.1016/j.molcel.2018.06.021 CrossRefGoogle Scholar
  28. Singh A (2017) Guardians of the mycobacterial genome: a review on DNA repair systems in Mycobacterium tuberculosis. Microbiology 163:1740–1758.  https://doi.org/10.1093/mutage/gew042
  29. Smanski MJ, Zhou H, Claesen J, Shen B, Fischbach MA, Voigt CA (2016) Synthetic biology to access and expand nature’s chemical diversity. Nat Rev Microbiol 14:135–149.  https://doi.org/10.1038/nrmicro.2015.24 CrossRefGoogle Scholar
  30. Su T, Liu F, Gu P, Jin H, Chang Y, Wang Q, Liang Q, Qi Q (2016) A CRISPR-Cas9 assisted non-homologous end-joining strategy for one-step engineering of bacterial genome. Sci Rep 6:37895.  https://doi.org/10.1038/srep37895 CrossRefGoogle Scholar
  31. Su T, Liu F, Chang Y, Guo Q, Wang J, Wang Q, Qi Q (2019) The phage T4 DNA ligase mediates bacterial chromosome DSBs repair as single component non-homologous end joining. Synth Syst Biotechnol 4:107–112.  https://doi.org/10.1016/j.synbio.2019.04.001 CrossRefGoogle Scholar
  32. Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR, Church GM (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460:894–898.  https://doi.org/10.1038/nature08187 CrossRefGoogle Scholar
  33. Wang H, Bian X, Xia L, Ding X, Müller R, Zhang Y, Fu J, Stewart AF (2014) Improved seamless mutagenesis by recombineering using ccdB for counterselection. Nucleic Acids Res 42:e37.  https://doi.org/10.1093/nar/gkt1339 CrossRefGoogle Scholar
  34. Weller GR, Kysela B, Roy R, Tonkin LM, Scanlan E, Della M, Devine SK, Day JP, Wikinson A, d’Adda di Fagagna F, Devine KM, Bowater RP, Jiggo PA, Jackson SP, Doherty AJ (2002) Identification of a DNA nonhomologous end-joining complex in bacteria. Science 297:1686–1689.  https://doi.org/10.1126/science.1074584 CrossRefGoogle Scholar
  35. Wilson TE, Topper LM, Palmbos PL (2003) Non-homologous end-joining: bacteria join the chromosome breakdance. Trends Biochem Sci 28:62–66.  https://doi.org/10.1016/S0968-0004(03)00005-7 CrossRefGoogle Scholar
  36. Wyman C, Kanaar R (2006) DNA Double-strand break repair: all’s well that ends well. Annu Rev Genet 40:363–383.  https://doi.org/10.1146/annurev.genet.40.110405.090451 CrossRefGoogle Scholar
  37. Xia Y, Li K, Li J, Wang T, Gu L, Xun L (2018) T5 exonuclease-dependent assembly offers a low-cost method for efficient cloning and site-directed mutagenesis. Nucleic Acids Res 47:e15.  https://doi.org/10.1093/nar/gky1169 CrossRefGoogle Scholar
  38. Zhang H, Cheng QX, Liu AM, Zhao GP, Wang J (2017) A novel and efficient method for bacteria genome editing employing both CRISPR/Cas9 and an antibiotic resistance cassette. Front Microbiol 8:812.  https://doi.org/10.3389/fmicb.2017.00812 CrossRefGoogle Scholar
  39. Zhao D, Yuan S, Xiong B, Sun H, Ye L, Li J, Zhang X, Bi C (2016) Development of a fast and easy method for Escherichia coli genome editing with CRISPR/Cas9. Microb Cell Factories 15:205.  https://doi.org/10.1186/s12934-016-0605-5 CrossRefGoogle Scholar
  40. Zhao D, Feng X, Zhu X, Wu T, Zhang X, Bi C (2017) CRISPR/Cas9-assisted gRNA-free one-step genome editing with no sequence limitations and improved targeting efficiency. Sci Rep 7:16624.  https://doi.org/10.1038/s41598-017-16998-8 CrossRefGoogle Scholar
  41. Zheng X, Li SY, Zhao GP, Wang J (2017) An efficient system for deletion of large DNA fragments in Escherichia coli via introduction of both Cas9 and the non-homologous end joining system from Mycobacterium smegmatis. Biochem Biophys Res 485:768–774.  https://doi.org/10.1016/j.bbrc.2017.02.129 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Molecular Medicine and Biotherapy, School of Life SciencesBeijing Institute of TechnologyBeijingPeople’s Republic of China
  2. 2.UCLA (Suzhou) Institute for Technology AdvancementSuzhouPeople’s Republic of China
  3. 3.Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjinPeople’s Republic of China

Personalised recommendations