Advertisement

Applied Microbiology and Biotechnology

, Volume 103, Issue 19, pp 7819–7833 | Cite as

Acidithiobacillus thiooxidans and its potential application

  • Lei Yang
  • Dan Zhao
  • Jian Yang
  • Weidong Wang
  • Peng Chen
  • Shuang ZhangEmail author
  • Lei YanEmail author
Mini-Review
  • 57 Downloads

Abstract

Acidithiobacillus thiooxidans (A. thiooxidans) is a widespread, mesophilic, obligately aerobic, extremely acidophilic, rod-shaped, and chemolithoautotrophic gram-negative gammaproteobacterium. It can obtain energy and electrons from the oxidation of reducible sulfur, and it can fix carbon dioxide and assimilate nitrate, nitrite, and ammonium to satisfy carbon and nitrogen requirement. This bacterium exists as different genomovars and its genome size range from 3.02 to 3.97 Mb. Here, we highlight the recent advances in the understanding of the general biological features of A. thiooxidans, as well as the genetic diversity and the sulfur oxidation pathway system. Additionally, the potential applications of A. thiooxidans were summarized including the recycling of metals from metal-bearing ores, electric wastes, and sludge, the improvement of alkali-salinity soils, and the removal of sulfur from sulfur-containing solids and gases.

Keywords

Acidithiobacillus thiooxidans Biological features Sulfur oxidation Metal recycling Desulfurization 

Notes

Funding information

This work was supported by the Longjiang Scholar Program of Heilongjiang Province

(Grant No. Q201815), National Natural Science Foundation of China (41471201, 31100006), Natural Science Foundation of Heilongjiang Province of China (QC2014C023, C201442, ZD2018005), University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (UNPYSCT-2015086), Support Program of Scientific Research Team and Platform of HBAU (TDJH201809), National Key Research and Development Program of China (2018YFD0800906), Open Foundation of the Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region (201704, 201707), Technology Program of Land Reclamation General Bureau of Heilongjiang.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This review does not include any researches with human participants or animals performed by any of the authors.

References

  1. Aita BC, Mayer FD, Muratt DT, Brondani M, Pujol SB, Denardi LB, Hoffmann R, Da Silveira DD (2016) Biofiltration of H2S-rich biogas using Acidithiobacillus thiooxidans. Clean Technol Environ 18(3):689–703.  https://doi.org/10.1007/s10098-015-1043-5 Google Scholar
  2. Aroca G, Urrutia H, Núñez D, Oyarzún P, Arancibia A, Guerrero K (2007) Comparison on the removal of hydrogen sulfide in biotrickling filters inoculated with Thiobacillus thioparus and Acidithiobacillus thiooxidans. Electron J Biotechnol 10(4):514–520.  https://doi.org/10.4067/S0717-34582007000400005 Google Scholar
  3. Baldini RL, Tahara ST, Rosato YB (1999) A rolling-circle miniplasmid of Xanthomonas campestris pv. glycines: the nucleotide sequence and its use as a cloning vector. Plasmid 42(2):126–133.  https://doi.org/10.1006/plas.1999.1404 Google Scholar
  4. Banerjee I, Burrell B, Reed C, West AC, Banta S (2017) Metals and minerals as a biotechnology feedstock: engineering biomining microbiology for bioenergy applications. Curr Opin Biotechnol 45:144–155.  https://doi.org/10.1016/j.copbio.2017.03.009 Google Scholar
  5. Bao S, Wang Q, Bao X, Li M, Wang Z (2016) Biological treatment of saline-alkali soil by sulfur-oxidizing bacteria. Bioengineered 7(5):372–375.  https://doi.org/10.1080/21655979.2016.1226664 Google Scholar
  6. Bergamo RF, Novo MTM, Verissimo RV, Paulino LC, Stoppe NC, Sato MIZ, Manfio GP, Prado PI, Garcia O Jr, Ottoboni LM (2004) Differentiation of Acidithiobacillus ferrooxidans and A. thiooxidans strains based on 16S–23S rDNA spacer polymorphism analysis. Res Microbiol 155(7):559–567.  https://doi.org/10.1016/j.resmic.2004.03.009 Google Scholar
  7. Bobadilla Fazzini RA, Cortés MP, Padilla L, Maturana D, Budinich M, Maass A, Parada P (2013) Stoichiometric modeling of oxidation of reduced inorganic sulfur compounds (Riscs) in Acidithiobacillus thiooxidans. Biotechnol Bioeng 110(8):2242–2251.  https://doi.org/10.1002/bit.24875 Google Scholar
  8. Bosecker K (1997) Bioleaching: metal solubilization by microorganisms. FEMS Microbiol Rev 20(3-4):591–604.  https://doi.org/10.1111/j.1574-6976.1997.tb00340.x Google Scholar
  9. Brierley J, Brierley C (2001) Present and future commercial applications of biohydrometallurgy. Hydrometallurgy 59(2-3):233–239.  https://doi.org/10.1016/S0304-386X(00)00162-6 Google Scholar
  10. Brierley CL, Brierley JA (2013) Progress in bioleaching: part B: applications of microbial processes by the minerals industries. Appl Microbiol Biot 97(17):7543–7552.  https://doi.org/10.1007/s00253-013-5095-3 Google Scholar
  11. Cardona IC, Márquez MA (2009) Biodesulfurization of two Colombian coals with native microorganisms. Fuel Process Technol 90(9):1099–1106.  https://doi.org/10.1016/j.fuproc.2009.04.022 Google Scholar
  12. Castro M, Moya-Beltrán A, Covarrubias PC, Gonzalez M, Cardenas JP, Issotta F, Nuñez H, Acuña LG, Encina G, Holmes DS (2017) Draft genome sequence of the type strain of the sulfur-oxidizing acidophile, Acidithiobacillus albertensis (DSM 14366). Stand Genomic Sci 12(1):77.  https://doi.org/10.1186/s40793-017-0282-y Google Scholar
  13. Chang J, Hocheng H, Chang H, Shih A (2008) Metal removal rate of Thiobacillus thiooxidans without pre-secreted metabolite. J Mater Process Technol 201(1-3):560–564.  https://doi.org/10.1016/j.jmatprotec.2007.11.171 Google Scholar
  14. Chen L, Ren Y, Lin J, Liu X, Pang X, Lin J (2012) Acidithiobacillus caldus sulfur oxidation model based on transcriptome analysis between the wild type and sulfur oxygenase reductase defective mutant. PloS One 7(9):e39470.  https://doi.org/10.1371/journal.pone.0039470 Google Scholar
  15. Cho K-S, Ryu HW, Lee NY (2000) Biological deodorization of hydrogen sulfide using porous lava as a carrier of Thiobacillus thiooxidans. J Biosci Bioeng 90(1):25–31.  https://doi.org/10.1016/S1389-1723(00)80029-8 Google Scholar
  16. Couillard D, Mercier G (1990) Bacterial leaching of heavy metals from sewage sludge—bioreactors comparison. Environ Pollut 66(3):237–252.  https://doi.org/10.1016/0269-7491(90)90004-V Google Scholar
  17. Dew DW, Lawson EN, Broadhurst JL (1997) The BIOX® process for biooxidation of gold-bearing ores or concentrates. In: Rawlings DE (ed) Biomining: theory, microbes and industrial processes. Springer, Berlin Heidelberg New York; Landes, Berlin, pp 45–80.  https://doi.org/10.1007/978-3-662-06111-4_3 Google Scholar
  18. Doetsch R, Cook T, Vaituzis Z (1967) On the uniqueness of the flagellum of Thiobacillus thiooxidans. Anton Leeuw Int J G 33(1):196–202.  https://doi.org/10.1007/BF02045551 Google Scholar
  19. Donati CP, Edgardo (2000) Enhancement of copper dissolution from a sulfide ore by using Thiobacillus thiooxidans. Geomicrobiol J 17(1):35–42.  https://doi.org/10.1080/014904500270477 Google Scholar
  20. Dopson M, Johnson DB (2012) Biodiversity, metabolism and applications of acidophilic sulfur-metabolizing microorganisms. Environ Microbiol 14(10):2620–2631.  https://doi.org/10.1111/j.1462-2920.2012.02749.x Google Scholar
  21. Fazzini RAB, Levican G, Parada P (2011) Acidithiobacillus thiooxidans secretome containing a newly described lipoprotein Licanantase enhances chalcopyrite bioleaching rate. Appl Microbiol Biotechnol 89(3):771–780.  https://doi.org/10.1007/s00253-010-3063-8 Google Scholar
  22. Fowler T, Crundwell F (1999) Leaching of zinc sulfide by Thiobacillus ferrooxidans: bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentrations of ferrous ions. Appl Environ Microbiol 65(12):5285–5292.  https://doi.org/10.1089/oli.1.1999.9.549 Google Scholar
  23. Free ML (2014) Chapter 2.8 - Biohydrometallurgy. In: Seetharaman S (ed) Treatise on process metallurgy. Elsevier, Boston, pp 983–993.  https://doi.org/10.1016/B978-0-08-096988-6.00020-1 Google Scholar
  24. Galleguillos PA, Hallberg KB, Johnson DB (2009) Microbial diversity and genetic response to stress conditions of extremophilic bacteria isolated from the escondida copper mine. Adv Mater Res 71-73(55-58):4–58.  https://doi.org/10.4028/www.scientific.net/AMR.71-73.55 Google Scholar
  25. Garcia-Meza JV, Alfaro-Saldaña E, Hernández-Sánchez A, Soberano-Patrón AO, Astello-García M, Méndez-Cabañas A (2018) Sequence analysis and confirmation of type IV pili-associated proteins PilY1, PilW and PilV in Acidithiobacillus thiooxidans. BioRxiv 350900.  https://doi.org/10.1101/350900
  26. Gholami RM, Borghei SM, Mousavi SM (2011) Bacterial leaching of a spent Mo–Co–Ni refinery catalyst using Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Hydrometallurgy 106(1-2):26–31.  https://doi.org/10.1016/j.hydromet.2010.11.011 Google Scholar
  27. Ghosh W, Dam B (2009) Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea. FEMS Microbiol Rev 33(6):999–1043.  https://doi.org/10.1111/j.1574-6976.2009.00187.x Google Scholar
  28. Ghosh W, Mallick S, DasGupta SK (2009) Origin of the Sox multienzyme complex system in ancient thermophilic bacteria and coevolution of its constituent proteins. Res Microbiol 160(6):409–420.  https://doi.org/10.1016/j.resmic.2009.07.003 Google Scholar
  29. Gong WQ, Bian X, Chen W, Zhang XZ, Liu YJ, Liu J, Huang YB, Yang HG (2007) Cultivation characteristics of Acidithiobacillus Thiooxidans and bioleaching of low-grade phosphate ore with it. J Wuhan Univ Technol 29(5):53–57Google Scholar
  30. Harrison AP (1982) Genomic and physiological diversity amongst strains of Thiobacillus ferrooxidans, and genomic comparison with Thiobacillus thiooxidans. Arch Microbiol 131(1):68–76.  https://doi.org/10.1007/BF00451501 Google Scholar
  31. Harrison AP Jr (1984) The acidophilic thiobacilli and other acidophilic bacteria that share their habitat. Annu Rev Microbiol 38(1):265–292.  https://doi.org/10.1146/annurev.mi.38.100184.001405 Google Scholar
  32. He F, Zhou L (2010) Treatment for woolscouring effluent through bioacidification by Acidithiobacillus thiooxidans. Int J Environ Pollut 40(4):391–401.  https://doi.org/10.1504/IJEP.2010.031758 Google Scholar
  33. Holmes DS, Bonnefoy V (2007) Genetic and bioinformatic insights into iron and sulfur oxidation mechanisms of bioleaching organisms. In: Rawlings DE, Johnson DB (eds) Biomining. Springer-Verlag, Berlin Heidelberg, pp 281–307.  https://doi.org/10.1007/978-3-540-34911-2_14 Google Scholar
  34. Jerez CA (2001) Chemotactic transduction in biomining microorganisms. Hydrometallurgy 59(2):347–356.  https://doi.org/10.1016/S0304-386X(00)00177-8 Google Scholar
  35. Jones DS, Albrecht HL, Dawson KS, Schaperdoth I, Freeman KH, Pi Y, Pearson A, Macalady JL (2012) Community genomic analysis of an extremely acidophilic sulfur-oxidizing biofilm. The ISME J 6(1):158–170.  https://doi.org/10.1038/ismej.2011.75 Google Scholar
  36. Jorge V, Francisco O, Raquel Q, Mark D, Holmes DS (2011) Draft genome sequence of the extremely acidophilic biomining bacterium Acidithiobacillus thiooxidans ATCC 19377 provides insights into the evolution of the Acidithiobacillus genus. J Bacteriol 193(24):7003–7004.  https://doi.org/10.1128/JB.06281-11 Google Scholar
  37. Kamimura K, Higashino E, Moriya S, Sugio T (2003) Marine acidophilic sulfur-oxidizing bacterium requiring salts for the oxidation of reduced inorganic sulfur compounds. Extremophiles 7(2):95–99.  https://doi.org/10.1007/s00792-002-0300-9 Google Scholar
  38. Keays RR, Ihlenfeld C, McInnes BI, Zhou M-F, Lambert DD (2004) Re–Os isotope dating of the Jinchuan Ni–Cu–PGE sulfide deposit, China. Recent advances in magmatic ore systems of mafic–ultramafic rocks. Proc IGCP 479:41–42Google Scholar
  39. Kelly DP, Wood AP (2000) Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. Int J Syst Evol Microbiol 50(2):511–516.  https://doi.org/10.1099/00207713-50-2-511 Google Scholar
  40. Kelly DP, Wood AP (2015) Acidithiobacillus. Bergey’s manual of systematics of Archaea and Bacteria:1-5Google Scholar
  41. Khan S, Haq F, Hasan F, Saeed K, Ullah R (2012) Growth and biochemical activities of Acidithiobacillus thiooxidans collected from black shale. J Microbiol Res 2(4):78–83.  https://doi.org/10.5923/j.microbiology.20120204.03 Google Scholar
  42. Konishi Y, Asai S, Yoshida N (1995) Growth kinetics of Thiobacillus thiooxidans on the surface of elemental sulfur. Appl Environ Microbiol 61(10):3617–3622.  https://doi.org/10.1007/BF00871823 Google Scholar
  43. Kumar RN, Nagendran R (2007) Influence of initial pH on bioleaching of heavy metals from contaminated soil employing indigenous Acidithiobacillus thiooxidans. Chemosphere 66(9):1775–1781.  https://doi.org/10.1016/j.chemosphere.2006.07.091 Google Scholar
  44. Kumar RN, Nagendran R (2009) Fractionation behavior of heavy metals in soil during bioleaching with Acidithiobacillus thiooxidans. J Hazard Mater 169(1-3):1119–1126.  https://doi.org/10.1016/j.jhazmat.2009.04.069 Google Scholar
  45. Lee EY, Cho K-S, Ryu HW (2005) Simultaneous removal of H2S and NH3 in biofilter inoculated with Acidithiobacillus thiooxidans TAS. J Biosci Bioeng 99(6):611–615.  https://doi.org/10.1263/jbb.99.611 Google Scholar
  46. Lee EY, Lee NY, Cho K-S, Ryu HW (2006) Removal of hydrogen sulfide by sulfate-resistant Acidithiobacillus thiooxidans AZ11. J Biosci Bioeng 101(4):309–314.  https://doi.org/10.1263/jbb.101.309 Google Scholar
  47. Lee E, Han Y, Park J, Hong J, Silva RA, Kim S, Kim H (2015) Bioleaching of arsenic from highly contaminated mine tailings using Acidithiobacillus thiooxidans. J Environ Manag 147:124–131.  https://doi.org/10.1016/j.jenvman.2014.08.019 Google Scholar
  48. Lei Y, Quan L, Shuang Z, Wang W, Wang Y, Jing R (2014) Bioremoval of hydrogen sulfide by Acidithiobacillus thiooxidans. J Heilongjiang Bayi Agril Univer 26(1):14–17Google Scholar
  49. Levicán G, Ugalde JA, Ehrenfeld N, Maass A, Parada P (2008) Comparative genomic analysis of carbon and nitrogen assimilation mechanisms in three indigenous bioleaching bacteria: predictions and validations. BMC Genomics 9(581):1–19.  https://doi.org/10.1186/1471-2164-9-581 Google Scholar
  50. Liang G, Mo Y, Zhou Q (2010) Novel strategies of bioleaching metals from printed circuit boards (PCBs) in mixed cultivation of two acidophiles. Enzyme Microb Technol 47(7):322–326.  https://doi.org/10.1016/j.enzmictec.2010.08.002 Google Scholar
  51. Liang G, Tang J, Liu W, Zhou Q (2013) Optimizing mixed culture of two acidophiles to improve copper recovery from printed circuit boards (PCBs). J Hazard Mater 250:238–245.  https://doi.org/10.1016/j.jhazmat.2013.01.077 Google Scholar
  52. Li-shu G, Li-ping Y, Bo Y, Ya-bin C, Hao-qiong W, Yan-bo N, Tao Z, A-li D (2013) The effect of Acidithiobacillus thiooxidans TT03 to alkaline soil. Heilongjiang Sci 4(5):28–31Google Scholar
  53. Liu HL, Chiu CW, Cheng YC (2003) The effects of metabolites from the indigenous Acidithiobacillus thiooxidans and temperature on the bioleaching of cadmium from soil. Biotechnol Bioeng 83(6):638–645.  https://doi.org/10.1002/bit.10714 Google Scholar
  54. Liu Y-G, Zhou M, Zeng G-M, Wang X, Li X, Fan T, Xu W-H (2008) Bioleaching of heavy metals from mine tailings by indigenous sulfur-oxidizing bacteria: effects of substrate concentration. Bioresource technol 99(10):4124–4129.  https://doi.org/10.1016/j.biortech.2007.08.064 Google Scholar
  55. Lors C, Chehade MH, Damidot D (2009) pH variations during growth of Acidithiobacillus thiooxidans in buffered media designed for an assay to evaluate concrete biodeterioration. Int Biodeterior Biodegrad 63(7):880–883.  https://doi.org/10.1016/j.ibiod.2009.06.012 Google Scholar
  56. Löser C, Zehnsdorf A, Görsch K, Seidel H (2005) Bioleaching of heavy metal polluted sediment: kinetics of leaching and microbial sulfur oxidation. Eng Life Sci 5(6):535–549.  https://doi.org/10.1002/elsc.200520104 Google Scholar
  57. Marín S, Acosta M, Galleguillos PA, Villegas Y, Cautivo D, Zepeda VJ, Demergasso C (2017) Transcription dynamics of CBB-pathway genes in Acidithiobacillus thiooxidans growing under different CO2 levels. Solid State Phenom 262:376–380.  https://doi.org/10.4028/www.scientific.net/SSP.262.376 Google Scholar
  58. Meyer B, Imhoff JF, Kuever J (2007) Molecular analysis of the distribution and phylogeny of the soxB gene among sulfur-oxidizing bacteria–evolution of the Sox sulfur oxidation enzyme system. Environ Microbiol 9(12):2957–2977.  https://doi.org/10.1111/j.1462-2920.2007.01407.x Google Scholar
  59. Mikoda B, Potysz A, Kmiecik E (2019) Bacterial leaching of critical metal values from Polish copper metallurgical slags using Acidithiobacillus thiooxidans. J Environ Manag 236:436–445.  https://doi.org/10.1016/j.jenvman.2019.02.032 Google Scholar
  60. Montgomery K, Charlesworth J, LeBard R, Visscher P, Burns B (2013) Quorum sensing in extreme environments. Life 3(1):131–148.  https://doi.org/10.3390/life3010131 Google Scholar
  61. Morin DHR (2007) Bioleaching of sulfide minerals in continuous stirred tanks. In: Donati ER, Sand W (eds) Microbial processing of metal sulfides. Springer, Houten, pp 133–150.  https://doi.org/10.1007/1-4020-5589-7_7 Google Scholar
  62. Müller FH, Bandeiras TM, Urich T, Teixeira M, Gomes CM, Kletzin A (2004) Coupling of the pathway of sulphur oxidation to dioxygen reduction: characterization of a novel membrane-bound thiosulphate: quinone oxidoreductase. Mol Microbiol 53(4):1147–1160.  https://doi.org/10.1111/j.1365-2958.2004.04193.x Google Scholar
  63. Mulligan C, Yong R, Gibbs B (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60(1-4):193–207.  https://doi.org/10.1016/S0013-7952(00)00101-0 Google Scholar
  64. Nakamura K, Amano Y, Nakayama O (1989) Determination of free sulphite in wine using a microbial sensor. Appl Microbiol Biotechnol 31(4):351–354.  https://doi.org/10.1007/BF00257603 Google Scholar
  65. Nakamura K, Yudiarto M, Kaneko N, Kurosawa H, Amano Y (1997) A microbial method using whole cells of Thiobacillus thiooxidans for measuring sulphate in waters. Appl Microbiol Biotechnol 48(6):753–757.  https://doi.org/10.1007/s002530051128 Google Scholar
  66. Nareshkumar R, Nagendran R, Parvathi K (2008) Bioleaching of heavy metals from contaminated soil using Acidithiobacillus thiooxidans: effect of sulfur/soil ratio. World J Microb Biot 24(8):1539–1546.  https://doi.org/10.1007/s11274-007-9639-5 Google Scholar
  67. Natarajan K (2008) Microbial aspects of acid mine drainage and its bioremediation. Trans Nonferrous Metals Soc 18(6):1352–1360.  https://doi.org/10.1016/S1003-6326(09)60008-X Google Scholar
  68. Negishi A, Muraoka T, Maeda T, Takeuchi F, Kanao T, Kamimura K, Sugio T (2005) Growth inhibition by tungsten in the sulfur-oxidizing bacterium Acidithiobacillus thiooxidans. Biosci Biotechnol Biochem 69(11):2073–2080.  https://doi.org/10.1271/bbb.69.2073 Google Scholar
  69. Nguyen TA, Fu C-C, Juang R-S (2016) Biosorption and biodegradation of a sulfur dye in high-strength dyeing wastewater by Acidithiobacillus thiooxidans. J Environ Manag 182(1):265–271.  https://doi.org/10.1016/j.jenvman.2016.07.083 Google Scholar
  70. Nogami Y, Maeda T, Negishi A, Sugio T (1997) Inhibition of sulfur oxidizing activity by nickel ion in Thiobacillus thiooxidans NB1-3 isolated from the corroded concrete. Biosci Biotechnol Biochem 61(8):1373–1375.  https://doi.org/10.1271/bbb.61.1373 Google Scholar
  71. Oprime ME, Garcia O Jr, Cardoso AA (2001) Oxidation of H2S in acid solution by Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Process Biochem 37(2):111–114.  https://doi.org/10.1016/S0032-9592(01)00179-0 Google Scholar
  72. Pathak A, Dastidar M, Sreekrishnan T (2009) Bioleaching of heavy metals from sewage sludge: a review. J Environ Manag 90(8):2343–2353.  https://doi.org/10.1016/j.jenvman.2008.11.005 Google Scholar
  73. Paulino LC, Bergamo RF, De Mello MP, Garcia O, Manfio GP, Ottoboni LM (2001) Molecular characterization of Acidithiobacillus ferrooxidans and A. thiooxidans strains isolated from mine wastes in Brazil. Anton Leeuw Int J G 80(1):65–75.  https://doi.org/10.1023/A:1012247325537 Google Scholar
  74. Peng H (2009) Study on improving the acid-producing capacity of Acidithiobacillus Thiooxidans. Metal Mine 5:143–145Google Scholar
  75. Qin W, Zhen S, Yan Z, Campbell M, Wang J, Liu K, Zhang Y (2009) Heap bioleaching of a low-grade nickel-bearing sulfide ore containing high levels of magnesium as olivine, chlorite and antigorite. Hydrometallurgy 98(1-2):58–65.  https://doi.org/10.1016/j.hydromet.2009.03.017 Google Scholar
  76. Quatrini R, Appia-Ayme C, Denis Y, Jedlicki E, Holmes DS, Bonnefoy V (2009) Extending the models for iron and sulfur oxidation in the extreme acidophile Acidithiobacillus ferrooxidans. BMC Genomics 10(394):1–19.  https://doi.org/10.1186/1471-2164-10-394 Google Scholar
  77. Quatrini R, Escudero LV, Moya-Beltrán A, Galleguillos PA, Issotta F, Acosta M, Cárdenas JP, Nuñez H, Salinas K, Holmes DS (2017) Draft genome sequence of Acidithiobacillus thiooxidans CLST isolated from the acidic hypersaline Gorbea salt flat in northern Chile. Standard Genomic Sci 12(84):1–8.  https://doi.org/10.1186/s40793-017-0305-8 Google Scholar
  78. Raghavan D, Guay R, Torma A (1990) A study of biodegradation of polyethylene and biodesulfurization of rubber. Appl Biochem Biotechnol 24(1):387–396.  https://doi.org/10.1007/BF02920262 Google Scholar
  79. Riekkola-Vanhanen M (2010) Talvivaara Sotkamo mine—bioleaching of a polymetallic nickel ore in subarctic climate. Nova Biotechnol 10(1):7–14Google Scholar
  80. Rohwerder T, Sand W (2003) The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp. Microbiology 149(7):1699–1710.  https://doi.org/10.1099/mic.0.26212-0 Google Scholar
  81. Rulkens W, Grotenhuis J, Tichý R (1995) Methods for cleaning contaminated soils and sediments. In: Salomons W, Feorstner U, Mader P (eds) Heavy Metals. Springer-Verlag, Berlin, pp 151–191.  https://doi.org/10.1007/978-3-642-79316-5_11 Google Scholar
  82. Seidel A, Zimmels Y, Armon R (2001) Mechanism of bioleaching of coal fly ash by Thiobacillus thiooxidans. Chem Eng J 83(2):123–130.  https://doi.org/10.1016/S1385-8947(00)00256-4 Google Scholar
  83. Shahrabi-Farahani M, Yaghmaei S, Mousavi S, Amiri F (2014) Bioleaching of heavy metals from a petroleum spent catalyst using Acidithiobacillus thiooxidans in a slurry bubble column bioreactor. Sep Purif Technol 132:41–49.  https://doi.org/10.1016/j.seppur.2014.04.039 Google Scholar
  84. Sharma M, Bisht V, Singh B, Jain P, Mandal AK, Lal B, Sarma PM (2015) Bioleaching of nickel from spent petroleum catalyst using Acidithiobacillus thiooxidans DSM- 11478. Indian J Exp Biol 53(6):388–394Google Scholar
  85. Smith AJ, London J, Stanier RY (1967) Biochemical basis of obligate autotrophy in blue-green algae and thiobacilli. J Bacteriol 94(4):972–983Google Scholar
  86. Srichandan H, Pathak A, Kim DJ, Lee S-W (2014) Optimization of two-step bioleaching of spent petroleum refinery catalyst by Acidithiobacillus thiooxidans using response surface methodology. J Environl Sci Health A 49(14):1740–1753.  https://doi.org/10.1080/10934529.2014.951264 Google Scholar
  87. Starkey RL (1925) Concerning the physiology of Thiobacillus thiooxidans, an autotrophic bacterium oxidizing sulfur under acid conditions. J Bacteriol 10(2):135–163.  https://doi.org/10.1002/path.1700290411 Google Scholar
  88. Suzuki I (1965) Oxidation of elemental sulfur by an enzyme system of Thiobacillus thiooxidans. BBA-Gen Subjects 104(2):359–371.  https://doi.org/10.1016/0304-4165(65)90341-7 Google Scholar
  89. Suzuki I (2001) Microbial leaching of metals from sulfide minerals. Biotechnol Adv 19(2):119–132.  https://doi.org/10.1016/S0734-9750(01)00053-2 Google Scholar
  90. Suzuki I, Lee D, Mackay B, Harahuc L, Oh JK (1999) Effect of various ions, pH, and osmotic pressure on oxidation of elemental sulfur by Thiobacillus thiooxidans. Appl Environ Microbiol 65(11):5163–5168.  https://doi.org/10.1007/s10895-011-0915-2 Google Scholar
  91. Takauwa S, Nishiwaki T, Hosoda K, Tominaga N, Iwasaki H (1977) Promoting effect of molybdate on the growth of a sulfur-oxidizing bacterium, Thiobacillus thiooxidans. J Gen Appl Microbiol 23(4):163–173.  https://doi.org/10.2323/jgam.23.163 Google Scholar
  92. Tano T, Kitaguchi H, Harada M, Nagasawa T, Sugio T (1996) Purification and some properties of a tetrathionate decomposing enzyme from Thiobacillus thiooxidans. Biosci Biotechnol Biochem 60(2):224–227.  https://doi.org/10.1271/bbb.60.224 Google Scholar
  93. Tian KL, Lin JQ, Liu XM, Liu Y, Zhang CK, Yan WM (2003) Conversion of an obligate autotrophic bacteria to heterotrophic growth: expression of a heterogeneous phosphofructokinase gene in the chemolithotroph Acidithiobacillus thiooxidans. Biotechnol Lett 25(10):749–754.  https://doi.org/10.1023/A:1023588921918 Google Scholar
  94. Travisany D, Cortés MP, Latorre M, Di Genova A, Budinich M, Bobadilla-Fazzini RA, Parada P, González M, Maass A (2014) A new genome of Acidithiobacillus thiooxidans provides insights into adaptation to a bioleaching environment. Res Microbiol 165(9):743–752.  https://doi.org/10.1016/j.resmic.2014.08.004 Google Scholar
  95. Urbieta MS, Toril EG, Aguilera A, Giaveno MA, Donati E (2012) First prokaryotic biodiversity assessment using molecular techniques of an acidic river in Neuquén. Argentina Microb Ecol 64(1):91–104.  https://doi.org/10.1007/s00248-011-9997-2 Google Scholar
  96. Valdés JH, Pedroso I, Quatrini R, Hallberg KB, Valenzuela PDT, Holmes DS (2007) Insights into the metabolism and ecophysiology of three Acidithiobacilli by comparative genome analysis. Adv Mater Res 20-21(20-21):439–442.  https://doi.org/10.4028/www.scientific.net/AMR.20-21.439 Google Scholar
  97. Valdés J, Pedroso I, Quatrini R, Holmes DS (2008) Comparative genome analysis of Acidithiobacillus ferrooxidans, A. thiooxidans and A. caldus: insights into their metabolism and ecophysiology. Hydrometallurgy 94(1-4):180–184.  https://doi.org/10.1016/j.hydromet.2008.05.039 Google Scholar
  98. Van Aswegen PC, Van Niekerk J, Olivier W (2007) The BIOX™ process for the treatment of refractory gold concentrates. In: Rawlings DE, Johnson DB (eds) Biomining. Springer-Verlag, Heidelberg, pp 1–33.  https://doi.org/10.1007/978-3-540-34911-2_1 Google Scholar
  99. Waksman SA, Joffe JS (1921) Acid production by a new sulfur-oxidizing bacterium. Science 53(1366):216–216.  https://doi.org/10.1126/science.53.1366.216 Google Scholar
  100. Waksman SA, Joffe (1922) Microörganisms concerned in the oxidation of sulfur in the soil: II. Thiobacillus Thiooxidans, a new sulfur-oxidizing organism isolated from the soil. J Bacteriol 7(2):239Google Scholar
  101. Wang Y-S, Pan Z-Y, Lang J-M, Xu J-M, Zheng Y-G (2007) Bioleaching of chromium from tannery sludge by indigenous Acidithiobacillus thiooxidans. J Hazard Mater 147(1-2):319–324.  https://doi.org/10.1016/j.jhazmat.2007.01.005 Google Scholar
  102. Wang J, Zhu S, Zhang Y-s, Zhao H-b, Hu M-h, Yang C-r, Qin W-q, Qiu G-z (2014) Bioleaching of low-grade copper sulfide ores by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. J Cent South Univ 21(2):728–734.  https://doi.org/10.1007/s11771-014-1995-3 Google Scholar
  103. Wen YM, Lin HY, Wang QP, Chen ZL (2010) Bioleaching of heavy metals from sewage sludge using Acidithiobacillus thiooxidans. AIP Conf Proc. 1251:189–192Google Scholar
  104. Wen YM, Wang QP, Tang C, Chen ZL (2012) Bioleaching of heavy metals from sewage sludge by Acidithiobacillus thiooxidans—a comparative study. J Soil Sediment 12(6):900–908.  https://doi.org/10.1007/s11368-012-0520-2 Google Scholar
  105. Wen Q, Liu X, Wang H, Lin J (2014) A versatile and efficient markerless gene disruption system for Acidithiobacillus thiooxidans: application for characterizing a copper tolerance related multicopper oxidase gene. Environ Microbiol 16(11):3499–3514.  https://doi.org/10.1111/1462-2920.12494 Google Scholar
  106. Yang Y, Ren GM, Wang X, Yang L (2012) Experimental research on coal biodesulfurization by mixed culture column leaching. Adv Mater Res 512-515:2500–2504.  https://doi.org/10.4028/www.scientific.net/amr.512-515.2500 Google Scholar
  107. Yin H, Zhang X, Li X, He Z, Liang Y, Guo X, Hu Q, Xiao Y, Cong J, Ma L (2014) Whole-genome sequencing reveals novel insights into sulfur oxidation in the extremophile Acidithiobacillus thiooxidans. BMC Microbiol 14(179):1–14.  https://doi.org/10.1186/1471-2180-14-179© Google Scholar
  108. Yuan S (2009) Solubilization of radionuclide plutonium in contaminated soil with Acidithiobacillus thiooxidans. Biotechnol Bull (S1):360–363.  https://doi.org/10.13560/j.cnki.biotech.bull.1985.2009.s1.025
  109. Zhan Y, Yang M, Zhang S, Zhao D, Duan J, Wang W, Yan L (2019) Iron and sulfur oxidation pathways of Acidithiobacillus ferrooxidans. World J Microb Biot 35(4):60.  https://doi.org/10.1007/s11274-019-2632-y Google Scholar
  110. Zhang Z, Jia X (2008) Bioleaching of heavy metals from brooklet sediment by Thiobacillus ferrooxidans and Thiobacillus thiooxidans. China. Environ Sci 28(7):624–629.  https://doi.org/10.3321/j.issn:1000-6923.2008.07.010 Google Scholar
  111. Zhang C-g, Xia J-l, Wang J, Qiu G (2007a) Progress on researches of sulfur oxidation system of Acidithiobacillus spp. Biotechnol Bull 24(1):59–65.  https://doi.org/10.13560/j.cnki.biotech.bull.1985.2007.01.014 Google Scholar
  112. Zhang MY, Huang B, Wang YY (2007b) Studying advance in flue gas desulfurization by Thiobacillus ferroxidans. Acta Agric Jiangxi 19(6):121–124.  https://doi.org/10.19386/j.cnki.jxnyxb.2007.06.041 Google Scholar
  113. Zhang J, Wang Q, Li X-r, Sun T, Qi Q-y (2009) Research on improving the saline-sodic soil by sulfur-oxidizing Bacteria. J Jilin Univ (Earth Science Edition) 39(1):147–151.  https://doi.org/10.1360/972009-495 Google Scholar
  114. Zhang X, Yin HQ, Liang YL, Qiu GZ, Liu XD (2015) Theoretical model of the structure and the reaction mechanisms of sulfur oxygenase reductase in Acidithiobacillus thiooxidans. Adv Mater Res 1130(4):67–70.  https://doi.org/10.4028/www.scientific.net/AMR.1130.67 Google Scholar
  115. Zhang X, Feng X, Tao J, Ma L, Xiao Y, Liang Y, Liu X, Yin H (2016a) Comparative genomics of the extreme acidophile Acidithiobacillus thiooxidans reveals intraspecific divergence and niche adaptation. Int J Mol Sci 17(1355):1–14.  https://doi.org/10.3390/ijms17081355 Google Scholar
  116. Zhang X, Liu X, Liang Y, Fan F, Zhang X, Yin H (2016b) Metabolic diversity and adaptive mechanisms of iron-and/or sulfur-oxidizing autotrophic acidophiles in extremely acidic environments. Environ Microbiol Rep 8(5):738–751.  https://doi.org/10.1111/1758-2229.12435 Google Scholar
  117. Zhang X, She S, Dong W, Niu J, Xiao Y, Liang Y, Liu X, Zhang X, Fan F, Yin H (2016c) Comparative genomics unravels metabolic differences at the species and/or strain level and extremely acidic environmental adaptation of ten bacteria belonging to the genus Acidithiobacillus. Syst Appl Microbiol 39(8):493–502.  https://doi.org/10.1016/j.syapm.2016.08.007 Google Scholar
  118. Zhang S, Yan L, Xing W, Chen P, Zhang Y, Wang W (2018a) Acidithiobacillus ferrooxidans and its potential application. Extremophiles 22(4):563–579.  https://doi.org/10.1007/s00792-018-1024-9 Google Scholar
  119. Zhang X, Liu Z, Wei G, Yang F, Liu X (2018b) In silico genome-wide analysis reveals the potential links between core genome of Acidithiobacillus thiooxidans and its autotrophic lifestyle. Front Microbiol 9(1255):1–14.  https://doi.org/10.3389/fmicb.2018.01255 Google Scholar
  120. Zhao F, Wang S (2019) Bioleaching of electronic waste using extreme acidophiles electronic. Waste Management and Treatment Technology. Elsevier, pp 153-174  https://doi.org/10.1016/B978-0-12-816190-6.00007-8
  121. Zhou L, Wang G (2001) Bioleaching of heavy metals from sewage sludge. Acta Scien Circum 1251:189–192.  https://doi.org/10.1063/1.3529272 Google Scholar
  122. Zhou S, Zhou L, Wong W (2002) Removal of heavy metals from sewage sludge by bioleaching. Acta Ecol Sin 22(1):125–133Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and BiotechnologyHeilongjiang Bayi Agricultural UniversityDaqingPeople’s Republic of China
  2. 2.School of PharmacyLanzhou UniversityLanzhouPeople’s Republic of China

Personalised recommendations