Advertisement

Applied Microbiology and Biotechnology

, Volume 103, Issue 19, pp 8229–8239 | Cite as

Solimonas fluminis has an active latex-clearing protein

  • Jakob Birke
  • Dieter JendrossekEmail author
Environmental biotechnology
  • 49 Downloads

Abstract

The utilization of rubber (poly (cis-1,4-isoprene)) by rubber-degrading bacteria depends on the synthesis of rubber oxygenases that cleave the polymer extracellularly to low molecular weight products that can be taken up and used as a carbon source. All so far described Gram-negative rubber-degrading species use two related ≈ 70 kDa rubber oxygenases (RoxA and RoxB) for the primary attack of rubber while all described Gram-positive rubber-degrading strains use RoxA/RoxB-unrelated latex-clearing proteins (Lcps, ≈ 40 kDa) as rubber oxygenase(s). In this study, we identified an lcp orthologue in a Gram-negative species (Solimonas fluminis). We cloned and heterologously expressed the lcp gene of S. fluminis HR-BB, purified the corresponding Lcp protein (LcpHR-BB) from recombinant Escherichia coli, and biochemically characterised the LcpHR-BB activity. LcpHR-BB cleaved polyisoprene to a mixture of C20 and higher oligoisoprenoids at a specific activity of 1.5 U/mg. Furthermore, spectroscopic investigation identified LcpHR-BB as a b-haem-containing protein with an oxidised, fivefold coordinated (open) haem centre. To the best of our knowledge, this is the first report that Gram-negative bacteria can have an active rubber oxygenase of the Lcp type.

Keywords

Rubber oxygenase Latex-clearing protein Polyisoprene Biodegradation Haem dioxygenase 

Notes

Acknowledgements

We thank the Weber and Schaer Company (Hamburg) for providing polyisoprene.

Funding information

This work was supported by a grant of the Deutsche Forschungsgemeinschaft to D. J.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethic approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Andler R, Steinbüchel A (2017) A simple, rapid and cost-effective process for production of latex clearing protein to produce oligopolyisoprene molecules. J Biotechnol 241:184–192.  https://doi.org/10.1016/j.jbiotec.2016.12.008 CrossRefGoogle Scholar
  2. Andler R, Altenhoff A-L, Mäsing F, Steinbüchel A (2018a) In vitro studies on the degradation of poly (cis-1,4-isoprene). Biotechnol Prog 78:4543–4899.  https://doi.org/10.1002/btpr.2631 Google Scholar
  3. Andler R, Hiessl S, Yücel O, Tesch M, Steinbüchel A (2018b) Cleavage of poly (cis-1,4-isoprene) rubber as solid substrate by cultures of Gordonia polyisoprenivorans. New Biotechnol 44:6–12.  https://doi.org/10.1016/j.nbt.2018.03.002 CrossRefGoogle Scholar
  4. Arenskötter M, Baumeister D, Berekaa MM, Pötter G, Kroppenstedt RM, Linos A, Steinbüchel A (2001) Taxonomic characterization of two rubber degrading bacteria belonging to the species Gordonia polyisoprenivorans and analysis of hyper variable regions of 16S rDNA sequences. FEMS Microbiol Lett 205:277–282CrossRefGoogle Scholar
  5. Berry EA, Trumpower BL (1987) Simultaneous determination of hemes-a, hemes-b, and hemes-c from pyridine hemochrome spectra. Anal Biochem 161:1–15CrossRefGoogle Scholar
  6. Birke J, Jendrossek D (2014) Rubber oxygenase and latex clearing protein cleave rubber to different products and use different cleavage mechanisms. Appl Environ Microbiol 80:5012–5020.  https://doi.org/10.1128/AEM.01271-14 CrossRefGoogle Scholar
  7. Birke J, Röther W, Schmitt G, Jendrossek D (2013) Functional identification of rubber oxygenase (RoxA) in soil and marine Myxobacteria. Appl Environ Microbiol 79:6391–6399.  https://doi.org/10.1128/AEM.02194-13 CrossRefGoogle Scholar
  8. Birke J, Röther W, Jendrossek D (2015) Latex clearing protein (Lcp) of Streptomyces sp. strain K30 is a b-type cytochrome and differs from rubber oxygenase A (RoxA) in its biophysical properties. Appl Environ Microbiol 81:3793–3799.  https://doi.org/10.1128/AEM.00275-15 CrossRefGoogle Scholar
  9. Birke J, Röther W, Jendrossek D (2017) RoxB is a novel type of rubber oxygenase that combines properties of rubber oxygenase RoxA and latex clearing protein (Lcp). Appl Environ Microbiol 83:e00721–e00717.  https://doi.org/10.1128/AEM.00721-17 CrossRefGoogle Scholar
  10. Birke J, Röther W, Jendrossek D (2018) Rhizobacter gummiphilus NS21 has two rubber oxygenases (RoxA and RoxB) acting synergistically in rubber utilisation. Appl Microbiol Biotechnol 241:184–113.  https://doi.org/10.1007/s00253-018-9341-6 Google Scholar
  11. Bode HB, Kerkhoff K, Jendrossek D (2001) Bacterial degradation of natural and synthetic rubber. Biomacromolecules 2:295–303.  https://doi.org/10.1021/bm005638h CrossRefGoogle Scholar
  12. Braaz R, Fischer P, Jendrossek D (2004) Novel type of heme-dependent oxygenase catalyzes oxidative cleavage of rubber (poly-cis-1,4-isoprene). Appl Environ Microbiol 70:7388–7395.  https://doi.org/10.1128/AEM.70.12.7388-7395.2004 CrossRefGoogle Scholar
  13. Braaz R, Armbruster W, Jendrossek D (2005) Heme-dependent rubber oxygenase RoxA of Xanthomonas sp. cleaves the carbon backbone of poly (cis-1,4-isoprene) by a dioxygenase mechanism. Appl Environ Microbiol 71:2473–2478.  https://doi.org/10.1128/AEM.71.5.2473-2478.2005 CrossRefGoogle Scholar
  14. Brendtsen JD, Nielsen H, Widdick D, Palmer T, Brunak S (2005) Prediction of twin-arginine signal peptides. BMC Bioinformatics 6(1):167.  https://doi.org/10.1186/1471-2105-6-16 CrossRefGoogle Scholar
  15. Chia K-H, Nanthini J, Thottathil GP, Najimudin N, Haris MRHM, Sudesh K (2014) Identification of new rubber-degrading bacterial strains from aged latex. Polym Degrad Stab 109:354–361.  https://doi.org/10.1016/j.polymdegradstab.2014.07.027 CrossRefGoogle Scholar
  16. Coenen A, Oetermann S, Steinbüchel A (2019) Identification of LcpRBA3(2), a novel regulator of lcp expression in Streptomyces coelicolor A3(2). Appl Microbiol Biotechnol 7:e50562–e50512.  https://doi.org/10.1007/s00253-019-09896-8
  17. Heisey RM, Papadatos S (1995) Isolation of microorganisms able to metabolize purified natural rubber. Appl Environ Microbiol 61:3092–3097Google Scholar
  18. Hiessl S, Schuldes J, Thuermer A, Halbsguth T, Broeker D, Angelov A, Liebl W, Daniel R, Steinbüchel A (2012) Involvement of two latex-clearing proteins during rubber degradation and insights into the subsequent degradation pathway revealed by the genome sequence of Gordonia polyisoprenivorans strain VH2. Appl Environ Microbiol 78:2874–2887.  https://doi.org/10.1128/AEM.07969-11 CrossRefGoogle Scholar
  19. Hiessl S, Boese D, Oetermann S, Eggers J, Pietruszka J, Steinbüchel A (2014) Latex clearing protein-an oxygenase cleaving poly (cis-1,4-isoprene) rubber at the cis double bonds. Appl Environ Microbiol 80:5231–5240.  https://doi.org/10.1128/AEM.01502-14 CrossRefGoogle Scholar
  20. Ibrahim E, Arenskötter M, Luftmann H, Steinbüchel A (2006) Identification of poly (cis-1,4-isoprene) degradation intermediates during growth of moderately thermophilic actinomycetes on rubber and cloning of a functional lcp homologue from Nocardia farcinica strain E1. Appl Environ Microbiol 72:3375–3382.  https://doi.org/10.1128/AEM.72.5.3375-3382.2006
  21. Ilcu L, Röther W, Birke J, Brausemann A, Einsle O, Jendrossek D (2017) Structural and functional analysis of latex clearing protein (Lcp) provides insight into the enzymatic cleavage of rubber. Sci Rep 7:6179.  https://doi.org/10.1038/s41598-017-05268-2 CrossRefGoogle Scholar
  22. Imai S, Ichikawa K, Muramatsu Y, Kasai D, Masai E, Fukuda M (2011) Isolation and characterization of Streptomyces, Actinoplanes, and Methylibium strains that are involved in degradation of natural rubber and synthetic poly (cis-1,4-isoprene). Enzym Microb Technol 49:526–531.  https://doi.org/10.1016/j.enzmictec.2011.05.014 CrossRefGoogle Scholar
  23. Imai S, Yoshida R, Endo Y, Fukunaga Y, Yamazoe A, Kasai D, Masai E, Fukuda M (2013) Rhizobacter gummiphilus sp. nov., a rubber-degrading bacterium isolated from the soil of a botanical garden in Japan. J Gen Appl Microbiol 59:199–205CrossRefGoogle Scholar
  24. Jendrossek D, Birke J (2018) Rubber oxygenases. Appl Microbiol Biotechnol 78:4543–4518.  https://doi.org/10.1007/s00253-018-9453-z Google Scholar
  25. Jendrossek D, Reinhardt S (2003) Sequence analysis of a gene product synthesized by Xanthomonas sp. during growth on natural rubber latex. FEMS Microbiol Lett 224:61–65CrossRefGoogle Scholar
  26. Jendrossek D, Tomasi G, Kroppenstedt RM (1997) Bacterial degradation of natural rubber: a privilege of actinomycetes? FEMS Microbiol Lett 150:179–188CrossRefGoogle Scholar
  27. Kasai D, Imai S, Asano S, Tabata M, Iijima S, Kamimura N, Masai E, Fukuda M (2017) Identification of natural rubber degradation gene in Rhizobacter gummiphilus NS21. Biosci Biotechnol Biochem 81:614–620.  https://doi.org/10.1080/09168451.2016.1263147 CrossRefGoogle Scholar
  28. Lee Y, Lee B, Lee K, Jeon CO (2018) Solimonas fluminis sp. nov., isolated from a freshwater river. Int J Syst Evol Microbiol 68:2755–2759.  https://doi.org/10.1099/ijsem.0.002865 CrossRefGoogle Scholar
  29. Linh DV, Huong NL, Tabata M, Imai S, Iijima S, Kasai D, Anh TK, Fukuda M (2017) Characterization and functional expression of a rubber degradation gene of a Nocardia degrader from a rubber-processing factory. J Biosci Bioeng 123:412–418.  https://doi.org/10.1016/j.jbiosc.2016.11.012 CrossRefGoogle Scholar
  30. Linh DV, Gibu N, Tabata M, Imai S, Hosoyama A, Yamazoe A, Kasai D, Fukuda M (2019) Complete genome sequence of natural rubber-degrading, gram-negative bacterium, Rhizobacter gummiphilus strain NS21T. Biotechnol Rep (Amst) 22:e00332.  https://doi.org/10.1016/j.btre.2019.e00332 CrossRefGoogle Scholar
  31. Linos A, Steinbüchel A, Spröer C, Kroppenstedt RM (1999) Gordonia polyisoprenivorans sp. nov., a rubber-degrading actinomycete isolated from an automobile tyre. Int J Syst Bacteriol 49(Pt 4):1785–1791.  https://doi.org/10.1099/00207713-49-4-1785 CrossRefGoogle Scholar
  32. Linos A, Berekaa MM, Steinbüchel A, Kim KK, Sproer C, Kroppenstedt RM (2002) Gordonia westfalica sp. nov., a novel rubber-degrading actinomycete. Int J Syst Evol Microbiol 52:1133–1139.  https://doi.org/10.1099/00207713-52-4-1133 Google Scholar
  33. Nanthini J, Ong SY, Sudesh K (2017) Identification of three homologous latex-clearing protein (lcp) genes from the genome of Streptomyces sp. strain CFMR 7. Gene 628:146–155.  https://doi.org/10.1016/j.gene.2017.07.039
  34. Oetermann S, Vivod R, Hiessl S, Hogeback J, Holtkamp M, Karst U, Steinbüchel A (2018) Histidine at position 195 is essential for association of heme-b in Lcp1VH2. Earth Syst Environ 2:5–14.  https://doi.org/10.1007/s41748-018-0041-2 CrossRefGoogle Scholar
  35. Oetermann S, Jongsma R, Coenen A, Keller J, Steinbüchel A (2019) LcpRVH2 - regulating the expression of latex-clearing proteins in Gordonia polyisoprenivorans VH2. Microbiology (Reading, Engl) 56:269–354.  https://doi.org/10.1099/mic.0.000755 Google Scholar
  36. Rose K, Steinbüchel A (2005) Biodegradation of natural rubber and related compounds: recent insights into a hardly understood catabolic capability of microorganisms. Appl Environ Microbiol 71:2803–2812.  https://doi.org/10.1128/AEM.71.6.2803-2812.2005 CrossRefGoogle Scholar
  37. Rose K, Tenberge KB, Steinbüchel A (2005) Identification and characterization of genes from Streptomyces sp. strain K30 responsible for clear zone formation on natural rubber latex and poly (cis-1,4-isoprene) rubber degradation. Biomacromolecules 6:180–188.  https://doi.org/10.1021/bm0496110 CrossRefGoogle Scholar
  38. Röther W, Austen S, Birke J, Jendrossek D (2016) Molecular insights in the cleavage of rubber by the latex-clearing-protein (Lcp) of Streptomyces sp. strain K30. Appl Environ Microbiol 82:6593–6602.  https://doi.org/10.1128/AEM.02176-16 CrossRefGoogle Scholar
  39. Röther W, Birke J, Grond S, Beltran JM, Jendrossek D (2017a) Production of functionalized oligo-isoprenoids by enzymatic cleavage of rubber. Microb Biotechnol 43:1238–1433.  https://doi.org/10.1111/1751-7915.12748 Google Scholar
  40. Röther W, Birke J, Jendrossek D (2017b) Assays for the detection of rubber oxygenase activities. Bio-protocol 7:1–14.  https://doi.org/10.21769/BioProtoc.2188 CrossRefGoogle Scholar
  41. Schmitt G, Seiffert G, Kroneck PMH, Braaz R, Jendrossek D (2010) Spectroscopic properties of rubber oxygenase RoxA from Xanthomonas sp., a new type of dihaem dioxygenase. Microbiology (Reading, Engl) 156:2537–2548.  https://doi.org/10.1099/mic.0.038992-0 CrossRefGoogle Scholar
  42. Seidel J, Schmitt G, Hoffmann M, Jendrossek D, Einsle O (2013) Structure of the processive rubber oxygenase RoxA from Xanthomonas sp. Proc Natl Acad Sci U S A 110:13833–13838.  https://doi.org/10.1073/pnas.1305560110 CrossRefGoogle Scholar
  43. Sharma V, Siedenburg G, Birke J, Mobeen F, Jendrossek D, Prakash T (2018) Metabolic and taxonomic insights into the Gram-negative natural rubber degrading bacterium Steroidobacter cummioxidans sp. nov., strain 35Y. PloS One 13(5):e0197448.  https://doi.org/10.1371/journal.pone.0197448 CrossRefGoogle Scholar
  44. Tsuchii A, Takeda K (1990) Rubber-degrading enzyme from a bacterial culture. Appl Environ Microbiol 56:269–274Google Scholar
  45. Warneke S, Arenskötter M, Tenberge KB, Steinbüchel A (2007) Bacterial degradation of poly (trans-1,4-isoprene) (gutta percha). Microbiology (Reading, Engl) 153:347–356.  https://doi.org/10.1099/mic.0.2006/000109-0
  46. Watcharakul S, Röther W, Birke J, Umsakul K, Hodgson B, Jendrossek D (2016) Biochemical and spectroscopic characterization of purified latex clearing protein (Lcp) from newly isolated rubber degrading Rhodococcus rhodochrous strain RPK1 reveals novel properties of Lcp. BMC Microbiol 16:92.  https://doi.org/10.1186/s12866-016-0703-x CrossRefGoogle Scholar
  47. Yikmis M, Steinbüchel A (2012a) Historical and recent achievements in the field of microbial degradation of natural and synthetic rubber. Appl Environ Microbiol 78:4543–4551.  https://doi.org/10.1128/AEM.00001-12 CrossRefGoogle Scholar
  48. Yikmis M, Steinbüchel A (2012b) Importance of the latex-clearing protein (Lcp) for poly (cis-1,4-isoprene) rubber cleavage in Streptomyces sp K30. Microbiologyopen 1:13–24.  https://doi.org/10.1002/mbo3.3 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of MicrobiologyUniversity of StuttgartStuttgartGermany
  2. 2.Institute of Applied BiotechnologyUniversity of Applied Sciences BiberachBiberachGermany

Personalised recommendations