Identification of novel potential acetate-oxidizing bacteria in thermophilic methanogenic chemostats by DNA stable isotope probing

  • Dan Zheng
  • Hui-Zhong Wang
  • Min Gou
  • Masaru Konishi Nobu
  • Takashi Narihiro
  • Bin Hu
  • Yong Nie
  • Yue-Qin TangEmail author
Environmental biotechnology


Syntrophic oxidization of acetate and propionate are both critical steps of methanogenesis during thermophilic anaerobic digestion. However, knowledge on syntrophic acetate-oxidizing bacteria (SAOB) and syntrophic propionate-oxidizing bacteria (SPOB) is limited because of the difficulty in pure culture isolation due to symbiotic relationship. In this study, two thermophilic acetate-fed anaerobic chemostats, ATL (dilution rate of 0.025 day−1) and ATH (0.05 day−1) and one thermophilic propionate-fed anaerobic chemostat PTL (0.025 day−1) were constructed, AOB and POB in these chemostats were studied via microbial community analysis and DNA stable-isotope probing (SIP). The results showed that, in addition to Tepidanaerobacter, a known SAOB, species of Thauera, Thermodesulfovibrio, Anaerobaculum, Ruminiclostridium, Comamonas, and uncultured bacteria belonging to Lentimicrobiaceae, o_MBA03, Thermoanaerobacteraceae, Anaerolineaceae, Clostridiales, and Ruminococcaceae were determined to be potential AOB in chemostats. Pelotomaculum was the key SPOB detected in the propionate-fed chemostat. Based on the intense fluorescence of coenzyme F420, majority of Methanosarcina cells in acetate-fed chemostats were involved in hydrogenotrophic methanogenesis, suggesting the existence of highly active SAOB among the detected AOB. In the propionate-fed chemostat, most of the species detected as AOB were similar to those detected in the acetate-fed chemostats, suggesting the contribution of the syntrophic acetate oxidization pathway for methane generation. These results revealed the existence of previously unknown AOB with high diversity in thermophilic chemostats and suggested that methanogenesis from acetate via the syntrophic oxidization pathway is relevant for thermophilic anaerobic digestion.


Thermophilic methanogenesis Stable isotope probing Acetate-oxidizing bacteria Propionate-oxidizing bacteria Microbial community 


Funding Information

This study was funded by the Ministry of Science and Technology of China (No. 2016YFE0127700) and the National Natural Science Foundation of China (No. 51678378).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2019_10078_MOESM1_ESM.pdf (1.2 mb)
ESM 1 (PDF 1267 kb)


  1. Allen KD, White RH (2018) Chapter Seventeen - Identification of the radical SAM enzymes involved in the biosynthesis of methanopterin and coenzyme F420 in methanogens. In: Bandarian V (ed) Methods in enzymology, vol 606. Academic Press, Cambridge, pp 461–483Google Scholar
  2. APHA, AWWA, WEF (2012) Standard Methods for the examination of water and wastewater, 22nd edn. American Public Health Association, Washington DCGoogle Scholar
  3. Balk M, Weijma J, Stams AJM (2002) Thermotoga lettingae sp. nov., a novel thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic reactor. Int J Syst Evol Microbiol 52(4):1361–1368Google Scholar
  4. Boone DR, Bryant MP (1980) Propionate-Degrading Bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from Methanogenic Ecosystems. Appl Environ Microbiol 40(3):626–632Google Scholar
  5. Chen S, Liu X, Dong X (2005) Syntrophobacter sulfatireducens sp. nov., a novel syntrophic, propionate-oxidizing bacterium isolated from UASB reactors. Int J Syst Evol Microbiol 55(3):1319–1324Google Scholar
  6. Cheng L, He Q, Ding C, L-r D, Li Q, Zhang H (2013) Novel bacterial groups dominate in a thermophilic methanogenic hexadecane-degrading consortium. FEMS Microbiol Ecol 85(3):568–577Google Scholar
  7. Cheng L, Shi S, Li Q, Chen J, Zhang H, Lu Y (2014) Progressive degradation of crude oil n-alkanes coupled to methane production under mesophilic and thermophilic conditions. PLoS One 9(11):e113253Google Scholar
  8. de Bok FAM, Harmsen HJM, Plugge CM, de Vries MC, Akkermans ADL, de Vos WM, Stams AJM (2005) The first true obligately syntrophic propionate-oxidizing bacterium, Pelotomaculum schinkii sp. nov., co-cultured with Methanospirillum hungatei, and emended description of the genus Pelotomaculum. Int J Syst Evol Microbiol 55(4):1697–1703Google Scholar
  9. Eirich LD, Vogels GD, Wolfe RS (1978) Proposed structure for coenzyme F420 from methanobacterium. Biochemistry 17(22):4583–4593Google Scholar
  10. Fardeau M-L, Ollivier B, Patel BKC, Dwivedi P, Ragot M, Garcia J-L (1995) Isolation and characterization of a thermophilic sulfate-reducing bacterium, Desulfotomaculum thermosapovorans sp nov. Int J Syst Evol Microbiol 45(2):218–221Google Scholar
  11. Felchner-Zwirello M, Winter J, Gallert C (2013) Interspecies distances between propionic acid degraders and methanogens in syntrophic consortia for optimal hydrogen transfer. Appl Microbiol Biotechnol 97(20):9193–9205Google Scholar
  12. Griffiths RI, Whiteley AS, O'Donnell AG, Bailey MJ (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl Environ Microbiol 66(12):5488–5491Google Scholar
  13. Gumaelius L, Magnusson G, Pettersson B, Dalhammar G (2001) Comamonas denitrificans sp. nov., an efficient denitrifying bacterium isolated from activated sludge. Int J Syst Evol Microbiol 51(3):999–1006Google Scholar
  14. Hagemeier CH, Shima S, Thauer RK, Bourenkov G, Bartunik HD, Ermler U (2003) Coenzyme F420-dependent methylenetetrahydromethanopterin dehydrogenase (Mtd) from Methanopyrus kandleri: a methanogenic enzyme with an unusual quarternary structure. J Mol Biol 332(5):1047–1057Google Scholar
  15. Harmsen HJM, Van Kuijk BLM, Plugge CM, Akkermans ADL, de Vos WM, Stams AJM (1998) Syntrophobacter fumaroxidans sp. nov., a syntrophic propionate-degrading sulfate-reducing bacterium. Int J Syst Evol Microbiol 48(4):1383–1387Google Scholar
  16. Hatamoto M, Imachi H, Yashiro Y, Ohashi A, Harada H (2007) Diversity of anaerobic microorganisms involved in long-chain fatty acid degradation in methanogenic sludges as revealed by RNA-based stable isotope probing. Appl Environ Microbiol 73(13):4119–4127Google Scholar
  17. Hattori S, Kamagata Y, Hanada S, Shoun H (2000) Thermacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium. Int J Syst Evol Microbiol 50(4):1601–1609Google Scholar
  18. Heeg K, Pohl M, Sontag M, Mumme J, Klocke M, Nettmann E (2014) Microbial communities involved in biogas production from wheat straw as the sole substrate within a two-phase solid-state anaerobic digestion. Syst Appl Microbiol 37(8):590–600Google Scholar
  19. Ho D, Jensen P, Gutierrez-Zamora M-L, Beckmann S, Manefield M, Batstone D (2016) High-rate, high temperature acetotrophic methanogenesis governed by a three population consortium in anaerobic bioreactors. PLoS One 11(8):e0159760Google Scholar
  20. Horino H, Fujita T, Tonouchi A (2014) Description of Anaerobacterium chartisolvens gen. nov., sp. nov., an obligately anaerobic bacterium from Clostridium rRNA cluster III isolated from soil of a Japanese rice field, and reclassification of Bacteroides cellulosolvens Murray et al. 1984 as Pseudobacteroides cellulosolvens gen. nov., comb. nov. Int J Syst Evol Microbiol 64(4):1296–1303Google Scholar
  21. Imachi H, Sekiguchi Y, Kamagata Y, Hanada S, Ohashi A, Harada H (2002) Pelotomaculum thermopropionicum gen. nov., sp. nov., an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium. Int J Syst Evol Microbiol 52(5):1729–1735Google Scholar
  22. Imachi H, Sakai S, Ohashi A, Harada H, Hanada S, Kamagata Y, Sekiguchi Y (2007) Pelotomaculum propionicicum sp. nov., an anaerobic, mesophilic, obligately syntrophic, propionate-oxidizing bacterium. Int J Syst Evol Microbiol 57(7):1487–1492Google Scholar
  23. Kengen SWM, Breidenbach CG, Felske A, Stams AJM, Schraa G, de Vos WM (1999) Reductive dechlorination of tetrachloroethene to cis-1,2-dichloroethene by a thermophilic anaerobic enrichment culture. Appl Environ Microbiol 65(6):2312–2316Google Scholar
  24. Kosaka T, Uchiyama T, Ishii S-I, Enoki M, Imachi H, Kamagata Y, Ohashi A, Harada H, Ikenaga H, Watanabe K (2006) Reconstruction and regulation of the central catabolic pathway in the thermophilic propionate-oxidizing syntroph Pelotomaculum thermopropionicum. J Bacteriol 188(1):202–210Google Scholar
  25. Kröber M, Bekel T, Diaz NN, Goesmann A, Jaenicke S, Krause L, Miller D, Runte KJ, Viehöver P, Pühler A, Schlüter A (2009) Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing. J Biotechnol 142(1):38–49Google Scholar
  26. Lackner N, Hintersonnleitner A, Wagner AO, Illmer P (2018) Hydrogenotrophic methanogenesis and autotrophic growth of Methanosarcina thermophila. Archaea 2018:4712608Google Scholar
  27. Lee MJ, Zinder SH (1988) Isolation and characterization of a thermophilic bacterium which oxidizes acetate in syntrophic association with a methanogen and which grows acetogenically on H2-CO2. Appl Environ Microbiol 54(1):124–129Google Scholar
  28. Lin R, Cheng J, Ding L, Murphy JD (2018) Improved efficiency of anaerobic digestion through direct interspecies electron transfer at mesophilic and thermophilic temperature ranges. Chem Eng J 350:681–691Google Scholar
  29. Liu Y, Balkwill DL, Aldrich HC, Drake GR, Boone DR (1999) Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii. Int J Syst Evol Microbiol 49(2):545–556Google Scholar
  30. Liu P, Klose M, Conrad R (2018) Temperature effects on structure and function of the methanogenic microbial communities in two paddy soils and one desert soil. Soil Biol Biochem 124:236–244Google Scholar
  31. Lueders T, Manefield M, Friedrich MW (2003) Enhanced sensitivity of DNA- and rRNA-based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients. Environ Microbiol 6(1):73–78Google Scholar
  32. Mathis BJ, Marshall CW, Milliken CE, Makkar RS, Creager SE, May HD (2008) Electricity generation by thermophilic microorganisms from marine sediment. Appl Microbiol Biotechnol 78(1):147–155Google Scholar
  33. Maune MW, Tanner RS (2012) Description of Anaerobaculum hydrogeniformans sp. nov., an anaerobe that produces hydrogen from glucose, and emended description of the genus Anaerobaculum. Int J Syst Evol Microbiol 62(4):832–838Google Scholar
  34. Nilsen RK, Torsvik T, Lien T (1996) Desulfotomaculum thermocisternum sp. nov., a sulfate reducer isolated from a hot North Sea oil reservoir. Int J Syst Evol Microbiol 46(2):397–402Google Scholar
  35. Plugge CM, Balk M, Stams AJM (2002) Desulfotomaculum thermobenzoicum subsp. thermosyntrophicum subsp. nov., a thermophilic, syntrophic, propionate-oxidizing, spore-forming bacterium. Int J Syst Evol Microbiol 52(2):391–399Google Scholar
  36. Qiu Y-L, Sekiguchi Y, Hanada S, Imachi H, Tseng I-C, Cheng S-S, Ohashi A, Harada H, Kamagata Y (2006) Pelotomaculum terephthalicum sp. nov. and Pelotomaculum isophthalicum sp. nov.: two anaerobic bacteria that degrade phthalate isomers in syntrophic association with hydrogenotrophic methanogens. Arch Microbiol 185(3):172–182Google Scholar
  37. Rivière D, Desvignes V, Pelletier E, Chaussonnerie S, Guermazi S, Weissenbach J, Li T, Camacho P, Sghir A (2009) Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME J 3(6):700–714Google Scholar
  38. Sasaki K, Morita M, S-i H, Ohmura N, Igarashi Y (2011a) Decreasing ammonia inhibition in thermophilic methanogenic bioreactors using carbon fiber textiles. Appl Microbiol Biotechnol 90(4):1555–1561Google Scholar
  39. Sasaki K, Morita M, Sasaki D, Nagaoka J, Matsumoto N, Ohmura N, Shinozaki H (2011b) Syntrophic degradation of proteinaceous materials by the thermophilic strains Coprothermobacter proteolyticus and Methanothermobacter thermautotrophicus. J Biosci Bioeng 112(5):469–472Google Scholar
  40. Sasaki D, Morita M, Sasaki K, Watanabe A, Ohmura N (2012) Acceleration of cellulose degradation and shift of product via methanogenic co-culture of a cellulolytic bacterium with a hydrogenotrophic methanogen. J Biosci Bioeng 114(4):435–439Google Scholar
  41. Schnürer A, Schink B, Svensson BH (1996) Clostridium ultunense sp. nov., a mesophilic bacterium oxidizing acetate in syntrophic association with a hydrogenotrophic methanogenic bacterium. Int J Syst Evol Microbiol 46(4):1145–1152Google Scholar
  42. Sekiguchi Y, Muramatsu M, Imachi H, Narihiro T, Ohashi A, Harada H, Hanada S, Kamagata Y (2008) Thermodesulfovibrio aggregans sp. nov. and Thermodesulfovibrio thiophilus sp. nov., anaerobic, thermophilic, sulfate-reducing bacteria isolated from thermophilic methanogenic sludge, and emended description of the genus Thermodesulfovibrio. Int J Syst Evol Microbiol 58(11):2541–2548Google Scholar
  43. Shigematsu T, Tang Y, Kawaguchi H, Ninomiya K, Kijima J, Kobayashi T, Morimura S, Kida K (2003) Effect of dilution rate on structure of a mesophilic acetate-degrading methanogenic community during continuous cultivation. J Biosci Bioeng 96(6):547–558Google Scholar
  44. Shigematsu T, Era S, Mizuno Y, Ninomiya K, Kamegawa Y, Morimura S, Kida K (2006a) Microbial community of a mesophilic propionate-degrading methanogenic consortium in chemostat cultivation analyzed based on 16S rRNA and acetate kinase genes. Appl Microbiol Biotechnol 72(2):401–415Google Scholar
  45. Shigematsu T, Tang Y, Mizuno Y, Kawaguchi H, Morimura S, Kida K (2006b) Microbial diversity of mesophilic methanogenic consortium that can degrade long-chain fatty acids in chemostat cultivation. J Biosci Bioeng 102(6):535–544Google Scholar
  46. Sorokin DY, Chernyh NA (2016) ‘Candidatus Desulfonatronobulbus propionicus’: a first haloalkaliphilic member of the order Syntrophobacterales from soda lakes. Extremophiles 20(6):895–901Google Scholar
  47. Sun W, Krumins V, Dong Y, Gao P, Ma C, Hu M, Li B, Xia B, He Z, Xiong S (2018) A combination of stable isotope probing, illumina sequencing, and co-occurrence network to investigate thermophilic acetate- and lactate-utilizing bacteria. Microb Ecol 75(1):113–122Google Scholar
  48. Takai K, Horikoshi K (2000) Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl Environ Microbiol 66(11):5066–5072Google Scholar
  49. Tang Y-Q, Matsui T, Morimura S, Wu X-L, Kida K (2008) Effect of temperature on microbial community of a glucose-degrading methanogenic consortium under hyperthermophilic chemostat cultivation. J Biosci Bioeng 106(2):180–187Google Scholar
  50. Tatara M, Makiuchi T, Ueno Y, Goto M, Sode K (2008) Methanogenesis from acetate and propionate by thermophilic down-flow anaerobic packed-bed reactor. Bioresour Technol 99(11):4786–4795Google Scholar
  51. Ueno Y, Tatara M (2008) Microbial population in a thermophilic packed-bed reactor for methanogenesis from volatile fatty acids. Enzym Microb Technol 43(3):302–308Google Scholar
  52. Wagner AO, Reitschuler C, Illmer P (2014) Effect of different acetate:propionate ratios on the methanogenic community during thermophilic anaerobic digestion in batch experiments. Biochem Eng J 90:154–161Google Scholar
  53. Wallrabenstein C, Hauschild E, Schink B (1995) Syntrophobacter pfennigii sp. nov., new syntrophically propionate-oxidizing anaerobe growing in pure culture with propionate and sulfate. Arch Microbiol 164(5):346–352Google Scholar
  54. Wang H-Z, Gou M, Yi Y, Xia Z-Y, Tang Y-Q (2018) Identification of novel potential acetate-oxidizing bacteria in an acetate-fed methanogenic chemostat based on DNA stable isotope probing. J Gen Appl Microbiol 64(5):221–231Google Scholar
  55. Westerholm M, Roos S, Schnürer A (2010) Syntrophaceticus schinkii gen. nov., sp. nov., an anaerobic, syntrophic acetate-oxidizing bacterium isolated from a mesophilic anaerobic filter. FEMS Microbiol Lett 309(1):100–104Google Scholar
  56. Westerholm M, Roos S, Schnürer A (2011) Tepidanaerobacter acetatoxydans sp. nov., an anaerobic, syntrophic acetate-oxidizing bacterium isolated from two ammonium-enriched mesophilic methanogenic processes. Syst Appl Microbiol 34(4):260–266Google Scholar
  57. Yang G-Q, Zhang J, Kwon S-W, Zhou S-G, Han L-C, Chen M, Ma C, Zhuang L (2013) Thauera humireducens sp. nov., a humus-reducing bacterium isolated from a microbial fuel cell. Int J Syst Evol Microbiol 63(3):873–878Google Scholar
  58. Zhao J, Westerholm M, Qiao W, Yin D, Bi S, Jiang M, Dong R (2018) Impact of temperature and substrate concentration on degradation rates of acetate, propionate and hydrogen and their links to microbial community structure. Bioresour Technol 256:44–52Google Scholar
  59. Zhu X, Kougias PG, Treu L, Campanaro S, Angelidaki I (2017) Microbial community changes in methanogenic granules during the transition from mesophilic to thermophilic conditions. Appl Microbiol Biotechnol 101(3):1313–1322Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Architecture and EnvironmentSichuan UniversityChengduPeople’s Republic of China
  2. 2.Biogas Institute of Ministry of Agriculture and Rural AffairsChengduPeople’s Republic of China
  3. 3.Bioproduction Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)IbarakiJapan
  4. 4.College of EngineeringPeking UniversityBeijingChina

Personalised recommendations