Advertisement

Applied Microbiology and Biotechnology

, Volume 103, Issue 19, pp 8215–8227 | Cite as

Environmental pollution effects on plant microbiota: the case study of poplar bacterial-fungal response to silver nanoparticles

  • Francesco Vitali
  • Aida Raio
  • Federico SebastianiEmail author
  • Paolo Cherubini
  • Duccio Cavalieri
  • Claudia Cocozza
Environmental biotechnology

Abstract

Pollution affects most of the urban and forest environments at different levels causing well-known effects on human and plant health. The influence that pollutants exert on plant-associated microbiota might direct plant health and, in some cases, also the removal of pollutants by plants. With the advent of nanotechnologies, an increasing amount of engineered nanoparticles are being introduced into the environment, and consequently, their impact on plant-associated microorganisms needs to be investigated. In this context, silver nanoparticles (Ag-NPs) were experimentally supplied at leaf and root level of poplar plants to assess Ag-NPs effects on plant microbiota. Leaf Ag-NP treatment increased bacteria and fungi evenness and determined a significant reduction in both microbial groups, while root Ag-NP treatment reduced the bacterial and fungal biodiversity. Bioinformatics functional analysis showed that Ag-NP treatment reduced the aerobic and stimulated facultative anaerobic and oxidative stress-tolerant bacteria. Our study offers new insights into the effects of Ag-NPs on both phyllosphere and rhizosphere poplar-associated microbiota and may represent a first attempt to understand the behavior of microbial communities of a tree species growing in a polluted environment.

Keywords

Poplar Silver-nanoparticles Phyllosphere microbiota Rhizosphere microbiota 16S rRNA metabarcoding ITS metabarcoding 

Notes

Acknowledgments

Authors thank Annalisa Perone and Sara Pignattelli for the contribution in the lab activities.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2019_10071_MOESM1_ESM.pdf (481 kb)
ESM 1 (PDF 480 kb)

References

  1. Akbar A, Anal AK (2014) Zinc oxide nanoparticles loaded active packaging, a challenge study against Salmonella typhimurium and Staphylococcus aureus in ready-to-eat poultry meat. Food Control 38:88–95CrossRefGoogle Scholar
  2. Albanese D, Fontana P, De Filippo C, Cavalieri D, Donati C (2015) MICCA: a complete and accurate software for taxonomic profiling of metagenomic data. Sci Rep 5:9743CrossRefGoogle Scholar
  3. Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344CrossRefGoogle Scholar
  4. Ali S, Charles TC, Glick BR (2014) Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol Biochem 80:160–167CrossRefGoogle Scholar
  5. Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. In: Babraham bioinformatics. http://www.bioinformatics.babraham.ac.uk/projects/fastqc
  6. Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, Dombrowski N, Münch PC, Spaepen S, Remus-Emsermann M, Hüttel B, McHardy AC, Vorholt JA, Schulze-Lefert P (2015) Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528:364–369CrossRefGoogle Scholar
  7. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266CrossRefGoogle Scholar
  8. Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486CrossRefGoogle Scholar
  9. Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, Mills DA, Caporaso JG (2013) Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods 10:57–59CrossRefGoogle Scholar
  10. Bravin MN, Garnier C, Lenoble V, Gérard F, Dudal Y, Hinsinger P (2012) Root-induced changes in pH and dissolved organic matter binding capacity affect copper dynamic speciation in the rhizosphere. Geochim Cosmochim Acta 84:256–268CrossRefGoogle Scholar
  11. Bystrzejewska-Piotrowska G, Golimowski J, Urban PL (2009) Nanoparticles: their potential toxicity, waste and environmental management. Waste Manag 29:2587–2595CrossRefGoogle Scholar
  12. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336CrossRefGoogle Scholar
  13. Caspi-Fluger A, Inbar M, Mozes-Daube N, Katzir N, Portnoy V, Belausov E, Hunter MS, Zchori-Fein E (2012) Horizontal transmission of the insect symbiont Rickettsia is plant-mediated. Proc Biol Sci 279:1791–1796CrossRefGoogle Scholar
  14. Ceballos I, Ruiz M, Fernandez C, Pena R, Rodriguez A, Sanders IR (2013) The in vitro mass-produced model mycorrhizal fungus, Rhizophagus irregularis, significantly increases yields of the globally important food security crop cassava. PLoS One 8:e70633CrossRefGoogle Scholar
  15. Cocozza C, Vitullo D, Lima G, Maiuro L, Marchetti M, Tognetti R (2014) Enhancing phytoextraction of cd by combining poplar (clone “I-214”) with Pseudomonas fluorescens and microbial consortia. Environ Sci Pollut Res Int 21:1796–1808CrossRefGoogle Scholar
  16. Cocozza C, Trupiano D, Lustrato G, Alfano G, Vitullo D, Falasca A, Lomaglio T, De Felice V, Lima G, Ranalli G, Scippa S, Tognetti R (2015) Challenging synergistic activity of poplar–bacteria association for the cd phytostabilization. Environ Sci Pollut Res 22:19546–19561CrossRefGoogle Scholar
  17. Cocozza C, Perone A, Giordano C, Salvatici MC, Pignattelli S, Raio A, Schaub M, Sever K, Innes JL, Tognetti R, Cherubini P (2019) Silver nanoparticles enter the tree stem faster through leaves than through roots. Tree Physiol 39:1251–1261.  https://doi.org/10.1093/treephys/tpz046 CrossRefGoogle Scholar
  18. de Lima R, Seabra AB, Durán N (2012) Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. J Appl Toxicol 32:867–879CrossRefGoogle Scholar
  19. Dietz KJ, Herth S (2011) Plant nanotoxicology. Trends Plant Sci 16:582–589CrossRefGoogle Scholar
  20. Dimkpa CO, McLean JE, Martineau N, Britt DW, Haverkamp R, Anderson AJ (2013) Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ Sci Technol 47:1082–1109CrossRefGoogle Scholar
  21. Edgar RC (2016) UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv 081257Google Scholar
  22. Fabrega J, Fawcett SR, Renshaw JC, Lead JR (2009) Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Environ Sci Technol 43:7285–7290CrossRefGoogle Scholar
  23. Feng Y, Cui X, He S, Dong G, Chen M, Wang J, Lin X (2013) The role of metal nanoparticles in influencing arbuscular mycorrhizal fungi effects on plant growth. Environ Sci Technol 47:9496–9504CrossRefGoogle Scholar
  24. Fernandez CW, Kennedy PG (2018) Melanization of mycorrhizal fungal necromass structures microbial decomposer communities. J Ecol 106:468–479CrossRefGoogle Scholar
  25. Ferrari B, Winsley T, Ji M, Neilan B (2014) Insights into the distribution and abundance of the ubiquitous candidatus Saccharibacteria phylum following tag pyrosequencing. Sci Rep 4:3957CrossRefGoogle Scholar
  26. Gottel NR, Castro HF, Kerley M, Yang Z, Pelletier DA, Podar M, Karpinets T, Uberbacher E, Tuskan GA, Vilgalys R, Doktycz MJ, Schadt CW (2011) Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types. Appl Environ Microbiol 77:5934–5944CrossRefGoogle Scholar
  27. Gramaje D, Úrbez-Torres JR, Sosnowski MR (2018) Managing grapevine trunk diseases with respect to etiology and epidemiology: current strategies and future prospects. Plant Dis 102:12–39CrossRefGoogle Scholar
  28. Haichar F e Z, Marol C, Berge O, Rangel-Castro JI, Prosser JI, Balesdent J, Heulin T, Achouak W (2008) Plant host habitat and root exudates shape soil bacterial community structure. ISME J 2:1221–1230CrossRefGoogle Scholar
  29. Jain P, Pundir RK (2017) Potential role of endophytes in sustainable agriculture-recent developments and future prospects. In: Maheshwari DK (ed) Endophytes: biology and biotechnology: volume 1. Springer International Publishing, Cham, pp 145–169CrossRefGoogle Scholar
  30. Joshi NA, Fass JN (2011) Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files (version 1.33)[software]Google Scholar
  31. Kandlikar GS, Gold ZJ, Cowen MC, Meyer RS, Freise AC, Kraft N, Moberg-Parker J, Sprague J, Kushner DJ, Curd EE (2018) Ranacapa: an R package and shiny web app to explore environmental DNA data with exploratory statistics and interactive visualizations. F1000Research 7:1734CrossRefGoogle Scholar
  32. Kawasaki S, Moriguchi R, Sekiya K, Nakai T, Ono E, Kume K, Kawahara K (1994) The cell envelope structure of the lipopolysaccharide-lacking gram-negative bacterium Sphingomonas paucimobilis. J Bacteriol 176:284–290CrossRefGoogle Scholar
  33. Kembel SW, Mueller RC (2014) Plant traits and taxonomy drive host associations in tropical phyllosphere fungal communities. Botany 92:303–311CrossRefGoogle Scholar
  34. Klasen HJ (2000) A historical review of the use of silver in the treatment of burns. II Renewed interest for silver. Burns 26:131–138CrossRefGoogle Scholar
  35. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucl Ac Res 41(1):e1CrossRefGoogle Scholar
  36. Koizumi Y, Yamada R, Nishioka M, Matsumura Y, Tsuchido T, Taya M (2002) Deactivation kinetics of Escherichia coli cells correlated with intracellular superoxide dismutase activity in photoreaction with titanium dioxide particles. J Chem Technol Biotechnol 77:671–677CrossRefGoogle Scholar
  37. Kolton M, Erlacher A, Berg G, Cytryn E (2016) The Flavobacterium genus in the plant holobiont: ecological, physiological, and applicative insights. In: Microbial models: from environmental to industrial sustainability. Springer, Singapore, pp 189–207CrossRefGoogle Scholar
  38. Lahti L, Sudarshan S (2017) Microbiome R package. http://microbiome.github.com/microbiome
  39. Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883CrossRefGoogle Scholar
  40. Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, Del Rio TG, Edgar RC, Eickhorst T, Ley RE, Hugenholtz P, Tringe SG, Dangl JL (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90CrossRefGoogle Scholar
  41. Ma Y, He X, Zhang P, Zhang Z, Guo Z, Tai R, Xu Z, Zhang L, Ding Y, Zhao Y, Chai Z (2011) Phytotoxicity and biotransformation of La2O3 nanoparticles in a terrestrial plant cucumber (Cucumis sativus). Nanotoxicology 5:743–753CrossRefGoogle Scholar
  42. Maillard JY, Hartemann P (2012) Silver as an antimicrobial: facts and gaps in knowledge. Crit Rev Microbiol 39:373–383CrossRefGoogle Scholar
  43. Majeed A, Muhammad Z, Ahmad H (2018) Plant growth promoting bacteria: role in soil improvement, abiotic and biotic stress management of crops. Plant Cell Rep 37:1599–1609CrossRefGoogle Scholar
  44. Mapperson RR, Kotiw M, Davis RA, Dearnaley JDW (2014) The diversity and antimicrobial activity of Preussia sp. endophytes isolated from Australian dry rainforests. Curr Microbiol 68:30–37CrossRefGoogle Scholar
  45. Marques JM, da Silva TF, Vollu RE, Blank AF, Ding G-C, Seldin L, Smalla K (2014) Plant age and genotype affect the bacterial community composition in the tuber rhizosphere of field-grown sweet potato plants. FEMS Microbiol Ecol 88:424–435CrossRefGoogle Scholar
  46. McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P (2012) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6:610–618CrossRefGoogle Scholar
  47. McMurdie PJ, Holmes S (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217CrossRefGoogle Scholar
  48. Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663CrossRefGoogle Scholar
  49. Menkis A, Marčiulynas A, Gedminas A, Lynikienė J, Povilaitienė A (2015) High-throughput sequencing reveals drastic changes in fungal communities in the phyllosphere of Norway spruce (Picea abies) following invasion of the spruce bud scale (Physokermes piceae). Microb Ecol 70:904–911CrossRefGoogle Scholar
  50. Nan X (2018) ggsci: scientific journal and sci-fi themed color palettes for “ggplot2.” https://CRAN.R-project.org/package=ggsci
  51. Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG (2016) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248CrossRefGoogle Scholar
  52. Nowack B, Ranville JF, Diamond S, Gallego-Urrea JA, Metcalfe C, Rose J, Horne N, Koelmans AA, Klaine SJ (2012) Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ Toxicol Chem 31:50–59CrossRefGoogle Scholar
  53. Pallavi MCM, Srivastava R, Arora S, Sharma AK (2016) Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. 3 Biotech 6:254CrossRefGoogle Scholar
  54. Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30:3123–3124CrossRefGoogle Scholar
  55. Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775CrossRefGoogle Scholar
  56. Paulson JN, Stine OC, Bravo HC, Pop M (2013) Differential abundance analysis for microbial marker-gene surveys. Nat Methods 10(12):1200–1202CrossRefGoogle Scholar
  57. Prodi A, Sandalo S, Tonti S, Nipoti P, Pisi A (2008) Phialophora-like fungi associated with kiwifruit elephantiasis. J Plant Pathol 90:487–494Google Scholar
  58. Pulit-Prociack J, Banach M (2016) Silver nanoparticles - a material of the future…? Open Chem 14:76–91Google Scholar
  59. Qiao Q, Wang F, Zhang J, Chen Y, Zhang C, Liu G, Zhang H, Ma C, Zhang J (2017) The variation in the rhizosphere microbiome of cotton with soil type, genotype and developmental stage. Sci Rep 7:3940CrossRefGoogle Scholar
  60. R Core Team (2018) R: A language and environment for statistical computing. https://www.R-project.org/. 2018
  61. Rai M, Rathod D, Agarkar G, Dar M, Brestic M, Pastore GM, Junior MRM (2014) Fungal growth promotor endophytes: a pragmatic approach towards sustainable food and agriculture. Symbiosis 62:63–79CrossRefGoogle Scholar
  62. Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574CrossRefGoogle Scholar
  63. Regier N, Streb S, Cocozza C, Schaub M, Cherubini P, Zeeman SC, Frey B (2009) Drought tolerance of two black poplar (Populus nigra L.) clones: contribution of carbohydrates and oxidative stress defence. Plant Cell Environ 32:1724–1736CrossRefGoogle Scholar
  64. Shahrokh S, Hosseinkhani B, Emtiazi G (2014) The impact of silver nanoparticles on bacterial aerobic nitrate reduction process. J Bioprocess Biotech 4:152CrossRefGoogle Scholar
  65. Sillen WMA, Thijs S, Abbamondi GR, Janssen J, Weyens N, White JC, Vangronsveld J (2015) Effects of silver nanoparticles on soil microorganisms and maize biomass are linked in the rhizosphere. Soil Biol Biochem 91:14–22CrossRefGoogle Scholar
  66. Silver S (2003) Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 27:341–353CrossRefGoogle Scholar
  67. Simonin M, Richaume A (2015) Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review. Environ Sci Pollut Res 22:13710–13723CrossRefGoogle Scholar
  68. Suyal DC, Shukla A, Goel R (2014) Growth promotory potential of the cold adapted diazotroph Pseudomonas migulae S10724 against native green gram (Vigna radiata (L.) Wilczek). 3 Biotech 4:665–668CrossRefGoogle Scholar
  69. Takeuchi M, Hamana K, Hiraishi A (2001) Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417CrossRefGoogle Scholar
  70. Travadon R, Lawrence DP, Rooney-Latham S, Gubler WD, Wilcox WF, Rolshausen PE, Baumgartner K (2015) Cadophora species associated with wood-decay of grapevine in North America. Fungal Biol 119:53–66CrossRefGoogle Scholar
  71. Tripathi DK, Tripathi A, Shweta SS, Singh Y, Vishwakarma K, Yadav G, Sharma S, Singh VK, Mishra RK, Upadhyay RG, Dubey NK, Lee Y, Chauhan DK (2017) Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: a concentric review. Front Microbiol 8:07Google Scholar
  72. Turner TR, James EK, Poole PS (2013) The plant microbiome. Genome Biol 14:209CrossRefGoogle Scholar
  73. Vaz-Moreira I, Nunes OC, Manaia CM (2011) Diversity and antibiotic resistance patterns of Sphingomonadaceae isolates from drinking water. Appl Environ Microbiol 77:5697–5706Google Scholar
  74. Vittori Antisari L, Lo Papa G, Ferronato C, Falsone G, Vianello G, Dazzi C (2014) In situ remediation of polluted Spolic Technosols using Ca(OH)2 and smectitic marlstone. Geoderma 232-234:1–9Google Scholar
  75. Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840CrossRefGoogle Scholar
  76. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267CrossRefGoogle Scholar
  77. Wang S, Chang L-Y, Wang Y-J, Wang Q, Yang C-H, Mei R-H (2009) Nanoparticles affect the survival of bacteria on leaf surfaces. FEMS Microbiol Ecol 68:182–191CrossRefGoogle Scholar
  78. Wang W-N, Tarafdar JC, Biswas P (2013) Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. J Nanopart Res 15.  https://doi.org/10.1007/s11051-013-1417-8
  79. Wang P, Lombi E, Zhao F-J, Kopittke PM (2016) Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci 21:699–712CrossRefGoogle Scholar
  80. Ward T, Larson J, Meulemans J, Hillmann B, Lynch J, Sidiropoulos D, Spear J, Caporaso G, Blekhman R, Knight R, Fink R, Knights D (2017) BugBase predicts organism level microbiome phenotypes. bioRxiv.  https://doi.org/10.1101/133462
  81. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322Google Scholar
  82. Wilkinson L (2011) ggplot2: elegant graphics for data analysis by Wickham, H. Biometrics 67:678–679CrossRefGoogle Scholar
  83. Yin L, Colman BP, McGill BM, Wright JP, Bernhardt ES (2012) Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS One 7:e47674CrossRefGoogle Scholar
  84. Zhang J, Kobert K, Flouri T, Stamatakis A (2014) PEAR: a fast and accurate Illumina paired-end read merger. Bioinformatics 30:614–620CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di BiologiaUniversità degli Studi di FirenzeSesto FiorentinoItaly
  2. 2.Istituto di Biometeorologia, IBIMET-CNRSesto FiorentinoItaly
  3. 3.Istituto per la Protezione Sostenibile delle Piante, IPSP-CNRSesto FiorentinoItaly
  4. 4.Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
  5. 5.Department of Agriculture, Food, Environment and ForestryUniversity of FlorenceFlorenceItaly

Personalised recommendations