Advertisement

Applied Microbiology and Biotechnology

, Volume 103, Issue 19, pp 7903–7916 | Cite as

Mycobacterium bovis BCG in metastatic melanoma therapy

  • Martha Lucia Ruiz Benitez
  • Camila Bonnemann Bender
  • Thaís Larré Oliveira
  • Kyle M. Schachtschneider
  • Tiago Collares
  • Fabiana Kömmling SeixasEmail author
Mini-Review

Abstract

Melanoma is the most aggressive form of skin cancer, with a high mortality rate and with 96,480 new cases expected in 2019 in the USS. BRAFV600E, the most common driver mutation, is found in around 50% of melanomas, contributing to tumor growth, angiogenesis, and metastatic progression. Dacarbazine (DTIC), an alkylate agent, was the first chemotherapeutic agent approved by the US Food and Drug Administration (FDA) used as a standard treatment. Since then, immunotherapies have been approved for metastatic melanoma (MM) including ipilimumab and pembrolizumab checkpoint inhibitors that help decrease the risk of progression. Moreover, Mycobacterium bovis Bacillus Calmette–Guerin (BCG) serves as an adjuvant therapy that induces the recruitment of natural killer NK, CD4+, and CD8+ T cells and contributes to antitumor immunity. BCG can be administered in combination with chemotherapeutic and immunotherapeutic agents and can be genetically manipulated to produce recombinant BCG (rBCG) strains that express heterologous proteins or overexpress immunogenic proteins, increasing the immune response and improving patient survival. In this review, we highlight several studies utilizing rBCG immunotherapy for MM in combination with other therapeutic agents.

Keywords

Bacillus Calmette–Guérin Recombinant BCG Immunotherapy Antitumor activity Skin cancer 

Notes

Funding information

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Abbasi NR, Shaw HM, Rigel DS, Friedman RJ, McCarthy WH, Osman I, Kopf AW, Polsky D (2004) Early diagnosis of cutaneous melanoma. Jama 292:2771.  https://doi.org/10.1001/jama.292.22.2771 Google Scholar
  2. Abildgaard C, Guldberg P (2015) Molecular drivers of cellular metabolic reprogramming in melanoma. Trends Mol Med 21:164–171.  https://doi.org/10.1016/j.molmed.2014.12.007 Google Scholar
  3. Agarwala SS, Neuberg D, Park Y, Kirkwood JM (2004) Mature results of a phase III randomized trial of Bacillus Calmette-Guerin (BCG) versus observation and BCG plus Dacarbazine versus BCG in the adjuvant therapy of American Joint Committee on cancer stage I-III melanoma (E1673): a trial of the Eastern Coop. Cancer 100:1692–1698.  https://doi.org/10.1002/cncr.20166 Google Scholar
  4. Ahn JJ, Ghandour RA, McKiernan JM (2014) New agents for Bacillus Calmette-Guérin-refractory nonmuscle invasive bladder cancer. Curr Opin Urol 24:540–545.  https://doi.org/10.1097/MOU.0000000000000088 Google Scholar
  5. Albertini MR (2018) The age of enlightenment in melanoma immunotherapy. J Immunother Cancer 6:4–7.  https://doi.org/10.1186/s40425-018-0397-8 Google Scholar
  6. Alegre E, Sanmamed MF, Rodriguez C, Carranza O, Martín-Algarra S, González Á (2014) Study of circulating microRNA-125b levels in serum exosomes in advanced melanoma. Arch Pathol Lab Med 138:828–832.  https://doi.org/10.5858/arpa.2013-0134-AO Google Scholar
  7. Ali Z, Yousaf N, Larkin J (2013) Melanoma epidemiology, biology and prognosis. Eur J Cancer Suppl 11:81–91.  https://doi.org/10.1016/j.ejcsup.2013.07.012 Google Scholar
  8. Aris M, Bravo AI, Barrio MM, Mordoh J (2015) Inoculation site from a cutaneous melanoma patient treated with an allogeneic therapeutic vaccine : a case report 6:1–5. doi:  https://doi.org/10.3389/fimmu.2015.00144
  9. Arnold M, Vries E de, Whiteman DC, Jemal A, Bray F, Parkin DM, Soerjomataram I (2018) Global burden of cutaneous melanoma attributable to ultraviolet radiation in 2012. 1314:1305–1314 . doi:  https://doi.org/10.1002/ijc.31527
  10. Arulananda S, Blackley E, Cebon J (2018) Review of immunotherapy in melanoma. Cancer Forum 42:17–23Google Scholar
  11. Askeland EJ, Newton MR, O’Donnell MA, Luo Y (2012) Bladder cancer immunotherapy: BCG and beyond. Ther Adv Urol 2012:1–13.  https://doi.org/10.1155/2012/181987 Google Scholar
  12. Balch CM, Gershenwald JE, Soong SJ, Thompson JF, Atkins MB, Byrd DR, Buzaid AC, Cochran AJ, Coit DG, Ding S, Eggermont AM, Flaherty KT, Gimotty PA, Kirkwood JM, McMasters KM, Mihm MC Jr, Morton DL, Ross MI, Sober AJSV (2009) Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol 27:6199–6206.  https://doi.org/10.1200/jco.2009.23.4799 Google Scholar
  13. Bandarchi B, Ma L, Navab R, Seth A, Rasty G (2010) From melanocyte to metastatic malignant melanoma. Dermatol Res Pract.  https://doi.org/10.1155/2010/583748
  14. Barrio MM, de Motta PT, Kaplan J, von Euw EM, Bravo AI, Chacon RD, Mordoh J (2006) A phase I study of an allogeneic cell vaccine (VACCIMEL) with GM-CSF in melanoma patients. J Immunother 29:444–454Google Scholar
  15. Bastian BC (2014) The molecular pathology of melanoma: an integrated taxonomy of melanocytic neoplasia. Annu Rev Pathol 9:239–271.  https://doi.org/10.1146/annurev-pathol-012513-104658
  16. Bastos RG, Borsuk S, Seixas FK, Dellagostin OA (2009) Recombinant Mycobacterium bovis BCG. Vaccine 27:6495–6503.  https://doi.org/10.1016/j.vaccine.2009.08.044 Google Scholar
  17. Bedikian AY, Richards J, Kharkevitch D, Atkins MB, Whitman E, Gonzalez R (2010) A phase 2 study of high-dose Allovectin-7 in patients with advanced metastatic melanoma. Melanoma Res 20:218–226.  https://doi.org/10.1097/CMR.0b013e3283390711 Google Scholar
  18. Begnini KR, Rizzi C, Campos VF, Borsuk S, Schultze E, Yurgel VC, Nedel F, Dellagostin OA, Collares T, Seixas FK (2013) Auxotrophic recombinant Mycobacterium bovis BCG overexpressing Ag85B enhances cytotoxicity on superficial bladder cancer cells in vitro. Appl Microbiol Biotechnol 97:1543–1552.  https://doi.org/10.1007/s00253-012-4416-2 Google Scholar
  19. Begnini KR, Buss JH, Collares T, Seixas FK (2015) Recombinant Mycobacterium bovis BCG for immunotherapy in nonmuscle invasive bladder cancer. Appl Microbiol Biotechnol 99:3741–3754.  https://doi.org/10.1007/s00253-015-6495-3 Google Scholar
  20. Bhatia S, Tykodi SS, Thompson JA (2009) Treatment of metastatic melanoma: an overview. Oncology (Williston Park) 23:488–496Google Scholar
  21. Biet F, Kremer L, Wolowczuk I, Delacre M, Locht C (2002) Mycobacterium bovis BCG producing Interleukin-18 increases antigen-specific gamma interferon production in mice. Infect Immun 70:6549–6557.  https://doi.org/10.1128/IAI.70.12.6549-6557.2002 Google Scholar
  22. Bishop JN, Bataille V, Gavin A, Lens M, Marsden J, Mathews TWC (2007) The prevention, diagnosis, referral and management of melanoma of the skin. Clin Med 7:283–290Google Scholar
  23. Borsuk S, Mendum TA, Fagundes MQ, Michelon M, Cunha CW, McFadden J, Dellagostin OA (2007) Auxotrophic complementation as a selectable marker for stable expression of foreign antigens in Mycobacterium bovis BCG. Tuberculosis 87:474–480.  https://doi.org/10.1016/j.tube.2007.07.006 Google Scholar
  24. Bougnoux AC, Solassol J (2013) The contribution of proteomics to the identification of biomarkers for cutaneous malignant melanoma. Clin Biochem 46:518–523.  https://doi.org/10.1016/j.clinbiochem.2012.12.011 Google Scholar
  25. Brandau S, Riemensberger J, Jacobsen M, Kemp D, Zhao W, Zhao X, Jocham D, Ratliff TL, Bhle A (2001) NK cells are essential for effective BCG immunotherapy. Int J Cancer 92:697–702.  https://doi.org/10.1002/1097-0215(20010601)92:5<697::AID-IJC1245>3.0.CO;2-Z Google Scholar
  26. Brandner JM, Haass NK (2013) Melanoma’s connections to the tumour microenvironment. Pathology 45:443–452.  https://doi.org/10.1097/PAT.0b013e328363b3bd Google Scholar
  27. Broussard L, Howland A, Ryu S, Song K, Norris D, Armstrong CA, Song PI (2018) Melanoma cell death mechanisms. Chonnam Med J 54:135.  https://doi.org/10.4068/cmj.2018.54.3.135 Google Scholar
  28. Callahan MK, Kluger H, Postow MA, Segal NH, Lesokhin A, Atkins MB, Kirkwood JM, Krishnan S, Bhore R, Horak C, Wolchok JD, Sznol M (2018) Nivolumab plus ipilimumab in patients with advanced melanoma: updated survival, response, and safety data in a phase I dose-escalation study. J Clin Oncol 36:391–398.  https://doi.org/10.1200/JCO.2017.72.2850 Google Scholar
  29. Cananzi FCM, Mudan S, Dunne M, Belonwu N, Dalgleish AG (2013) Long-term survival and outcome of patients originally given Mycobacterium vaccae for metastatic malignant melanoma. Hum Vaccin Immunother 9:2427–2433.  https://doi.org/10.4161/hv.25618
  30. Carretero R, Romero JM, Ruiz-Cabello F, Maleno I, Rodriguez F, Camacho FM, Real LM, Garrido F, Cabrera T (2008) Analysis of HLA class I expression in progressing and regressing metastatic melanoma lesions after immunotherapy. Immunogenetics 60:439–447.  https://doi.org/10.1007/s00251-008-0303-5 Google Scholar
  31. Cascinelli N, Rümke P, MacKie R, Morabito A, Bufalino R (1989) The significance of conversion of skin reactivity to efficacy of bacillus Calmette-Guérin (BCG) vaccinations given immediately after radical surgery in stage II melanoma patients. Cancer Immunol Immunother 28:282–286.  https://doi.org/10.1007/BF00205238 Google Scholar
  32. Cervinkova M, Kucerova P, Cizkova J (2017) Spontaneous regression of malignant melanoma - Is it based on the interplay between host immune system and melanoma antigens? Anti-Cancer Drugs 28:819–830.  https://doi.org/10.1097/CAD.0000000000000526 Google Scholar
  33. Chapman PB, Wu D, Ragupathi G, Lu S, Williams L, Hwu WJ, Johnson DLP (2004) Sequential immunization of melanoma patients with GD3 ganglioside vaccine and anti-idiotypic monoclonal antibody that mimics GD3 ganglioside. Clin Cancer Res 10:4717–4723Google Scholar
  34. Chapman R, Stutz H, Jacobs W, Shephard E, Williamson AL (2013) Priming with recombinant auxotrophic BCG expressing HIV-1 Gag, RT and Gp120 and boosting with recombinant MVA induces a robust T Cell response in mice. PLoS One 8:. doi:  https://doi.org/10.1371/journal.pone.0071601
  35. Ciudad-Blanco C, Avilés-Izquierdo JA, Lázaro-Ochaita P, Suárez-Fernández R (2014) Dermoscopic findings for the early detection of melanoma: an analysis of 200 cases. Actas Dermosifiliogr 105:683–693.  https://doi.org/10.1016/j.adengl.2014.07.015 Google Scholar
  36. Costanzi JJ, Al-Sarraf M, Groppe C, Bottomley R, Fabian C, Neidhart JDD (1982) Combination chemotherapy plus levamisole in the treatment of disseminated malignant melanoma a southwest oncology group study. Cancer 53:833–836.  https://doi.org/10.1002/1097-0142(19840215)53:4<833::AID-CNCR2820530402>3.0.CO;2-# Google Scholar
  37. Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, Kutzner H, Cho KH, Aiba S, Bröcker EB, LeBoit PE, Pinkel DBB (2005) Distinct sets of genetic alterations in melanoma. N Engl J Med 353:2135–2147.  https://doi.org/10.1056/nejmoa050092 Google Scholar
  38. Da Costa AC, Nogueira SV, Kipnis A, Junqueira-Kipnis AP (2014) Recombinant BCG: innovations on an old vaccine. Scope of BCG strains and strategies to improve long-lasting memory. Front Immunol 5:1–9.  https://doi.org/10.3389/fimmu.2014.00152 Google Scholar
  39. Davar D, Tarhini AA, Kirkwood JM (2012) Adjuvant therapy for melanoma. Cancer J:192–202.  https://doi.org/10.1097/PPO.0b013e31824f118b
  40. Desel C, Dorhoi A, Bandermann S, Grode L, Eisele B, Kaufmann SHE (2011) Recombinant BCG ΔureC hly+ induces superior protection over parental BCG by stimulating a balanced combination of type 1 and type 17 cytokine responses. J Infect Dis 204:1573–1584.  https://doi.org/10.1093/infdis/jir592 Google Scholar
  41. Dietrich G, Viret JF, Hess J (2003) Mycobacterium bovis BCG-based vaccines against tuberculosis: novel developments. Vaccine 21:667–670.  https://doi.org/10.1016/S0264-410X(02)00577-7 Google Scholar
  42. DiFronzo LA, Gupta RK, Essner R, Foshag LJ, O’Day SJ, Wanek LA, Stern SL, Morton DL (2002) Enhanced humoral immune response correlates with improved disease-free and overall survival in American Joint Committee on cancer stage II melanoma patients receiving adjuvant polyvalent vaccine. J Clin Oncol 20:3242–3248.  https://doi.org/10.1200/JCO.2002.01.065 Google Scholar
  43. Donin NM, Lenis AT, Holden S, Drakaki A, Pantuck A, Belldegrun A, Chamie K (2017) Immunotherapy for the treatment of urothelial carcinoma. J Urol 197:14–22.  https://doi.org/10.1016/j.juro.2016.02.3005 Google Scholar
  44. Duda RB, Yang H, Dooley DD, Abu-jawdeh G (1995) Recombinant BCG therapy suppresses melanoma tumor growth 2:542–549. doi:  https://doi.org/10.1007/bf02307089
  45. Fang F, Ma J, Ni W, Wang F, Sun X, Li Y, Li Q, Xie F, Wang J, Zhai R, Liu Z, Gao S, Tai G (2014) MUC1 and maltose-binding protein recombinant fusion protein combined with Bacillus Calmette-Guerin induces MUC1-specific and nonspecific anti-tumor immunity in mice. Mol Med Rep 10:1056–1064.  https://doi.org/10.3892/mmr.2014.2306 Google Scholar
  46. Faries MB, Mozzillo N, Kashani-Sabet M, Thompson JF, Kelley MC, DeConti RC, Lee JE, Huth JF, Wagner J, Dalgleish A, Pertschuk D, Nardo C, Stern S, Elashoff R, Gammon G, Morton DL (2017) Long-term survival after complete surgical resection and adjuvant immunotherapy for distant melanoma metastases. Ann Surg Oncol 24:3991–4000.  https://doi.org/10.1245/s10434-017-6072-3b Google Scholar
  47. Findeisen P, Zapatka M, Peccerella T, Matzk H, Neumaier M, Schadendorf D, Ugurel S (2009) Serum amyloid A as a prognostic marker in melanoma identified by proteomic profiling. J Clin Oncol 27:2199–2208.  https://doi.org/10.1200/JCO.2008.18.0554 Google Scholar
  48. Finn L, Markovic SN, Joseph RW (2012) Therapy for metastatic melanoma : the past, present, and future. BMC Med 10:23.  https://doi.org/10.1186/1741-7015-10-23 Google Scholar
  49. Flaherty KT, McArthur G (2010) BRAF, a target in melanoma. Cancer 116:4902–4913.  https://doi.org/10.1002/cncr.25261 Google Scholar
  50. Fujimoto T, Donnell MAO, Szilvasi A, Yang H, Duda RB (1996) Bacillus Calmette-Guérin plus interleukin-2 and/or granulocyte/macrophage-colony-stimulating factor enhances immunocompetent cell production of interferon-g, which inhibits B16F10 melanoma cell growth in vitro. Cancer Immunol Immunother 42:280–284.  https://doi.org/10.1007/s002620050283 Google Scholar
  51. Gallagher RP, Lee TK (2006) Adverse effects of ultraviolet radiation : a brief review 92:119–131. doi:  https://doi.org/10.1016/j.pbiomolbio.2006.02.011
  52. Gallagher RP, Spinelli JJ, Lee TK (2005) Tanning beds, sunlamps, and risk of cutaneous malignant melanoma\r10.1158/1055-9965.EPI-04-0564. Cancer Epidemiol Biomark Prev 14:562–566.  https://doi.org/10.1158/1055-9965.EPI-04-0564 Google Scholar
  53. Garbe C, Eigentler TK, Keilholz U, Hauschild A, Kirkwood JM (2011) Systematic review of medical treatment in melanoma: current status and future prospects. Oncologist 16:5–24.  https://doi.org/10.1634/theoncologist.2010-0190 Google Scholar
  54. Garnett MJ, Marais R (2004) Guilty as charged: B-RAF is a human oncogene. Cancer Cell 6:313–319.  https://doi.org/10.1016/j.ccr.2004.09.022 Google Scholar
  55. Gazzé G (2018) Combination therapy for metastatic melanoma: a pharmacist’s role, drug interactions & complementary alternative therapies. Melanoma Manag 5:MMT07.  https://doi.org/10.2217/mmt-2017-0026 Google Scholar
  56. Goldstein BGA (2001) Diagnosis and management of malignant melanoma. Am Fam Physician 63:1359–1368Google Scholar
  57. Gonzalez R, Hutchins L, Nemunaitis J, Atkins M, Schwarzenberger PO (2006) Phase 2 trial of Allovectin-7 in advanced metastatic melanoma. Melanoma Res 16:521–526.  https://doi.org/10.1097/01.cmr.0000232299.44902.41 Google Scholar
  58. Gorski DH, Alsina J, Mann B, Shih W, Kim HJ, Gabriel EM, Goydos JS, Germino FJ (2005) Detection of B-RAF and N-RAS mutations in human melanoma. J Am Coll Surg 200:362–370.  https://doi.org/10.1016/j.jamcollsurg.2004.10.032 Google Scholar
  59. Griewank KG, Scolyer RA, Thompson JF, Flaherty KT, Schadendorf D, Murali R (2014) Genetic alterations and personalized medicine in melanoma: progress and future prospects J Natl Cancer Inst 106. doi:  https://doi.org/10.1093/jnci/djt435
  60. Gurzu S, Beleaua MA, Jung I (2018) The role of tumor microenvironment in development and progression of malignant melanomas – a systematic review. Romanian J Morphol Embryol 59:23–28Google Scholar
  61. Haass NK, Smalley KSM, Herlyn M (2004) The role of altered cell-cell communication in melanoma progression. J Mol Histol 35:309–318.  https://doi.org/10.1023/B:HIJO.0000032362.35354.bb Google Scholar
  62. Halder K, Banerjee S, Ghosh S, Bose A, Das S, Chowdhury BP, Majumdar S (2017) Mycobacterium indicus pranii (Mw) inhibits invasion by reducing matrix metalloproteinase (MMP-9) via AKT/ERK-1/2 and PKCα signaling: a potential candidate in melanoma cancer therapy. Cancer Biol Ther 18:850–862.  https://doi.org/10.1080/15384047.2015.1078024 Google Scholar
  63. Hart PDA, Sutherland IAN (1977) BCG and vole bacillus vaccines in the prevention of tuberculosis in adolescence and early adult life final report to the Medical Research Council. Public Health Rep 293–295Google Scholar
  64. Hauschild A, Grob JJ, Demidov LV, Jouary T, Gutzmer R, Millward M, Rutkowski P, Blank CU, Miller WH, Kaempgen E, Martín-Algarra S, Karaszewska B, Mauch C, Chiarion-Sileni V, Martin AM, Swann S, Haney P, Mirakhur B, Guckert ME, Goodman V, Chapman PB (2012) Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 380:358–365.  https://doi.org/10.1016/S0140-6736(12)60868-X Google Scholar
  65. Hayashi D, Takii T, Fujiwara N, Fujita Y, Yano I, Yamamoto S, Kondo M, Yasuda E, Inagaki E, Kanai K, Fujiwara A, Kawarazaki A, Chiba T, Onozaki K (2009) Comparable studies of immunostimulating activities in vitro among Mycobacterium bovis bacillus Calmette-Guérin (BCG) substrains. FEMS Immunol Med Microbiol 56:116–128.  https://doi.org/10.1111/j.1574-695X.2009.00559.x Google Scholar
  66. Heakal Y, Kester M, Savage S (2011) Vemurafenib (PLX4032): Un inhibidor de BRAF mutado disponible por vía oral para el tratamiento del melanoma metastático. Ann Pharmacother 45:1399–1405.  https://doi.org/10.1345/aph.1Q363 Google Scholar
  67. Hepner A, Salgues A, Garicochea B, Sahade M, Dos Anjos C, Sahade M, Camargo V, Garicochea B, Shoushtari A, Postow M, Fernandes GMR (2017) Treatment of advanced melanoma - a changing landscape. Rev Assoc Med Bras 63:814–823.  https://doi.org/10.1590/1806-9282.63.09.814
  68. Himmelrich H, Lo-Man R, Winter N, Guermonprez P, Sedlik C, Rojas M, Monnaie D, Gheorghiu M, Lagranderie M, Hofnung M, Gicquel B, Clément JM, Leclerc C (2000) Immune responses induced by recombinant BCG strains according to level of production of a foreign antigen: MalE. Vaccine 18:2636–2647.  https://doi.org/10.1016/S0264-410X(00)00070-0 Google Scholar
  69. Hodi FS, Chesney J, Pavlick AC, Robert C, Grossmann KF, McDermott DF, Linette GP, Meyer N, Giguere JK, Agarwala SS, Shaheen M, Ernstoff MS, Minor DR, Salama AK, Taylor MH, Ott PA, Horak C, Gagnier P, Jiang J, Wolchok JD, Postow MA (2016) Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol 17:1558–1568.  https://doi.org/10.1016/S1470-2045(16)30366-7 Google Scholar
  70. Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP, Nickerson E, Auclair D, Li L, Place C, Dicara D, Ramos AH, Lawrence MS, Cibulskis K, Sivachenko A, Voet D, Saksena G, Stransky N, Onofrio RC, Winckler W, Ardlie K, Wagle N, Wargo J, Ch CL (2012) A landscape of driver mutations in melanoma. Cell 150:251–263.  https://doi.org/10.1016/j.cell.2012.06.024 Google Scholar
  71. Hogan SA, Levesque MP, Cheng PF (2018) Melanoma immunotherapy: next-generation biomarkers. Front Oncol 8:1–10.  https://doi.org/10.3389/fonc.2018.00178 Google Scholar
  72. Hsueh EC, Essner R, Foshag LJ, Ollila DW, Gammon G, O’Day SJ, Boasberg PD, Stern SL, Ye X, Morton DL (2002) Prolonged survival after complete resection of disseminated melanoma and active immunotherapy with a therapeutic cancer vaccine. J Clin Oncol 20:4549–4554.  https://doi.org/10.1200/JCO.2002.01.151 Google Scholar
  73. Hsueh EC, Famatiga E, Shu S, Ye X, Morton DL (2004) Peripheral blood CD4+ T-cell response before postoperative active immunotherapy correlates with clinical outcome in metastatic melanoma. Ann Surg Oncol 11:892–899.  https://doi.org/10.1245/ASO.2004.02.018 Google Scholar
  74. Iqbal NT, Hussain R (2014) Non-specific immunity of BCG vaccine: a perspective of BCG immunotherapy. Trials Vaccinol 3:143–149.  https://doi.org/10.1016/j.trivac.2014.08.002 Google Scholar
  75. Kaufmann E, Spohr C, Battenfeld S, De Paepe D, Holzhauser T, Balks E, Homolka S, Reiling N, Gilleron M, Bastian M (2016) BCG vaccination induces robust CD4+ T cell responses to Mycobacterium tuberculosis complex-specific lipopeptides in Guinea pigs. J Immunol 196:2723–2732.  https://doi.org/10.4049/jimmunol.1502307 Google Scholar
  76. Kibbi N, Ariyan S, Faries M, Choi JN (2015) Treatment of in-transit melanoma with intralesional Bacillus Calmette-Guérin (BCG) and topical imiquimod 5% cream: a report of 3 cases. J Immunother 38:371–375.  https://doi.org/10.1097/CJI.0000000000000098 Google Scholar
  77. Kidner TB, Morton DL, Lee DJ, Hoban M, Foshag LJ, Turner RR, Faries MB (2012) Combined intralesional bacille calmette-guérin (BCG) and topical imiquimod for in-transit melanoma. J Immunother 35:716–720.  https://doi.org/10.1097/CJI.0b013e31827457bd Google Scholar
  78. Kim H-J, Cantor H (2014) CD4 T-cell subsets and tumor immunity: the helpful and the not-so-helpful. Cancer Immunol Res 2:91–98.  https://doi.org/10.1158/2326-6066.cir-13-0216 Google Scholar
  79. Kleinnijenhuis J, Quintin J, Preijers F, Joosten LA, Jacobs C, Xavier RJ, van der Meer JW, van Crevel RNM (2014) BCG-induced trained immunity in NK cells: role for non-specific protection to infection. Clin Immunol 155:213–219.  https://doi.org/10.1016/j.clim.2014.10.005 Google Scholar
  80. Kölmel KF, Grange JM, Krone B, Mastrangelo G, Rossi CR, Henz BM, Seebacher C, Botev IN, Niin M, Lambert D, Shafir R, Kokoschka EM, Kleeberg UR, Gefeller O, Pfahlberg A (2005) Prior immunisation of patients with malignant melanoma with vaccinia or BCG is associated with better survival. An European Organization for Research and Treatment of Cancer cohort study on 542 patients. Eur J Cancer 41:118–125.  https://doi.org/10.1016/j.ejca.2004.09.023 Google Scholar
  81. Koya MP, Simon MA, Soloway MS (2006) Complications of intravesical therapy for urothelial cancer of the bladder. J Urol 175:2004–2010.  https://doi.org/10.1016/S0022-5347(06)00264-3 Google Scholar
  82. Kresowik TP, Griffith TS (2009) Bacillus Calmette-Guerin immunotherapy for urothelial carcinoma of the bladder. Immunotherapy 1:281–288.  https://doi.org/10.2217/1750743X.1.2.281 Google Scholar
  83. Kumar P, Bhaskar S (2019) Myeloid differentiation primary response protein 88 (MyD88)-deficient dendritic cells exhibit a skewed cytokine response to BCG. BMC Res Notes 12:12–15.  https://doi.org/10.1186/s13104-019-4086-6 Google Scholar
  84. Lalor MK, Smith SG, Floyd S, Gorak-Stolinska P, Weir RE, Blitz R, Branson K, Fine PE, Dockrell HM (2010) Complex cytokine profiles induced by BCG vaccination in UK infants. Vaccine 28:1635–1641.  https://doi.org/10.1016/j.vaccine.2009.11.004 Google Scholar
  85. Lardone RD, Chan AA, Lee AF, Foshag LJ, Faries MB, Sieling PA, Lee DJ (2017) Mycobacterium bovis Bacillus Calmette–Guérin alters melanoma microenvironment favoring antitumor T cell responses and improving M2 macrophage function. Front Immunol 8:1–14.  https://doi.org/10.3389/fimmu.2017.00965 Google Scholar
  86. Lattanzi M, Lee Y, Simpson D, Moran U, Darvishian F, Kim RH, Hernando E, Polsky D, Hanniford D, Shapiro R, Berman R, Pavlick AC, Wilson MA, Kirchhoff T, Weber JS, Zhong J, Osman I (2019) Primary melanoma histologic subtype: impact on survival and response to therapy. J Natl Cancer Inst 111:180–188.  https://doi.org/10.1093/jnci/djy086 Google Scholar
  87. Lattime EC (1992) Murine bladder carcinoma cells present antigen to BCG-specific CD4+ T-cells. Cancer Res 52:4286–4290Google Scholar
  88. Lau R, Wang F, Jeffery G, Marty V, Kuniyoshi J, Bade E, Ryback ME, Weber J (2001) Phase I trial of intravenous peptide-pulsed dendritic cells in patients with metastatic melanoma. J Immunother 24:66–78.  https://doi.org/10.1097/00002371-200101000-00008 Google Scholar
  89. Leong SPL (2003) Future perspectives on malignant melanoma. Surg Clin North Am 83:453–456.  https://doi.org/10.1016/S0039-6109(02)00204-9 Google Scholar
  90. Leong SP, Enders-Zohr P, Zhou YM, Stuntebeck S, Habib FA, Allen RE Jr, Sagebiel RW, Glassberg AB, Lowenberg DWHF (1999) Recombinant human granulocyte macrophage-colony stimulating factor (rhGM-CSF) and autologous melanoma vaccine mediate tumor regression in patients with metastatic melanoma. J Immunother 22:166–174.  https://doi.org/10.1097/00002371-199903000-00008 Google Scholar
  91. Leung AS, Tran V, Wu Z, Yu X, Alexander DC, Gao GF, Zhu B, Liu J (2008) Novel genome polymorphisms in BCG vaccine strains and impact on efficacy. BMC Genomics 9:1–12.  https://doi.org/10.1186/1471-2164-9-413 Google Scholar
  92. Liang J, Teng X, Yuan X, Zhang Y, Shi C, Yue T, Zhou L, Li J, Fan X (2015) Enhanced and durable protective immune responses induced by a cocktail of recombinant BCG strains expressing antigens of multistage of Mycobacterium tuberculosis. Mol Immunol 66:392–401.  https://doi.org/10.1016/j.molimm.2015.04.017
  93. Liu J, Tran V, Leung AS, Alexander DC, Zhu B (2009) BCG vaccines: their mechanisms of attenuation and impact on safety and protective efficacy. Hum Vaccin 5:70–78.  https://doi.org/10.4161/hv.5.2.7210 Google Scholar
  94. Liu W, Xu Y, Shen H, Yan J, Yang E, Wang H (2017) Recombinant bacille Calmette-Guérin coexpressing Ag85b-IFN-γ enhances the cell-mediated immunity in c57bl/6 mice. Exp Ther Med 13:2339–2347.  https://doi.org/10.3892/etm.2017.4273 Google Scholar
  95. Long GV, Menzies AM, Nagrial AM, Haydu LE, Hamilton AL, Mann GJ, Hughes TM, Thompson JF, Scolyer RA, Kefford RF (2011) Prognostic and clinicopathologic associations of oncogenic BRAF in metastatic melanoma. J Clin Oncol 29:1239–1246.  https://doi.org/10.1200/JCO.2010.32.4327 Google Scholar
  96. Lotem M, Peretz T, Drize O, Gimmon Z, Ad El D, Weitzen R, Goldberg H, Ben David I, Prus D, Hamburger T, Shiloni E (2002) Autologous cell vaccine as a post operative adjuvant treatment for high-risk melanoma patients (AJCC stages III and IV). The new American Joint Committee on Cancer. Br J Cancer 86:1534–1539.  https://doi.org/10.1038/sj/bjc/6600251 Google Scholar
  97. Lotem M, Merims S, Frank S, Hamburger T, Nissan A, Kadouri L, Cohen J, Straussman R, Eisenberg G, Frankenburg S, Carmon E, Alaiyan B, Shneibaum S, Ozge Ayyildiz Z, Isbilen M, Mert Senses K, Ron I, Steinberg H, Smith Y, Shiloni E, Gure AO, Peretz T (2016) Adjuvant autologous melanoma vaccine for macroscopic stage III disease: survival, biomarkers, and improved response to CTLA-4 blockade. J Immunol Res 2016:1–12.  https://doi.org/10.1155/2016/8121985 Google Scholar
  98. Lovly CM, Dahlman KB, Fohn LE, Su Z, Dias-santagata D, Hicks DJ, Hucks D, Berry E, Terry C, Duke M, Su Y, Sobolik-delmaire T, Richmond A, Kelley MC, Vnencak-jones CL, Iafrate AJ, Sosman J, Pao W (2012) Routine multiplex mutational profiling of melanomas enables enrollment in genotype-driven therapeutic trials 7: . doi:  https://doi.org/10.1371/journal.pone.0035309
  99. Ludwig AT, Moore JM, Luo Y, Chen X, Saltsgaver NA, O’Donnell MA, Griffith TS (2004) Tumor necrosis factor-related apoptosis-inducing ligand: a novel mechanism for Bacillus Calmette-Guérin-induced antitumor activity. Cancer Res 64:3386–3390.  https://doi.org/10.1158/0008-5472.CAN-04-0374 Google Scholar
  100. Luo Y, Chen X, Han R, O’Donnell MA (2001) Recombinant bacille Calmette-Guérin (BCG) expressing human interferon-alpha 2B demonstrates enhanced immunogenicity. Clin Exp Immunol 123:264–270.  https://doi.org/10.1046/j.1365-2249.2001.01428.x Google Scholar
  101. Luo Y, Chen X, O’Donnell MA (2003) Role of Th1 and Th2 cytokines in BCG-induced IFN-γ production: cytokine promotion and simulation of BCG effect. Cytokine 21:17–26.  https://doi.org/10.1016/S1043-4666(02)00490-8 Google Scholar
  102. Luo Y, Yamada H, Chen X, Ryan AA, Evanoff DP, Triccas JA, O’Donnell MA (2004) Recombinant Mycobacterium bovis bacillus Calmette-Guérin (BCG) expressing mouse IL-18 augmente Th1 immunity and macrophage cytotoxicity. Clin Exp Immunol 137:24–34.  https://doi.org/10.1111/j.1365-2249.2004.02522.x Google Scholar
  103. Luo W, Qu Z, Zhang L, Xie Y, Luo F, Tan Y, Pan Q, Zhang XL (2018) Recombinant BCG::Rv2645 elicits enhanced protective immunity compared to BCG in vivo with induced ISGylation-related genes and Th1 and Th17 responses. Vaccine 36:2998–3009.  https://doi.org/10.1016/j.vaccine.2018.04.025 Google Scholar
  104. Luther C, Swami U, Zhang J, Milhem M, Zakharia Y (2019) Advanced stage melanoma therapies: detailing the present and exploring the future. Crit Rev Oncol Hematol 133:99–111.  https://doi.org/10.1016/j.critrevonc.2018.11.002 Google Scholar
  105. Mantovani A, Sica A (2010) Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol 22:231–237.  https://doi.org/10.1016/j.coi.2010.01.009 Google Scholar
  106. Maruf M, Brancato SJ, Agarwal PK (2016) Nonmuscle invasive bladder cancer: a primer on immunotherapyNonmuscle invasive bladder cancer: a primer on immunotherapy. Cancer Biol Med 13:194–205.  https://doi.org/10.20892/j.issn.2095-3941.2016.0020 Google Scholar
  107. Mattia G, Puglisi R, Ascione B, Malorni W, Carè A, Matarrese P (2018) Cell death-based treatments of melanoma : conventional treatments and new therapeutic strategies. Cell Death Dis 9:112.  https://doi.org/10.1038/s41419-017-0059-7 Google Scholar
  108. Meyskens FL Jr (1982) Studies of retinoids in the prevention and treatment of cancer. J Am Acad Dermatol 6:824–830.  https://doi.org/10.1016/S0190-9622(82)70072-6 Google Scholar
  109. Mitchell MS (2003) Immunotherapy as part of combinations for the treatment of cancer. Int Immunopharmacol 3:1051–1059.  https://doi.org/10.1016/S1567-5769(03)00019-5 Google Scholar
  110. Miyazaki J, Kawai K, Oikawa T, Johraku A, Hattori K, Shimazui T, Akaza H (2006) Uroepithelial cells can directly respond to Mycobacterium bovis bacillus Calmette-Guérin through Toll-like receptor signalling. BJU Int 97:860–864.  https://doi.org/10.1111/j.1464-410X.2006.06026.x Google Scholar
  111. Morales A, Herr H, Steinberg G, Given R, Cohen Z, Amrhein J, Kamat AM (2015) Efficacy and safety of MCNA in patients with nonmuscle invasive bladder cancer at high risk for recurrence and progression after failed treatment with bacillus Calmette-Guérin. J Urol 193:1135–1143.  https://doi.org/10.1016/j.juro.2014.09.109 Google Scholar
  112. Mordoh J, Pampena MB, Aris M, Blanco PA, Lombardo M, von Euw EM, Mac KS, Crow MY, Bravo AI, O’Connor JM, Orlando AG, Ramello F, Levy EM, Barrio MM (2017) Phase II study of adjuvant immunotherapy with the CSF-470 vaccine plus Bacillus Calmette-Guerin plus recombinant human granulocyte macrophage-colony stimulating factor vs medium-dose Interferon alpha 2B in stages IIB, IIC, and III cutaneous melanoma patients: a single institution, randomized study. Front Immunol 8:1–15.  https://doi.org/10.3389/fimmu.2017.00625 Google Scholar
  113. Morton DL, Eilber FR, Holmes EC, Sparks FC, Ramming KP (1976) Present status of BCG immunotherapy of malignant melanoma. Cancer Immunol Immunother 1:93–98.  https://doi.org/10.1007/BF00205300 Google Scholar
  114. Murphy G, Radu A, Kaminer M, Berd D (1993) Autologous melanoma vaccine induces inflammatory responses in melanoma metastases: relevance to immunologic regression and immunotherapy. J Invest Dermatol 100:335S–341S.  https://doi.org/10.1038/jid.1993.59 Google Scholar
  115. Murray PJ, Aldovini A, Young RA (1996) Manipulation and potentiation of antimycobacterial immunity using recombinant bacille Calmette-Guerin strains that secrete cytokines. Proc Natl Acad Sci 93:934–939.  https://doi.org/10.1073/pnas.93.2.934 Google Scholar
  116. Naoe M, Ogawa Y, Takeshita K, Morita J, Iwamoto S, Miyazaki A, Yoshida H (2007) Bacillus Calmette-Guérin-pulsed dendritic cells stimulate natural killer T cells and γδT cells. Int J Urol 14:532–538.  https://doi.org/10.1111/j.1442-2042.2006.01697.x Google Scholar
  117. Newton-Foot M, Gey Van Pittius NC (2013) The complex architecture of mycobacterial promoters. Tuberculosis 93:60–74.  https://doi.org/10.1016/j.tube.2012.08.003 Google Scholar
  118. Nieuwenhuizen NE, Kulkarni PS, Shaligram U, Cotton MF, Rentsch CA, Eisele B, Grode L, Kaufmann SHE (2017) The recombinant bacille Calmette-Guérin vaccine VPM1002: ready for clinical efficacy testing. Front Immunol 8:1–9.  https://doi.org/10.3389/fimmu.2017.01147 Google Scholar
  119. Nikolaev SI, Rimoldi D, Iseli C, Valsesia A, Robyr D, Gehrig C, Harshman K, Guipponi M, Bukach O, Zoete V, Michielin O, Muehlethaler K, Speiser D, Beckmann JS, Xenarios I, Halazonetis TD, Jongeneel CV, Stevenson BJ, Antonarakis SE (2012) Exome sequencing identifies recurrent somatic MAP2K1 and MAP2K2 mutations in melanoma. Nat Genet 44:133–139.  https://doi.org/10.1038/ng.1026 Google Scholar
  120. Oliveira TL, Rizzi C, Dellagostin OA (2017) Recombinant BCG vaccines: molecular features and their influence in the expression of foreign genes. Appl Microbiol Biotechnol 101:6865–6877.  https://doi.org/10.1007/s00253-017-8439-6 Google Scholar
  121. Olszanski AJ (2014) Current and future roles of targeted therapy and immunotherapy in advanced melanoma. J Manag Care Pharm 20:346–356.  https://doi.org/10.18553/jmcp.2014.20.4.346 Google Scholar
  122. Orgaz JL, Sanz-Moreno V (2013) Emerging molecular targets in melanoma invasion and metastasis. Pigment Cell Melanoma Res 26:39–57.  https://doi.org/10.1111/pcmr.12041 Google Scholar
  123. Pampena MB, Cartar HC, Cueto GR, Levy EM, Blanco PA, Barrio MM, Mordoh J (2018) Dissecting the immune stimulation promoted by CSF-470 vaccine plus adjuvants in cutaneous melanoma patients: long term antitumor immunity and short term release of acute inflammatory reactants. Front Immunol 9:1–12.  https://doi.org/10.3389/fimmu.2018.02531 Google Scholar
  124. Potrony M, Badenas C, Aguilera P, Puig-Butille JA, Carrera C, Malvehy J, Puig S (2015) Update in genetic susceptibility in melanoma. Ann Transl Med 3:210.  https://doi.org/10.3978/j.issn.2305-5839.2015.08.11 Google Scholar
  125. Puig S, Malvehy J, Badenas C, Ruiz A, Jimenez D, Cuellar F, Azon A, Gonzàlez U, Castel T, Campoy A, Herrero J, Martí R, Brunet-Vidal J, Milà M (2005) Role of the CDKN2A locus in patients with multiple primary melanomas. J Clin Oncol 23:3043–3051.  https://doi.org/10.1200/JCO.2005.08.034 Google Scholar
  126. Ragupathi G, Meyers M, Adluri S, Howard L, Musselli C, Livingston PO (2000) Induction of antibodies against GD3 ganglioside in melanoma patients by vaccination with GD3-lactone-KLH conjugate plus immunological adjuvant QS-21. Int J Cancer 85:659–666.  https://doi.org/10.1002/(SICI)1097-0215(20000301)85:5<659::AID-IJC11>3.0.CO;2-5 Google Scholar
  127. Redelman-Sidi G, Iyer G, Solit DB, Glickman MS (2013) Oncogenic activation of Pak1-dependent pathway of macropinocytosis determines BCG entry into bladder cancer cells. Cancer Res 73:1156–1167.  https://doi.org/10.1158/0008-5472.CAN-12-1882 Google Scholar
  128. Ribas A, Gogas H, Flaherty KT, Middleton MR, Sondak VK, Kirkwood JM, Hersey P (2011) New challenges in endpoints for drug development in advanced melanoma. Clin Cancer Res 18:336–341.  https://doi.org/10.1158/1078-0432.ccr-11-2323 Google Scholar
  129. Ribas A, Hamid O, Daud A, Hodi FS, Wolchok JD, Kefford R, Joshua AM, Patnaik A, Hwu W, Weber JS, Gangadhar TC, Hersey P, Dronca R, Joseph RW, Zarour H, Chmielowski B, Lawrence DP, Algazi A, Rizvi NA, Hoffner B, Mateus C, Gergich K, Lindia JA, Giannotti M, Li XN, Ebbinghaus S, Kang SP, Robert C (2016) Association of Pembrolizumab with tumor response and survival among patients with advanced melanoma 1782:1600–1609. doi:  https://doi.org/10.1001/jama.2016.4059
  130. Rizzi C, Peiter AC, Oliveira TL, Seixas Neto ACP, Leal KS, Hartwig DD, Seixas FK, Borsuk S, Dellagostin OA (2017) Stable expression of Mycobacterium bovis antigen 85B in auxotrophic m. Bovis bacillus calmette-guérin. Mem Inst Oswaldo Cruz 112:123–130.  https://doi.org/10.1590/0074-02760160360 Google Scholar
  131. Roskoski R (2010) RAF protein-serine/threonine kinases: structure and regulation. Biochem Biophys Res Commun 399:313–317.  https://doi.org/10.1016/j.bbrc.2010.07.092 Google Scholar
  132. Saiga H, Nieuwenhuizen N, Gengenbacher M, Koehler AB, Schuerer S, Moura-Alves P, Wagner I, Mollenkopf HJ, Dorhoi A, Kaufmann SHE (2015) The recombinant BCG ΔureC::hly vaccine targets the AIM2 inflammasome to induce autophagy and inflammation. J Infect Dis 211:1831–1841.  https://doi.org/10.1093/infdis/jiu675 Google Scholar
  133. Sanlorenzo M, Vujic I, Posch C, Dajee A, Yen A, Kim S, Ashworth M, Rosenblum MD, Algazi A, Osella-Abate S, Quaglino P, Daud A, Ortiz-Urda S (2014) Melanoma immunotherapy. Cancer Biol Ther 15:665–674.  https://doi.org/10.4161/cbt.28555 Google Scholar
  134. Schadendorf D, Algarra SM, Bastholt L, Cinat G, Dreno B, Eggermont AMM, Espinosa E, Guo J, Hauschild A, Petrella T, Schachter J, Hersey P (2009) Immunotherapy of distant metastatic disease. Ann Oncol 20:41–50.  https://doi.org/10.1093/annonc/mdp253 Google Scholar
  135. Schumacher T, Schreiber R (2015) Neoantigens in cancer immunotherapy. Science 348:69–74.  https://doi.org/10.1126/science.aaa4971 Google Scholar
  136. Schwartzentruber D, Lawson D, Richards J, Conry R, Miller D, Treisman J, Gailani F, Riley L, Conlon K, Pockaj B, Kendra K, White R, Gonzalez R, Kuzel T, Curti B, Leming P, Whitman E, Balkissoon J, Reintgen D, Kaufman H, Marincola F, Merino M, Rosenberg S, Choyke P, Vena D, Hwu P (2011) gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N Engl J Med 364:2119–2127.  https://doi.org/10.1056/NEJMoa1012863.gp100 Google Scholar
  137. Secanella-Fandos S, Luquin M, Julián E (2013) Connaught and russian strains showed the highest direct antitumor effects of different bacillus calmette-guérin substrains. J Urol 189:711–718.  https://doi.org/10.1016/j.juro.2012.09.049 Google Scholar
  138. Seixas FK, Borsuk S, Fagundes MQ, Hartwig DD, Cerqueira GM, Dellagostin OA (2010) Stable expression of Leptospira interrogans antigens in. Biol Res 43:13–18. doi: /S0716-97602010000100003Google Scholar
  139. Shinozaki M, O’day SJ, Kitago M, Amersi F, Kuo C, Kim J, Wang H-J, Hoon DSB (2007) Utility of circulating B-RAF DNA mutation in serum for monitoring melanoma patients receiving biochemotherapy. The management of cutaneous melanoma continues to pose a 53:2068–2075 . doi:  https://doi.org/10.1158/1078-0432.CCR-06-2120
  140. Shtivelman E, Davies MA, Hwu P, Yang J, Lotem M, Oren M, Flaherty KT, Fisher DE (2014) Pathways and therapeutic targets in melanoma. Oncotarget 5:1701–1752.  https://doi.org/10.18632/oncotarget.1892 Google Scholar
  141. Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA Cancer J Clin 69:7–34.  https://doi.org/10.3322/caac.21551 Google Scholar
  142. Simeone E, Ascierto PA (2017) Anti-PD-1 and PD-L1 antibodies in metastatic melanoma. Melanoma Manag 4:175–178.  https://doi.org/10.2217/mmt-2017-0018 Google Scholar
  143. Slobbe L, Lockhart E, O’Donnell MA, Mackintosh C, De Lisle G, Buchan G (1999) An in vivo comparison of bacillus Calmette-Guerin (BCG) and cytokine- secreting BCG vaccines. Immunology 96:517–523.  https://doi.org/10.1046/j.1365-2567.1999.00702.x Google Scholar
  144. Sloot S, Rashid OM, Sarnaik AA, Zager JS (2016) Developments in intralesional therapy for metastatic melanoma. Cancer Control 23:12–20.  https://doi.org/10.1177/107327481602300104 Google Scholar
  145. Smith FO, Goff SL, Klapper JA, Levy C, Allen T, Mavroukakis SA, Rosenberg SA (2007) Risk of bowel perforation in patients receiving interleukin-2 after therapy with anti-CTLA 4 monoclonal antibody. J Immunother 30:130.  https://doi.org/10.1097/01.cji.0000211334.06762.89 Google Scholar
  146. Srivastava N, McDermott D (2014) Update on benefit of immunotherapy and targeted therapy in melanoma: the changing landscape. Cancer Manag Res 6:279–289.  https://doi.org/10.2147/cmar.s64979 Google Scholar
  147. Stark MS, Woods SL, Gartside MG, Bonazzi VF, Dutton-Regester K, Aoude LG, Chow D, Sereduk C, Niemi NM, Tang N, Ellis JJ, Reid J, Zismann V, Tyagi S, Muzny D, Newsham I, Wu Y, Palmer JM, Pollak T, Youngkin D, Brooks BR, Lanagan C, Schmidt CW, Kobe B, MacKeigan JP, Yin H, Brown KM, Gibbs R, Trent J, Hayward NK (2012) Frequent somatic mutations in MAP3K5 and MAP3K9 in metastatic melanoma identified by exome sequencing. Nat Genet 44:165–169.  https://doi.org/10.1038/ng.1041 Google Scholar
  148. Stewart JH, Levine EA (2011) Role of bacillus Calmette–Guérin in the treatment of advanced melanoma. Expert Rev Anticancer Ther 11:1671–1676.  https://doi.org/10.1586/era.11.163 Google Scholar
  149. Sullivan RJ, Flaherty KT (2014) Major therapeutic developments and current challenges in advanced melanoma. Br J Dermatol 170:36–44.  https://doi.org/10.1111/bjd.12698 Google Scholar
  150. Sullivan RJ, Atkins MB, Kirkwood JM, Agarwala SS, Clark JI, Ernstoff MS, Fecher L, Gajewski TF, Gastman B, Lawson DH, Lutzky J, McDermott DF, Margolin KA, Mehnert JM, Pavlick AC, Richards JM, Rubin KM, Sharfman W, Silverstein S, Slingluff CL, Sondak VK, Tarhini AA, Thompson JA, Urba WJ, White RL, Whitman ED, Hodi FS, Kaufman HL (2018) An update on the Society for Immunotherapy of Cancer consensus statement on tumor immunotherapy for the treatment of cutaneous melanoma: version 2.0. J Immunother Cancer 6:1–23.  https://doi.org/10.1186/s40425-018-0362-6 Google Scholar
  151. Suttmann H, Riemensberger J, Bentien G, Schmaltz D, Sto M, Jocham D, Bo A, Brandau S (2006) Neutrophil granulocytes are required for effective Bacillus Calmette-Guerin immunotherapy of bladder cancer and orchestrate local immune responses. 8250–8258. doi:  https://doi.org/10.1158/0008-5472.CAN-06-1416
  152. Terando AM, Faries MB, Morton DL (2007) Vaccine therapy for melanoma: current status and future directions. Vaccine 25:B4-16. doi:  https://doi.org/10.1016/j.vaccine.2007.06.033
  153. Triozzi P, Tuthill R, Borden E (2011) Re-inventing intratumoral immunotherapy for melanoma. Immunotherapy 3:653–671.  https://doi.org/10.2217/imt.11.46 Google Scholar
  154. Tsioulias GJ, Gupta RK, Tisman G, Hsueh EC, Essner R, Wanek LA, Morton DL (2001) Serum TA90 antigen-antibody complex as a surrogate marker for the efficacy of a polyvalent allogeneic whole-cell vaccine (CancerVax) in melanoma. Ann Surg Oncol 8:198–203.  https://doi.org/10.1245/aso.2001.8.3.198 Google Scholar
  155. Tsuji S, Matsumoto M, Takeuchi O, Akira S, Azuma I, Hayashi A, Toyoshima K, Seya T (2000) Maturation of human dendritic cells by cell wall skeleton of Mycobacterium bovis bacillus Calmette-Guérin: involvement of toll-like receptors. Infect Immun 68:6883–6890.  https://doi.org/10.1128/IAI.68.12.6883-6890.2000 Google Scholar
  156. Velmurugan R, Challa DK, Ram S, Ober RJ, Ward ES (2016) Macrophage-mediated trogocytosis leads to death of antibody-opsonized tumor cells. Mol Cancer Ther 15:1879–1889.  https://doi.org/10.1158/1535-7163.MCT-15-0335 Google Scholar
  157. Veronesi U, Aubert C, Bajetta E, Beretta G, Bonadonna G, Cascinelli N, De Marsillac J, Ikonopisov R, Kiss B, Krementz T, Lejeune F, Mechl Z, Milton G, Morabito A, Mulder P, Pawlicki P, Priario J, Rumke P, Sertoli R, Tomin R, Trapeznikov N, Wagner R (1984) Controlled study with imidazole carboxamide (DTIC), DTIC + bacillus Calmette-Guerin (BCG), and DTIC + Corynebacterium parvum in advanced malignant melanoma. Tumori 70:41–48.  https://doi.org/10.1177/030089168407000107 Google Scholar
  158. Wada N, Ohara N, Kameoka M, Nishino Y, Matsumoto S, Nishiyama T, Naito M, Yukitake H, Okada Y, Ikuta K, Yamada T (1996) Long-lasting immune response induced by recombinant bacillus Calmette-Guérin (BCG) secretion system. Scand J Immunol 43:202–209.  https://doi.org/10.1046/j.1365-3083.1996.d01-28.x Google Scholar
  159. Wolchok JD, van den Eertwegh AJM, Robert C, Akerley W, Schadendorf D, Lutzky J, Weber JS, Hassel JC, Ottensmeier CH, Lorigan P, Hogg D, Peschel C, Haanen JB, O’Day SJ, Gonzalez R, Vaubel JM, Hodi FS, Linette GP, Clark JI, Tian J, Weber RW, McDermott DF, Lebbé C, Urba WJ, Nichol GM, Sosman JA, Hoos A, Quirt I, Yellin MJ (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723Google Scholar
  160. Yang J, Jones MS, Ramos RI, Chan AA, Lee AF, Foshag LJ, Sieling PA, Faries MB, Lee DJ (2017) Insights into local tumor microenvironment immune factors associated with regression of cutaneous melanoma metastases by Mycobacterium bovis Bacille Calmette–Guérin. Front Oncol 7:1–13.  https://doi.org/10.3389/fonc.2017.00061 Google Scholar
  161. Yao TJ, Meyers M, Livingston PO, Houghton AN, Chapman PB (1999) Immunization of melanoma patients with BEC2-keyhole limpet hemocyanin plus BCG intradermally followed by intravenous booster immunizations with BEC2 to induce anti-GD3 ganglioside antibodies. Clin Cancer Res 5:77–81Google Scholar
  162. Yuan S, Shi C, Liu L, Han W (2010) MUC1-based recombinant Bacillus Calmette–Guérin vaccines as candidates for breast cancer immunotherapy. Expert Opin Biol Ther 10:1037–1048.  https://doi.org/10.1517/14712598.2010.485185 Google Scholar
  163. Zhao W, Schorey J, Bong-Mastek M, Ritchey J, Brown E, Ratliff T (2000) Role of a Bacillus Calmette–Guérin fibronectin attachment protein in BCG-induced antitumor activity. Int J Cancer 86:83–88Google Scholar
  164. Zheng YQ, Naguib YW, Dong Y, Shi YC, Bou S, Cui Z (2015) Applications of Bacillus Calmette–Guérin and recombinant bacillus Calmette-Guerin in vaccine development and tumor immunotherapy. Expert Rev Vaccines 14:1255–1275.  https://doi.org/10.1586/14760584.2015.1068124 Google Scholar
  165. Zhou Y, Zhao D, Yue R, Khan SH, Shah SZA, Yin X, Yang L, Zhang Z, Zhou X (2015) Inflammasomes-dependent regulation of IL-1β secretion induced by the virulent Mycobacterium bovis Beijing strain in THP-1 macrophages. Antonie Van Leeuwenhoek, Journal of Microbiology 108:163–171.  https://doi.org/10.1007/s10482-015-0475-6

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Cancer Biotechnology, Technology Development CenterFederal University of PelotasPelotasBrazil
  2. 2.Department of RadiologyUniversity of Illinois at ChicagoChicagoUSA
  3. 3.Department of Biochemistry & Molecular GeneticsUniversity of Illinois at ChicagoChicagoUSA
  4. 4.National Center for Supercomputing ApplicationsUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations