Advertisement

Impact of the inoculum composition on the structure of the total and active community and its performance in identically operated anaerobic reactors

  • Lynn Lemoine
  • Marieke Verbeke
  • Kristel Bernaerts
  • Dirk SpringaelEmail author
Bioenergy and biofuels
  • 12 Downloads

Abstract

Anaerobic digestion (AD) is a biological process that is acquiring increasing attention for both solid waste and wastewater treatment, as well as for the production of valuable chemicals. Despite the importance of the inoculum, the relationship between inoculum community composition, reactor performance, and reactor community composition remains vague. To understand the impact of the starting community on the composition and functioning of the AD microbiome, we studied three sets of biologically replicated AD reactors inoculated with different communities, but operated identically, targeting both total and active community compositions. All reactors performed highly similar regarding volatile fatty acid and methane production. The community analyses showed reproducible total and active community compositions in replicate reactors, indicating that particularly deterministic factors shaped the AD community. Moreover, strong variation in community composition between the differently seeded reactors was observed, indicating the role of inoculum composition in community shaping. In all three reactor sets, especially species that were low abundant or even not detected in the inoculum contributed to the reactor communities, supporting the importance of functional redundancy and high diversity in inocula used for AD seeding. The careful start-up of the AD process using initially low organic loading rates likely contributed to the successful assembly of initial low-abundance/rare species into a new cooperative AD community in the reactors.

Keywords

Anaerobic digestion Community composition Functional redundancy 16S rRNA gene/ transcript amplicon sequencing 

Notes

Acknowledgments

We thank K. Simoens for VFA analysis and K. Moors and D. Grauwels for overall technical assistance.

Funding information

This study was funded by the Anaerobic Membrane Bioreactor knowledge platform (KU Leuven project IOFKP/13/004 2012) and by the Inter-University Attraction Pole (IUAP) “μ-manager” of the Belgian Science Policy (BELSPO, P7/25).

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

253_2019_10041_MOESM1_ESM.pdf (1.2 mb)
ESM 1 (PDF 1193 kb)

References

  1. Aiyuk S, Verstraete W (2004) Sedimentological evolution in an UASB treating SYNTHES, a new representative synthetic sewage, at low loading rates. Bioresour Technol 93:269–278.  https://doi.org/10.1016/j.biortech.2003.11.006 CrossRefGoogle Scholar
  2. American Public health Association (APHA), American Water Works Association (AWWA), Water Environment Federation (WEF) (1992) Standard methods for examination of water and wastewater 18th edn. Washington D.C, pp 2540–2550Google Scholar
  3. Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. Retrieved May 6, 2016, fromhttp://www.bioinformatics.babraham.ac.uk/projects/fastqc
  4. Azman S, Khadem AF, Plugge CM, Stams AJM, Bec S, Zeeman G (2016) Effect of humic acid on anaerobic digestion of cellulose and xylan in completely stirred tank reactors: inhibitory effect, mitigation of the inhibition and the dynamics of the microbial communities. Appl Microbiol Biotechnol 101(2):889–901.  https://doi.org/10.1007/s00253-016-8010-x CrossRefGoogle Scholar
  5. Bell T, Newman JA, Silverman BW, Turner SL, Lilley AK (2005) The contribution of species richness and composition to bacterial services. Nature 436:1157–1160.  https://doi.org/10.1038/nature03891 CrossRefGoogle Scholar
  6. Briones A, Raskin L (2003) Diversity and dynamics of microbial communities in engineered environments and their implications for process stability. Curr Opin Biotechnol 14:270–276.  https://doi.org/10.1016/S0958-1669(03)00065-X CrossRefGoogle Scholar
  7. Carballa M, Regueiro L, Lema JM (2015) Microbial management of anaerobic digestion: exploiting the microbiome-functionality nexus. Curr Opin Biotechnol 33:103–111.  https://doi.org/10.1016/j.copbio.2015.01.008 CrossRefGoogle Scholar
  8. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162(1):156–159.  https://doi.org/10.1006/abio.1987.9999 CrossRefGoogle Scholar
  9. De Vrieze J, Gildemyn S, Vilchez-Vargas R, Jáuregui R, Pieper DH, Verstraete W (2015) Inoculum selection is crucial to ensure operational stability in anaerobic digestion. Appl Microbiol Biotechnol 99:189–199.  https://doi.org/10.1007/s00253-014-6046-3 CrossRefGoogle Scholar
  10. De Vrieze J, Regueiro L, Props R, Vilchez-Vargas R, Jáuregui R, Pieper DH, Lema JM, Carballa M (2016) Presence does not imply activity: DNA and RNA patterns differ in response to salt perturbation in anaerobic digestion. Biotechnol Biofuels 9:244–257.  https://doi.org/10.1186/s13068-016-0652-5 CrossRefGoogle Scholar
  11. De Vrieze J, Pinto AJ, Sloan WT, Ijaz UZ (2018) The active community more accurately reflects the anaerobic digestion process: 16S rRNA (gene) sequencing as a predictive tool. Microbiome 6(1):63.  https://doi.org/10.1186/s40168-018-0449-9 CrossRefGoogle Scholar
  12. Fontana A, Patrone V, Puglisi E, Morelli L, Bassi D, Garuti M, Rossi L, Cappa F (2016) Effects of geographic area, feedstock, temperature, and operating time on microbial communities of six full-scale biogas plants. Bioresour Technol 218:980–990.  https://doi.org/10.1016/j.biortech.2016.07.058 CrossRefGoogle Scholar
  13. Goux X, Calusinska M, Lemaigre S, Marynowska M, Klocke M, Udelhoven T (2015) Microbial community dynamics in replicate anaerobic digesters exposed sequentially to increasing organic loading rate, acidosis, and process recovery. Biotechnol Biofuels. 8:122.  https://doi.org/10.1186/s13068-015-0309-9 CrossRefGoogle Scholar
  14. Guo J, Peng Y, Ni B-J, Han X, Fan L, Yuan Z (2015) Dissecting microbial community structure and methane-producing pathways of a full-scale anaerobic reactor digesting activated sludge from wastewater treatment by metagenomic sequencing. Microb Cell Fact 14:33.  https://doi.org/10.1186/s12934-015-0218-4 CrossRefGoogle Scholar
  15. Han S, Liu Y, Zhang S, Luo G (2016) Reactor performances and microbial communities of biogas reactors: effects of inoculum sources. Appl Microbiol Biotechnol 100(2):987–995.  https://doi.org/10.1007/s00253-015-7062-7 CrossRefGoogle Scholar
  16. Hannon GJ (2010) FASTX-Toolkit. Retrieved May 6, 2016, from http://hannonlab.cshl.edu/fastx_toolkit
  17. Hanreich A, Schimpf U, Zakrzewski M, Schlûter A, Benndorf D, Heyer R, Rapp E, Pûhler A, Reichl U, Klocke M (2013) Metagenome and metaproteome analyses of microbial communities in mesophilic biogas-producing anaerobic batch fermentations indicate concerted plant carbohydrate degradation. Syst Appl Microbiol 36:330–338.  https://doi.org/10.1016/j.syapm.2013.03.006 CrossRefGoogle Scholar
  18. Hassa J, Maus I, Off S, Pûhler A, Scherer P, Klocke M, Schlüter A (2018) Metagenome, metatranscriptome, and metaproteome approaches unraveled compositions and functional relationships of microbial communities residing in biogas plants. Appl Microbiol Biotechnol 102:5045–5063.  https://doi.org/10.1007/s00253-018-8976-7) CrossRefGoogle Scholar
  19. Ju F, Lau F, Zhang T (2017) Linking microbial community, environmental variables, and methanogenesis in anaerobic biogas digesters of chemically enhanced primary treatment sludge. Environ Sci Technol 51(7):3982–3992.  https://doi.org/10.1021/acs.est.6b06344 CrossRefGoogle Scholar
  20. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO (2012) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucl Acid Res 41(1):e1.  https://doi.org/10.1093/nar/gks808 CrossRefGoogle Scholar
  21. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. AEM 79(17):5112–5120.  https://doi.org/10.1128/AEM.01043-13 CrossRefGoogle Scholar
  22. Li L, Ma Y, Wang X, Peng X (2016) A mesophilic anaerobic digester for treating food waste: process stability and microbial community analysis using pyrosequencing. Microb Cell Fact 15:65.  https://doi.org/10.1186/s12934-016-0466-y CrossRefGoogle Scholar
  23. Lin Q, De Vrieze J, Li J, Li X (2016) Temperature affects microbial abundance, activity and interactions in anaerobic digestion. Bioresour Technol 209:228–236.  https://doi.org/10.1016/j.biortech.2016.02.132 CrossRefGoogle Scholar
  24. Lu X, Rao S, Shen Z, Lee PKH (2013) Substrate induced emergence of different active bacterial and archaeal assemblages during biomethane production. Bioresour Technol 148:517–524.  https://doi.org/10.1016/j.biortech.2013.09.017 CrossRefGoogle Scholar
  25. Madsen M, Holm-Nielsen JB, Esbensen KH (2011) Monitoring of anaerobic digestion processes: a review perspective. Renew Sustain Energy Rev 15:3141–3155.  https://doi.org/10.1007/s00253-017-8438-7 CrossRefGoogle Scholar
  26. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2018) vegan: community ecology package. R package version 2.4-6. https://CRAN.R-roject.org/package=vegan
  27. Peces M, Astals S, Jensen PD, Clarke WP (2018) Deterministic mechanisms define the long-term anaerobic digestion microbiome and its functionality regardless of the initial microbial community. Water Res 141:366–376.  https://doi.org/10.1016/j.watres.2018.05.028 CrossRefGoogle Scholar
  28. Perrotta AR, Kumaraswamy R, Bastidas-Oyanedel JR, Alm JE, Rodrigez J (2017) Inoculum composition determines microbial community and function in an anaerobic sequential batch reactor. PLoS ONE 12(2):e0171369.  https://doi.org/10.1371/journal.pone.0171369 CrossRefGoogle Scholar
  29. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl Acids Res 41(D1):D590–D596.  https://doi.org/10.1093/nar/gks1219 CrossRefGoogle Scholar
  30. R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna ISBN 3-900051-07-0: http://www.R-project.org
  31. Satpathy P, Steinigeweg S, Cypionka H, Engelen B (2015) Different substrates and starter inocula govern microbial community structures in biogas reactors. Environ Technol 37(11):1441–1450.  https://doi.org/10.1080/09593330.2015.1118559 CrossRefGoogle Scholar
  32. Smith KS, Ingram-Smith C (2007) Methanosaeta, the forgotten methanogen? Trends Microbiol 15(4):150–155.  https://doi.org/10.1016/j.tim.2007.02.002 CrossRefGoogle Scholar
  33. Tomei MC, Braguglia CM, Cento G, Mininni G (2009) Modeling of anaerobic digestion of sludge. Crit Rev Environ Sci Technol 39(12):1003–1051.  https://doi.org/10.1080/10643380801977818 CrossRefGoogle Scholar
  34. Vanwonterghem I, Jensen PD, Dennis PG, Hugenholtz P, Rabaey K, Tyson GW (2014) Deterministic processes guide long-term synchronized population dynamics in replicate anaerobic reactors. ISME J 8:2015–2028.  https://doi.org/10.1038/ismej.2014.50 CrossRefGoogle Scholar
  35. Venkiteshwaran K, Milferstedt K, Hamelin J, Fujimoto M, Johnson M, Zitomer DH (2017) Correlating methane production to microbiota in anaerobic digesters fed synthetic wastewater. Water Res 110:161–169.  https://doi.org/10.1016/j.watres.2016.12.010 CrossRefGoogle Scholar
  36. Walker M, Zhang Y, Heaven S, Banks C (2009) Potential errors in quantitative evaluation of biogas production in anaerobic digestion processes. Bioresour Technol 200:6339–6346.  https://doi.org/10.1016/j.biortech.2009.07.018 CrossRefGoogle Scholar
  37. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer-Verlag, New YorkCrossRefGoogle Scholar
  38. Wickham H, Francois R, Henry L, Müller K (2017) dplyr: a grammar of data manipulation. R package version 0.7.4. https://CRAN.R-project.org/package=dplyr
  39. Zakrzewski M, Goesmann A, Jaenicke S, Junemann S, Eikmeyer F, Szczepanowski R, Al-Soud WA, Sørensen S, Pühler A, Schlüter A (2012) Profiling of the metabolically active community from a production-scale biogas plant by means of high-throughput metatranscriptome sequencing. J Biotechnol 158(4):248–258.  https://doi.org/10.1016/j.jbiotec.2012.01.020 CrossRefGoogle Scholar
  40. Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62(2):316–322Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Soil and Water ManagementKU LeuvenLeuvenBelgium
  2. 2.Bio- and Chemical Systems Technology, Reactor Engineering and Safety (CREaS), Department of Chemical EngineeringKU LeuvenLeuvenBelgium

Personalised recommendations