Advertisement

Applied Microbiology and Biotechnology

, Volume 103, Issue 18, pp 7399–7423 | Cite as

Lipases: sources, immobilization methods, and industrial applications

  • Danielle Gonçalves Filho
  • Amanda Gonçalves Silva
  • Carla Zanella GuidiniEmail author
Mini-Review

Abstract

Enzymes are natural catalysts highly specific to the substrate type and operate under mild conditions of temperature, pressure, and pH with high conversion rates, which makes them more efficient than conventional chemical catalysts. The enzymes can be obtained from various sources, animal, vegetable, and microbiological. Lipases are very versatile enzymes, and this has aroused the interest of the industries. However, the great problem of the use of soluble lipases is the high cost of acquisition, low operational stability, and difficulties of recovery, and reuse. Enzymatic immobilization has been suggested as an alternative to reduce the limitations of soluble enzymes, increasing their stability and facilitating recovery, and reuse, significantly reducing the cost of processes involving the use of enzymes. This review presents a discussion on the different immobilization methods for lipase, as well as the challenges of use lipases immobilized on the industrial scale.

Keywords

Adsorption Cross-linking Confinement Covalent bond Sources of lipase Industrial applications of immobilized lipases 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Abdulla R, Ravindra P (2013) Characterization of cross linked Burkholderia cepacia lipase in alginate and κ-carrageenan hybrid matrix. J Taiwan Inst Chem Eng 44:545–551.  https://doi.org/10.1016/j.jtice.2013.01.003 CrossRefGoogle Scholar
  2. Abdulla R, Sanny SA, Derman E (2017) Stability studies of immobilized lipase on rice husk and eggshell membrane. In: IOP conference series: materials science and engineeringGoogle Scholar
  3. Aghababaie M, Beheshti M, Bordbar AK, Razmjoua A (2018) Novel approaches to immobilize Candida rugosa lipase on nanocomposite membranes prepared by covalent attachment of magnetic nanoparticles on poly acrylonitrile membrane. RSC Adv 8:4561–4570.  https://doi.org/10.1039/c7ra11866j CrossRefGoogle Scholar
  4. Aissaoui N, Landoulsi J, Bergaoui L, Boujday S, Lambert JF (2013) Catalytic activity and thermostability of enzymes immobilized on silanized surface: influence of the crosslinking agent. Enzym Microb Technol 52:336–343.  https://doi.org/10.1016/j.enzmictec.2013.02.018 CrossRefGoogle Scholar
  5. Akoz E, Sayin S, Kaplan S, Yilmaz M (2015) Improvement of catalytic activity of lipase in the presence of calix[4]arene valeric acid or hydrazine derivative. Bioprocess Biosyst Eng 38:595–604.  https://doi.org/10.1007/s00449-014-1299-x CrossRefPubMedGoogle Scholar
  6. Ali Z, Tian L, Zhao P, Zhang B, Ali N, Khan M, Zhang Q (2016) Immobilization of lipase on mesoporous silica nanoparticles with hierarchical fibrous pore. J Mol Catal B Enzym 134:129–135.  https://doi.org/10.1016/j.molcatb.2016.10.011 CrossRefGoogle Scholar
  7. Amirkhani L, Moghaddas J, Jafarizadeh-Malmiri H (2016) Candida rugosa lipase immobilization on magnetic silica aerogel nanodispersion. RSC Adv 6:12676–12687.  https://doi.org/10.1039/c5ra24441b CrossRefGoogle Scholar
  8. Aravindan R, Anbumathi P, Viruthagiri T (2007) Lipase applications in food industry. Indian J BiotechnolGoogle Scholar
  9. Asmat S, Husain Q, Khan MS (2018) A polypyrrole-methyl anthranilate functionalized worm-like titanium dioxide nanocomposite as an innovative tool for immobilization of lipase: preparation, activity, stability and molecular docking investigations. New J Chem 42:91–102.  https://doi.org/10.1039/c7nj02951a CrossRefGoogle Scholar
  10. Bacha A Ben, Karray A, Bouchaala E, Gargouri Y, Ali YB (2011) Purification and biochemical characterization of pancreatic phospholipase A2 from the common stingray Dasyatis pastinaca. Lipids Health Dis. 10:32.  https://doi.org/10.1186/1476-511X-10-32
  11. Badgujar KC, Bhanage BM (2017) Investigation of deactivation thermodynamics of lipase immobilized on polymeric carrier. Bioprocess Biosyst Eng 40:741–757.  https://doi.org/10.1007/s00449-017-1740-z CrossRefPubMedGoogle Scholar
  12. Badgujar KC, Dhake KP, Bhanage BM (2013) Immobilization of Candida cylindracea lipase on poly lactic acid, polyvinyl alcohol and chitosan based ternary blend film: characterization, activity, stability and its application for N-a. Process Biochem 48:1335–1347.  https://doi.org/10.1016/j.procbio.2013.06.009 CrossRefGoogle Scholar
  13. Barbosa O, Ortiz C, Berenguer-Murcia Á, Torres R, Rodrigues RC, Fernandez-Lafuente R (2014) Glutaraldehyde in bio-catalysts design: a useful crosslinker and a versatile tool in enzyme immobilization. RSC Adv 4:1583–1600CrossRefGoogle Scholar
  14. Basheer SM, Chellappan S, Beena PS, Sukumaran RK, Elyas KK, Chandrasekaran M (2011) Lipase from marine Aspergillus awamori BTMFW032: production, partial purification and application in oil effluent treatment. New Biotechnol 28:627–638.  https://doi.org/10.1016/j.nbt.2011.04.007 CrossRefGoogle Scholar
  15. Bickerstaff G (1996) Immobilization of enzymes and cellsGoogle Scholar
  16. Bilal M, Iqbal M, Hu H, Zhang X (2016) Mutagenicity and cytotoxicity assessment of biodegraded textile effluent by Ca-alginate encapsulated manganese peroxidase. Biochem Eng J 109:153–161.  https://doi.org/10.1016/j.bej.2016.01.020 CrossRefGoogle Scholar
  17. Bordes F, Barbe S, Escalier P, Mourey L, André I, Marty A, Tranier S (2010) Exploring the conformational states and rearrangements of Yarrowia lipolytica lipase. Biophys J 99:2225–2234.  https://doi.org/10.1016/j.bpj.2010.07.040 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Borowiecki P, Justyniak I, Ochal Z (2017) Lipase-catalyzed kinetic resolution approach toward enantiomerically enriched 1-(β-hydroxypropyl)indoles. Tetrahedron Asymmetry 28:1717–1732.  https://doi.org/10.1016/j.tetasy.2017.10.010 CrossRefGoogle Scholar
  19. Borrelli GM, Trono D (2015) Recombinant lipases and phospholipases and their use as biocatalysts for industrial applications. Int J Mol Sci 16:20774–20840CrossRefPubMedPubMedCentralGoogle Scholar
  20. Brown DL, Glatz CE (1987) Aggregate breakage in protein precipitation. Chem Eng Sci 42:1831–1839.  https://doi.org/10.1016/0009-2509(87)80188-4 CrossRefGoogle Scholar
  21. Bucur B, Munteanu FD, Marty JL, Vasilescu A (2018) Advances in enzyme-based biosensors for pesticide detection. BiosensorsGoogle Scholar
  22. Çakmakçi E, Muhsir P, Demir S (2017) Physical and covalent immobilization of lipase onto amine groups bearing thiol-Ene photocured coatings. Appl Biochem Biotechnol 181:1030–1047.  https://doi.org/10.1007/s12010-016-2266-6 CrossRefPubMedGoogle Scholar
  23. Cao L, van Rantwijk F, Sheldon RA (2000) Cross-linked enzyme aggregates: a simple and effective method for the immobilization of penicillin Acylase. Org Lett 2:1361–1364.  https://doi.org/10.1021/ol005593x CrossRefPubMedGoogle Scholar
  24. Cao L, van Langen L, Sheldon RA (2003) Immobilised enzymes: carrier-bound or carrier-free? Curr Opin BiotechnolGoogle Scholar
  25. Charoenpanich J, Suktanarag S, Toobbucha N (2011) Production of a thermostable lipase by Aeromonas sp. EBB-1 isolated from marine sludge in Angsila, Thailand. ScienceAsia.  https://doi.org/10.2306/scienceasia1513-1874.2011.37.105
  26. Chen C, Xyan Z, Q ling G, Fang F, L Wei W, X jun H (2016) Immobilization of lipase onto functional cyclomatrix polyphosphazene microspheres. J Mol Catal B Enzym 132:67–74.  https://doi.org/10.1016/j.molcatb.2016.07.003 CrossRefGoogle Scholar
  27. Cirillo G, Nicoletta FP, Curcio M, Spizzirri UG, Picci N, Iemma F (2014) Enzyme immobilization on smart polymers: catalysis on demand. React Funct Polym 83:62–69.  https://doi.org/10.1016/j.reactfunctpolym.2014.07.010 CrossRefGoogle Scholar
  28. Cortez D V., De Castro HF, Andrade GSS (2017) Potencial catalítico de lipases ligadas ao micélio de fungos filamentosos em processos de biotransformação. Quim Nova. doi:  https://doi.org/10.21577/0100-4042.20160163
  29. Cruz-Izquierdo Á, Picó EA, López C, Serra JL, Llama MJ (2014) Magnetic cross-linked enzyme aggregates (mCLEAs) of Candida antarctica lipase: an efficient and stable biocatalyst for biodiesel synthesis. PLoS One.  https://doi.org/10.1371/journal.pone.0115202
  30. Cui J, Cui L, Jia S, Su Z, Zhang S (2016a) Hybrid cross-linked lipase aggregates with magnetic nanoparticles: a robust and recyclable biocatalysis for the epoxidation of oleic acid. J Agric Food Chem 64:7179–7187.  https://doi.org/10.1021/acs.jafc.6b01939 CrossRefPubMedGoogle Scholar
  31. Cui JD, Liu RL, Li LB (2016b) A facile technique to prepare cross-linked enzyme aggregates of bovine pancreatic lipase using bovine serum albumin as an additive. Korean J Chem Eng 33:610–615.  https://doi.org/10.1007/s11814-015-0190-z CrossRefGoogle Scholar
  32. Cui J, Lin T, Feng Y, Tan Z, Jia S (2017) Preparation of spherical cross-linked lipase aggregates with improved activity, stability and reusability characteristic in water-in-ionic liquid microemulsion. J Chem Technol Biotechnol 92:1785–1793.  https://doi.org/10.1002/jctb.5179 CrossRefGoogle Scholar
  33. Dahili LA, FeczkÓ T (2015) Cross-linking of horseradish peroxidase enzyme to fine particles generated by nano spray dryer B-90. Period Polytech Chem Eng 59:209–214.  https://doi.org/10.3311/PPch.7590 CrossRefGoogle Scholar
  34. Dalmaso GZL, Ferreira D, Vermelho AB (2015) Marine extremophiles a source of hydrolases for biotechnological applications. Mar Drugs 13:1925–1965CrossRefPubMedPubMedCentralGoogle Scholar
  35. de Almeida AF, Terrasan CRF, Terrone CC, Tauk-Tornisielo SM, Carmona EC (2018) Biochemical properties of free and immobilized Candida viswanathii lipase on octyl-agarose support: hydrolysis of triacylglycerol and soy lecithin. Process Biochem 65:71–80.  https://doi.org/10.1016/j.procbio.2017.10.019 CrossRefGoogle Scholar
  36. Derewenda ZS (1994) Structure and function of lipasesGoogle Scholar
  37. Dhake KP, Thakare DD, Bhanage BM (2013) Lipase: a potential biocatalyst for the synthesis of valuable flavour and fragrance ester compounds. Flavour Fragr. JGoogle Scholar
  38. Dong H, Li Y, Sheng G, Hu L (2013) The study on effective immobilization of lipase on functionalized bentonites and their properties. J Mol Catal B Enzym 95:9–15.  https://doi.org/10.1016/j.molcatb.2013.05.018 CrossRefGoogle Scholar
  39. Doscher MS, Richards FM (1963) The activity of an enzyme in the crystalline state: ribonuclease {S}. J Biol Chem 238:2399–2406Google Scholar
  40. Duarte AWF, Dayo-Owoyemi I, Nobre FS, Pagnocca FC, Chaud LCS, Pessoa A, Felipe MGA, Sette LD (2013) Taxonomic assessment and enzymes production by yeasts isolated from marine and terrestrial Antarctic samples. Extremophiles. 17:1023–1035.  https://doi.org/10.1007/s00792-013-0584-y CrossRefPubMedGoogle Scholar
  41. Dumorné K, Córdova DC, Astorga-Eló M, Renganathan P (2017) Extremozymes: a potential source for industrial applications. J Microbiol Biotechnol 27:649–659CrossRefPubMedGoogle Scholar
  42. Dwevedi A (2016) Enzyme immobilization: advances in industry, agriculture, medicine, and the environmentGoogle Scholar
  43. Facin BR, Valério A, Bresolin D, Centenaro G, de Oliveira D, Oliveira JV (2018) Improving reuse cycles of Thermomyces lanuginosus lipase (NS-40116) by immobilization in flexible polyurethane. Biocatal Biotransformation 36:372–380.  https://doi.org/10.1080/10242422.2018.1458842 CrossRefGoogle Scholar
  44. Ferreira MM, Santiago FLB, Silva NAG d, JHH L, Fernandéz-Lafuente R, Mendes AA, Hirata DB (2018) Different strategies to immobilize lipase from Geotrichum candidum: kinetic and thermodynamic studies. Process Biochem 67:55–63.  https://doi.org/10.1016/j.procbio.2018.01.028 CrossRefGoogle Scholar
  45. Gao J, Kong W, Zhou L, He Y, Ma L, Wang Y, Yin L, Jiang Y (2017) Monodisperse core-shell magnetic organosilica nanoflowers with radial wrinkle for lipase immobilization. Chem Eng J 309:70–79.  https://doi.org/10.1016/j.cej.2016.10.021 CrossRefGoogle Scholar
  46. Gao Z, Chu J, Jiang T, Xu T, Wu B, He B (2018) Lipase immobilization on functionalized mesoporous TiO2: specific adsorption, hyperactivation and application in cinnamyl acetate synthesis. Process Biochem 64:152–159.  https://doi.org/10.1016/j.procbio.2017.09.011 CrossRefGoogle Scholar
  47. Gogoi S, Hazarika S, Rao PG, Dutta NN (2006) Esterification of lauric acid with lauryl alcohol using cross-linked enzyme crystals: solvent effect and kinetic study. Biocatal Biotransformation 24:343–351.  https://doi.org/10.1080/10242420600997495 CrossRefGoogle Scholar
  48. Guauque Torres MP, Foresti ML, Ferreira ML (2014) CLEAs of Candida antarctica lipase B (CALB) with a bovine serum albumin (BSA) cofeeder core: study of their catalytic activity. Biochem Eng J 90:36–43.  https://doi.org/10.1016/j.bej.2014.05.004 CrossRefGoogle Scholar
  49. Hari Krishna S, Karanth NG (2002) Lipases and lipase-catalyzed esterification reactions in nonaqueous media. Catal Rev Sci Eng 44:499–591CrossRefGoogle Scholar
  50. Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzym Microb Technol 39:235–251.  https://doi.org/10.1016/j.enzmictec.2005.10.016 CrossRefGoogle Scholar
  51. Hassan SWM, El Latif HHA, Ali SM (2018) Production of cold-active lipase by free and immobilized marine Bacillus cereus HSS: application in wastewater treatment. Front Microbiol.  https://doi.org/10.3389/fmicb.2018.02377
  52. He H, Han H, Shi H, Tian Y, Sun F, Song Y, Li Q, Zhu G (2016) Construction of thermophilic lipase-embedded metal-organic frameworks via biomimetic mineralization: a biocatalyst for ester hydrolysis and kinetic resolution. ACS Appl Mater Interfaces 8:24517–24524.  https://doi.org/10.1021/acsami.6b05538 CrossRefPubMedGoogle Scholar
  53. Hernandez K, Fernandez-Lafuente R (2011) Control of protein immobilization: coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance. Enzym Microb Technol 48:107–122CrossRefGoogle Scholar
  54. Herrera-López EJ (2012) Lipase and phospholipase biosensors: a review. Methods Mol BiolGoogle Scholar
  55. Hetrick EM, Sperry DC, Nguyen HK, Strege MA (2014) Characterization of a novel cross-linked lipase: impact of cross-linking on solubility and release from drug product. Mol Pharm 11:1189–1200.  https://doi.org/10.1021/mp4006529 CrossRefPubMedGoogle Scholar
  56. Homaei A (2015) Chapter 9: Enzyme Immobilization and its Application in the Food Industry In Advances in Food Biotechnology: 145–164 pGoogle Scholar
  57. Hou C, Zhu H, Li Y, Li Y, Wang X, Zhu W, Zhou R (2014) Facile synthesis of oxidic PEG-modified magnetic polydopamine nanospheres for Candida rugosa lipase immobilization. Appl Microbiol Biotechnol 99:1249–1259.  https://doi.org/10.1007/s00253-014-5990-2 CrossRefPubMedGoogle Scholar
  58. Hou C, Qi Z, Zhu H (2015a) Preparation of core-shell magnetic polydopamine/alginate biocomposite for Candida rugosa lipase immobilization. Colloids Surf B: Biointerfaces 128:544–551.  https://doi.org/10.1016/j.colsurfb.2015.03.007 CrossRefPubMedGoogle Scholar
  59. Hou C, Wang Y, Zhu H, Zhou L (2015b) Formulation of robust organic-inorganic hybrid magnetic microcapsules through hard-template mediated method for efficient enzyme immobilization. J Mater Chem B 3:2883–2891.  https://doi.org/10.1039/c4tb02102a CrossRefGoogle Scholar
  60. Illanes A, Cauerhff A, Wilson L, Castro GR (2012) Recent trends in biocatalysis engineering. Bioresour Technol 115:48–57.  https://doi.org/10.1016/j.biortech.2011.12.050 CrossRefPubMedGoogle Scholar
  61. International Union of Pure and Applied Chemistry (2014) Compendium of Chemical TerminologyGoogle Scholar
  62. Izrael Živković LT, Živković LS, Babić BM, Kokunešoski MJ, Jokić BM, Karadžić IM (2015) Immobilization of Candida rugosa lipase by adsorption onto biosafe meso/macroporous silica and zirconia. Biochem Eng J 93:73–83.  https://doi.org/10.1016/j.bej.2014.09.012 CrossRefGoogle Scholar
  63. Javed S, Azeem F, Hussain S, Rasul I, Siddique MH, Riaz M, Afzal M, Kouser A, Nadeem H (2018) Bacterial lipases: a review on purification and characterization. Prog Biophys Mol Biol 132:23–34CrossRefPubMedGoogle Scholar
  64. Ji X, Su Z, Liu C, Wang P, Zhang S (2017) Regulation of enzyme activity and stability through positional interaction with polyurethane nanofibers. Biochem Eng J 121:147–155.  https://doi.org/10.1016/j.bej.2017.02.007 CrossRefGoogle Scholar
  65. Jiaojiao X, Bin Z, Gangbin Z, Ping W, Zhenjiang L (2018) Quick separation and enzymatic performance improvement of lipase by ionic liquid-modified Fe3O4carrier immobilization. Bioprocess Biosyst Eng 41:739–748.  https://doi.org/10.1007/s00449-018-1907-2 CrossRefPubMedGoogle Scholar
  66. Kalantari M, Kazemeini M, Arpanaei A (2013) Evaluation of biodiesel production using lipase immobilized on magnetic silica nanocomposite particles of various structures. Biochem Eng J 79:267–273.  https://doi.org/10.1016/j.bej.2013.09.001 CrossRefGoogle Scholar
  67. Kanimozhi S, Perinbam K (2013) Synthesis of amino-silane modified superparamagnetic Fe3O4nanoparticles and its application in immobilization of lipase from Pseudomonas fluorescens Lp1. Mater Res Bull 48:1830–1836.  https://doi.org/10.1016/j.materresbull.2013.01.024 CrossRefGoogle Scholar
  68. Khanahmadi S, Yusof F, Amid A, Mahmod SS, Mahat MK (2015) Optimized preparation and characterization of CLEA-lipase from cocoa pod husk. J Biotechnol 202:153–161.  https://doi.org/10.1016/j.jbiotec.2014.11.015 CrossRefPubMedGoogle Scholar
  69. Khoobi M, Motevalizadeh SF, Asadgol Z, Forootanfar H, Shafiee A, Faramarzi MA (2014) Synthesis of functionalized polyethylenimine-grafted mesoporous silica spheres and the effect of side arms on lipase immobilization and application. Biochem Eng J 88:131–141.  https://doi.org/10.1016/j.bej.2014.04.009 CrossRefGoogle Scholar
  70. Khoobi M, Motevalizadeh SF, Asadgol Z, Forootanfar H, Shafiee A, Faramarzi MA (2015) Polyethyleneimine-modified superparamagnetic Fe3O4nanoparticles for lipase immobilization: characterization and application. Mater Chem Phys 149:77–86.  https://doi.org/10.1016/j.matchemphys.2014.09.039 CrossRefGoogle Scholar
  71. Khosla K, Rathour R, Maurya R, Maheshwari N, Gnansounou E, Larroche C, Thakur IS (2017) Biodiesel production from lipid of carbon dioxide sequestrating bacterium and lipase of psychrotolerant Pseudomonas sp. ISTPL3 immobilized on biochar. Bioresour Technol 245:743–750.  https://doi.org/10.1016/j.biortech.2017.08.194 CrossRefPubMedGoogle Scholar
  72. Kim W, Chae H, Park C, Lee K (2003) Stability and activity of cross-linking enzyme crystals of cyclodextrin glucanotransferase isolated from Bacillus macerans. J Mol Catal B Enzym 26:287–292.  https://doi.org/10.1016/j.molcatb.2003.07.007 CrossRefGoogle Scholar
  73. Kiran GS, Lipton AN, Kennedy J, Dobson ADW, Selvin J (2014) A halotolerant thermostable lipase from the marine bacterium Oceanobacillus sp. PUMB02 with an ability to disrupt bacterial biofilms. Bioeng bugs.  https://doi.org/10.4161/bioe.29898
  74. Kishimura H (2012) Enzymatic properties of starfish phospholipase A2 and its application. In: Advances in Food and Nutrition ResearchGoogle Scholar
  75. Klinman J, Hammes-Schiffer S (2013) Dynamics in enzyme catalysisGoogle Scholar
  76. Kumar A, Park GD, Patel SKS, Kondaveeti S, Otari S, Anwar MZ, Kalia VC, Singh Y, Kim SC, Cho BK, Sohn JH, Kim DR, Kang YC, Lee JK (2018) SiO2 microparticles with carbon nanotube-derived mesopores as an efficient support for enzyme immobilization. Chem Eng JGoogle Scholar
  77. La Rotta Hernandez CE, Lütz S, Liese A, Bon EPS (2005) Activity and stability of Caldariomyces fumago chloroperoxidase modified by reductive alkylation, amidation and cross-linking. Enzym Microb Technol 37:582–588.  https://doi.org/10.1016/j.enzmictec.2005.02.025 CrossRefGoogle Scholar
  78. Lan D, Qu M, Yang B, Wang Y (2016) Enhancing production of lipase MAS1 frommarine Streptomyces sp. strain in Pichia pastoris by chaperones co-expression. Electron J Biotechnol.  https://doi.org/10.1016/j.ejbt.2016.06.003
  79. Lee MS, Tullman-Ercek D (2017) Practical considerations for the encapsulation of multi-enzyme cargos within the bacterial microcompartment for metabolic engineering. Curr Opin Syst Biol 5:16–22.  https://doi.org/10.1016/j.coisb.2017.05.017 CrossRefGoogle Scholar
  80. Li H, Zhang X (2005) Characterization of thermostable lipase from thermophilic Geobacillus sp. TW1. Protein Expr Purif.  https://doi.org/10.1016/j.pep.2005.03.011
  81. Li W, Shen H, Tao Y, Chen B, Tan T (2014) Amino silicones finished fabrics for lipase immobilization: fabrics finishing and catalytic performance of immobilized lipase. Process Biochem 49:1488–1496.  https://doi.org/10.1016/j.procbio.2014.05.018 CrossRefGoogle Scholar
  82. Li Y, Hu J, Han P (2015) Synthesis of magnetically modified palygorskite composite for immobilization of Candida sp. 99-125 lipase via adsorption. Chin J Chem Eng 23:822–826.  https://doi.org/10.1016/j.cjche.2015.02.002 CrossRefGoogle Scholar
  83. Liu Y, Guo C, Liu CZ (2015) Enhancing the resolution of (R,S)-2-octanol catalyzed by magnetic cross-linked lipase aggregates using an alternating magnetic field. Chem Eng J 280:36–40.  https://doi.org/10.1016/j.cej.2015.05.089 CrossRefGoogle Scholar
  84. Liu D-M, Chen J, Shi Y-P (2018) Advances on methods and easy separated support materials for enzymes immobilization. TrAC Trends Anal Chem 102:332–342.  https://doi.org/10.1016/j.trac.2018.03.011 CrossRefGoogle Scholar
  85. Ma B, Cheong LZ, Weng X, Tan CP, Shen C (2018) Lipase@ZIF-8 nanoparticles-based biosensor for direct and sensitive detection of methyl parathion. Electrochim Acta 283:509–516.  https://doi.org/10.1016/j.electacta.2018.06.176 CrossRefGoogle Scholar
  86. Markets and Research (2017) Global lipase market—growth, trends and forecasts (2017–2022)Google Scholar
  87. Mehdi WA, Mehde AA, Özacar M, Özacar Z (2018) Characterization and immobilization of protease and lipase on chitin-starch material as a novel matrix. Int J Biol Macromol 117:947–958.  https://doi.org/10.1016/j.ijbiomac.2018.04.195 CrossRefPubMedGoogle Scholar
  88. Mehrasbi MR, Mohammadi J, Peyda M, Mohammadi M (2017) Covalent immobilization of Candida antarctica lipase on core-shell magnetic nanoparticles for production of biodiesel from waste cooking oil. Renew Energy 101:593–602.  https://doi.org/10.1016/j.renene.2016.09.022 CrossRefGoogle Scholar
  89. Mendes AA, De Castro HF, Pereira EB, Furigo A (2005) Aplicação de lipases no tratamento de águas residuárias com elevados teores de lipídeos. Quim Nova 28:296–305CrossRefGoogle Scholar
  90. Meng Y, Li S, Yuan H, Zou D, Liu Y, Zhu B, Li X (2015) Effect of lipase addition on hydrolysis and biomethane production of Chinese food waste. Bioresour Technol 179:452–459.  https://doi.org/10.1016/j.biortech.2014.12.015 CrossRefPubMedGoogle Scholar
  91. Miao C, Yang L, Wang Z, Luo W, Li H, Lv P, Yuan Z (2018) Lipase immobilization on amino-silane modified superparamagnetic Fe3O4nanoparticles as biocatalyst for biodiesel production. Fuel. 224:774–782.  https://doi.org/10.1016/j.fuel.2018.02.149 CrossRefGoogle Scholar
  92. Mohan TS, Palavesam A, Ajitha RL (2012) Optimization of lipase production by vibrio sp: a fish gut isolate. Eur J Zool Res 1:23–25Google Scholar
  93. Motevalizadeh SF, Khoobi M, Sadighi A, Khalilvand-Sedagheh M, Pazhouhandeh M, Ramazani A, Faramarzi MA, Shafiee A (2015) Lipase immobilization onto polyethylenimine coated magnetic nanoparticles assisted by divalent metal chelated ions. J Mol Catal B Enzym 120:75–83.  https://doi.org/10.1016/j.molcatb.2015.06.013 CrossRefGoogle Scholar
  94. Nadar SS, Rathod VK (2018) Encapsulation of lipase within metal-organic framework (MOF) with enhanced activity intensified under ultrasound. Enzym Microb Technol 108:11–20.  https://doi.org/10.1016/j.enzmictec.2017.08.008 CrossRefGoogle Scholar
  95. Navvabi A, Razzaghi M, Fernandes P, Karami L, Homaei A (2018) Novel lipases discovery specifically from marine organisms for industrial production and practical applications. Process Biochem 70:61–70CrossRefGoogle Scholar
  96. Nawaz MA, Karim A, Bibi Z, Rehman HU, Aman A, Hussain D, Ullah M, Qader SAU (2016) Maltase entrapment approach as an efficient alternative to increase the stability and recycling efficiency of free enzyme within agarose matrix. J Taiwan Inst Chem Eng 64:31–38.  https://doi.org/10.1016/j.jtice.2016.04.004 CrossRefGoogle Scholar
  97. Nicoletti G, Cipolatti EP, Valério A, Carbonera NTG a, Piller SNS, Theilacker E, Ninow JL, de Oliveira D (2015) Evaluation of different methods for immobilization of Candida antarctica lipase B (CalB lipase) in polyurethane foam and its application in the production of geranyl propionate. Bioprocess Biosyst Eng 38:1739–1748.  https://doi.org/10.1007/s00449-015-1415-6 CrossRefPubMedGoogle Scholar
  98. Nishida VS, de Oliveira RF, Brugnari T, Correa RCG, Peralta RA, Castoldi R, de Souza CGM, Bracht A, Peralta RM (2018) Immobilization of Aspergillus awamori β-glucosidase on commercial gelatin: an inexpensive and efficient process. Int J Biol Macromol 111:1206–1213.  https://doi.org/10.1016/j.ijbiomac.2018.01.146 CrossRefPubMedGoogle Scholar
  99. Nobakht N, Faramarzi MA, Shafiee A, Khoobi M, Rafiee E (2018) Polyoxometalate-metal organic framework-lipase: an efficient green catalyst for synthesis of benzyl cinnamate by enzymatic esterification of cinnamic acid. Int J Biol Macromol 113:8–19.  https://doi.org/10.1016/j.ijbiomac.2018.02.023 CrossRefPubMedGoogle Scholar
  100. Omay D (2014) Immobilization of lipase onto a photo-crosslinked polymer network: characterization and polymerization applications. Biocatal Biotransformation 32:132–140.  https://doi.org/10.3109/10242422.2014.894027 CrossRefGoogle Scholar
  101. Ozyilmaz E, Bayrakci M, Yilmaz M (2016) Improvement of catalytic activity of Candida rugosa lipase in the presence of calix[4]arene bearing iminodicarboxylic/phosphonic acid complexes modified iron oxide nanoparticles. Bioorg Chem 65:1–8.  https://doi.org/10.1016/j.bioorg.2015.12.001 CrossRefPubMedGoogle Scholar
  102. Parashar SK, Srivastava SK, Dutta NN, Garlapati VK (2018) Engineering aspects of immobilized lipases on esterification: a special emphasis of crowding, confinement and diffusion effects. Eng Life Sci 18:308–316.  https://doi.org/10.1002/elsc.201700082 CrossRefGoogle Scholar
  103. Patel V, Deshpande M, Madamwar D (2017) Increasing esterification efficiency by double immobilization of lipase-ZnO bioconjugate into sodium bis (2-ethylhexyl) sulfosuccinate (AOT)- reverse micelles and microemulsion based organogels. Biocatal Agric Biotechnol 10:182–188.  https://doi.org/10.1016/j.bcab.2017.03.009 CrossRefGoogle Scholar
  104. Pera LM, Baigori MD, Castro GR (2015) Chapter 10—biocatalysis. In: Industrial Biorefineries & White BiotechnologyGoogle Scholar
  105. Picó EA, López C, Cruz-Izquierdo Á, Munarriz M, Iruretagoyena FJ, Serra JL, Llama MJ (2018) Easy reuse of magnetic cross-linked enzyme aggregates of lipase B from Candida antarctica to obtain biodiesel from Chlorella vulgaris lipids. J Biosci Bioeng 126:451–457.  https://doi.org/10.1016/j.jbiosc.2018.04.009 CrossRefPubMedGoogle Scholar
  106. Piligaev AV, Sorokina KN, Samoylova YV, Parmon VN (2018) Lipid production by microalga Micractinium sp. IC-76 in a flat panel photobioreactor and its transesterification with cross-linked enzyme aggregates of Burkholderia cepacia lipase. Energy Convers Manag.  https://doi.org/10.1016/j.enconman.2017.10.086
  107. Qi H, Du Y, Hu G, Zhang L (2018) Poly(carboxybetaine methacrylate)-functionalized magnetic composite particles: a biofriendly support for lipase immobilization. Int J Biol Macromol 107:2660–2666.  https://doi.org/10.1016/j.ijbiomac.2017.10.150 CrossRefPubMedGoogle Scholar
  108. Ramani K, Saranya P, Jain SC, Sekaran G (2013) Lipase from marine strain using cooked sunflower oil waste: production optimization and application for hydrolysis and thermodynamic studies. Bioprocess Biosyst Eng 36:301–315.  https://doi.org/10.1007/s00449-012-0785-2 CrossRefPubMedGoogle Scholar
  109. Ray A (2012) Application of lipase in industry. Asian J Pharm Tech 2:33–37Google Scholar
  110. Rehman S, Bhatti HN, Bilal M, Asgher M (2016) Cross-linked enzyme aggregates (CLEAs) of Penicillium notatum lipase enzyme with improved activity, stability and reusability characteristics. Int J Biol Macromol 91:1161–1169.  https://doi.org/10.1016/j.ijbiomac.2016.06.081 CrossRefPubMedGoogle Scholar
  111. Rehman S, Wang P, Bhatti HN, Bilal M, Asgher M (2017) Improved catalytic properties of Penicillium notatum lipase immobilized in nanoscale silicone polymeric films. Int J Biol Macromol 97:279–286.  https://doi.org/10.1016/j.ijbiomac.2017.01.038 CrossRefPubMedGoogle Scholar
  112. Reis P, Witula T, Holmberg K (2008) Mesoporous materials as host for an entrapped enzyme. Microporous Mesoporous Mater 110:355–362.  https://doi.org/10.1016/j.micromeso.2007.06.025 CrossRefGoogle Scholar
  113. Reshmi R, Sugunan S (2013) Superior activities of lipase immobilized on pure and hydrophobic clay supports: characterization and catalytic activity studies. J Mol Catal B Enzym 97:36–44.  https://doi.org/10.1016/j.molcatb.2013.04.003 CrossRefGoogle Scholar
  114. Roy JJ, Abraham TE (2006) Continuous biotransformation of pyrogallol to purpurogallin using cross-linked enzyme crystals of laccase as catalyst in a packed-bed reactor. J Chem Technol Biotechnol 81:1836–1839.  https://doi.org/10.1002/jctb.1612 CrossRefGoogle Scholar
  115. Ruchi G, Anshu G, Khare SK (2008) Lipase from solvent tolerant Pseudomonas aeruginosa strain: production optimization by response surface methodology and application. Bioresour Technol 99:4796–4802.  https://doi.org/10.1016/j.biortech.2007.09.053 CrossRefPubMedGoogle Scholar
  116. Sadighi A, Motevalizadeh SF, Hosseini M, Ramazani A, Gorgannezhad L, Nadri H, Deiham B, Ganjali MR, Shafiee A, Faramarzi MA, Khoobi M (2017) Metal-chelate immobilization of lipase onto polyethylenimine coated MCM-41 for apple flavor synthesis. Appl Biochem Biotechnol 182:1371–1389.  https://doi.org/10.1007/s12010-017-2404-9 CrossRefPubMedGoogle Scholar
  117. Sajna KV, Gottumukkala LD, Sukumaran RK (2015) Industrial biorefineries and white biotechnologyGoogle Scholar
  118. Sampath C, Belur PD, Iyyasami R (2018) Enhancement of n-3 polyunsaturated fatty acid glycerides in sardine oil by a bioimprinted cross-linked Candida rugosa lipase. Enzym Microb Technol 110:20–29.  https://doi.org/10.1016/j.enzmictec.2017.12.003 CrossRefGoogle Scholar
  119. Sankaran R, Show PL, Chang JS (2016) Biodiesel production using immobilized lipase: feasibility and challenges. Biofuels, Bioprod. BiorefiningGoogle Scholar
  120. Santos KC, Cassimiro DMJ, Avelar MHM, Hirata DB, de Castro HF, Fernández-Lafuente R, Mendes AA (2013) Characterization of the catalytic properties of lipases from plant seeds for the production of concentrated fatty acids from different vegetable oils. Ind Crop Prod 49:462–470.  https://doi.org/10.1016/j.indcrop.2013.05.035 CrossRefGoogle Scholar
  121. Sarmah N, Revathi D, Sheelu G, Yamuna Rani K, Sridhar S, Mehtab V, Sumana C (2018) Recent advances on sources and industrial applications of lipases. Biotechnol Prog 34:5–28CrossRefPubMedGoogle Scholar
  122. Sato R, Tokuyama H (2016) Fabrication of enzyme-entrapped composite and macroporous gel beads by suspension gelation combined with sedimentation polymerization. Biochem Eng J 113:152–157.  https://doi.org/10.1016/j.bej.2016.06.013 CrossRefGoogle Scholar
  123. Schreck SD, Grunden AM (2014) Biotechnological applications of halophilic lipases and thioesterases. Appl Microbiol Biotechnol 98:1011–1021CrossRefPubMedGoogle Scholar
  124. Secundo F, Miehé-Brendlé J, Chelaru C, Ferrandi EE, Dumitriu E (2008) Adsorption and activities of lipases on synthetic beidellite clays with variable composition. Microporous Mesoporous Mater 109:350–361.  https://doi.org/10.1016/j.micromeso.2007.05.032 CrossRefGoogle Scholar
  125. Sharifi M, Robatjazi S, Sadri M, Mosaabadi M, Robatjazi S, Sadri M, Mosaabadi M (2018) Immobilization of organophosphorus hydrolase enzyme by covalente attachment on modified cellulose microfibers using different chemical activation strategies: characterization and stability studies. doi:  https://doi.org/10.1016/j.cjche.2018.03.023
  126. Sheldon RA (2007) Enzyme immobilization: the quest for optimum performance. Adv Synth Catal 349:1289–1307CrossRefGoogle Scholar
  127. Sheldon RA, Schoevaart R, Van Langen LM (2005) Cross-linked enzyme aggregates (CLEAs): a novel and versatile method for enzyme immobilization (a review). Biocatal. BiotransformationGoogle Scholar
  128. Shen F, Yuan H, Pang Y, Chen S, Zhu B, Zou D, Liu Y, Ma J, Yu L, Li X (2013) Performances of anaerobic co-digestion of fruit & vegetable waste (FVW) and food waste (FW): single-phase vs. two-phase. Bioresour Technol.  https://doi.org/10.1016/j.biortech.2013.06.099
  129. Shuai W, Das RK, Naghdi M, Brar SK, Verma M (2017) A review on the important aspects of lipase immobilization on nanomaterials. Biotechnol Appl Biochem 64:496–508CrossRefPubMedGoogle Scholar
  130. Silva NCA, Miranda JS, Bolina ICA, Silva WC, Hirata DB, de Castro HF, Mendes AA (2014) Immobilization of porcine pancreatic lipase on poly-hydroxybutyrate particles for the production of ethyl esters from macaw palm oils and pineapple flavor. Biochem Eng J 82:1139–1149.  https://doi.org/10.1016/j.bej.2013.11.015 CrossRefGoogle Scholar
  131. Staff BR (2018) Global Markets for Enzymes in industrial applicationsGoogle Scholar
  132. Šulcienė M, Kolvenbach B, Ammann E, Matijošytė I (2018) Towards an affordable enzymatic production of biopolyols—comparing the immobilization of lipases by two optimized techniques. Int J Biol Macromol 116:1049–1055.  https://doi.org/10.1016/j.ijbiomac.2018.05.046 CrossRefPubMedGoogle Scholar
  133. Suo H, Xu L, Xu C, Chen H, Yu D, Gao Z, Huang H, Hu Y (2018) Enhancement of catalytic performance of porcine pancreatic lipase immobilized on functional ionic liquid modified Fe3O4-chitosan nanocomposites. Int J Biol Macromol 119:624–632.  https://doi.org/10.1016/j.ijbiomac.2018.07.187 CrossRefPubMedGoogle Scholar
  134. Tavares F, Petry J, Sackser PR, Borba CE, Silva EA (2018) Use of castor bean seeds as lipase source for hydrolysis of crambe oil. Ind Crop Prod 124:254–264.  https://doi.org/10.1016/j.indcrop.2018.06.073 CrossRefGoogle Scholar
  135. Thakur S (2012) Lipases, Its sources, Properties and Applications: A Review. Int J Sci Eng ResGoogle Scholar
  136. Vargas M, Niehus X, Casas-Godoy L, Sandoval G (2018) Lipases as biocatalyst for biodiesel production. In: Methods in Molecular BiologyGoogle Scholar
  137. Velasco-Lozano S, López-Gallego F, Rocha-Martin J, Guisán JM, Favela-Torres E (2016) Improving enantioselectivity of lipase from Candida rugosa by carrier-bound and carrier-free immobilization. J Mol Catal B Enzym 130:32–39.  https://doi.org/10.1016/j.molcatb.2016.04.006 CrossRefGoogle Scholar
  138. Voběrková S, Solčány V, Vršanská M, Adam V (2018) Immobilization of ligninolytic enzymes from white-rot fungi in cross-linked aggregates. Chemosphere 202:694–707CrossRefPubMedGoogle Scholar
  139. Wan X, Xiang X, Tang S, Yu D, Huang H, Hu Y (2017) Immobilization of Candida antarctic lipase B on MWNTs modified by ionic liquids with different functional groups. Colloids Surf B: Biointerfaces 160:416–422.  https://doi.org/10.1016/j.colsurfb.2017.09.037 CrossRefPubMedGoogle Scholar
  140. Wang J, Ji F, Xing J, Cui S, Bao Y, Hao W (2014) Lipase immobilization onto the surface of PGMA-b-PDMAEMA-grafted magnetic nanoparticles prepared via atom transfer radical polymerization. Chin J Chem Eng 22:1333–1339.  https://doi.org/10.1016/j.cjche.2014.09.029 CrossRefGoogle Scholar
  141. Wang J, Zhao G, Jing L, Peng X, Li Y (2015a) Facile self-assembly of magnetite nanoparticles on three-dimensional graphene oxide-chitosan composite for lipase immobilization. Biochem Eng J 98:75–83.  https://doi.org/10.1016/j.bej.2014.11.013 CrossRefGoogle Scholar
  142. Wang W, Zhou W, Li J, Hao D, Su Z, Ma G (2015b) Comparison of covalent and physical immobilization of lipase in gigaporous polymeric microspheres. Bioprocess Biosyst Eng 38:2107–2115.  https://doi.org/10.1007/s00449-015-1450-3 CrossRefPubMedGoogle Scholar
  143. Wang XY, Jiang XP, Li Y, Zeng S, Zhang YW (2015c) Preparation Fe3O4@chitosan magnetic particles for covalent immobilization of lipase from Thermomyces lanuginosus. Int J Biol Macromol 75:44–50.  https://doi.org/10.1016/j.ijbiomac.2015.01.020 CrossRefPubMedGoogle Scholar
  144. Wang S, Zheng D, Yin L, Wang F (2017) Preparation, activity and structure of cross-linked enzyme aggregates (CLEAs) with nanoparticle. Enzym Microb Technol 107:22–31.  https://doi.org/10.1016/j.enzmictec.2017.07.008 CrossRefGoogle Scholar
  145. White J, White D (1997) Source book of enzymesGoogle Scholar
  146. Wilkerson JW, Yang S-O, Funk PJ, Stanley SK, Bundy BC (2018) Nanoreactors: strategies to encapsulate enzyme biocatalysts in virus-like particles. New Biotechnol 44:59–63.  https://doi.org/10.1016/j.nbt.2018.04.003 CrossRefGoogle Scholar
  147. Xie W, Huang M (2018) Immobilization of Candida rugosa lipase onto graphene oxide Fe3O4nanocomposite: characterization and application for biodiesel production. Energy Convers Manag 159:42–53.  https://doi.org/10.1016/j.enconman.2018.01.021 CrossRefGoogle Scholar
  148. Yang J, Hu Y, Jiang L, Zou B, Jia R, Huang H (2013) Enhancing the catalytic properties of porcine pancreatic lipase by immobilization on SBA-15 modified by functionalized ionic liquid. Biochem Eng J 70:46–54.  https://doi.org/10.1016/j.bej.2012.09.016 CrossRefGoogle Scholar
  149. Yang J, Hu X, Xu J, Liu X, Yang L (2018) Article a single-step in-situ acetylcholinesterase-mediated alginate hydrogelation for enzyme encapsulation in CE. doi:  https://doi.org/10.1021/acs.analchem.7b05353
  150. Ycel S, Terziolu P, Zime D (2012) Lipase applications in biodiesel production. In: biodiesel—feedstocks, production and applications. P 42Google Scholar
  151. Zare A, Bordbar AK, Jafarian F, Tangestaninejad S (2018) Candida rugosa lipase immobilization on various chemically modified chromium terephthalate MIL-101. J Mol Liq 254:137–144.  https://doi.org/10.1016/j.molliq.2018.01.097 CrossRefGoogle Scholar
  152. Zhang C, Kim SK (2010) Research and application of marine microbial enzymes: status and prospects. Mar Drugs 8:1920–1934CrossRefPubMedPubMedCentralGoogle Scholar
  153. Zhang G, Ma J, Wang J, Li Y, Zhang G, Zhang F, Fan X (2014a) Lipase immobilized on graphene oxide as reusable biocatalyst. In: Industrial and Engineering Chemistry ResearchGoogle Scholar
  154. Zhang W, Tang Y, Liu J, Ma Y, Jiang L, Huang W, Huo FW, Tian D (2014b) An electrochemical sensor for detecting triglyceride based on biomimetic polydopamine and gold nanocomposite. J Mater Chem B 2:8490–8495.  https://doi.org/10.1039/c4tb01439a CrossRefGoogle Scholar
  155. Zhang WW, Yang XL, Jia JQ, Wang N, Hu CL, Yu XQ (2015) Surfactant-activated magnetic cross-linked enzyme aggregates (magnetic CLEAs) of Thermomyces lanuginosus lipase for biodiesel production. J Mol Catal B Enzym 115:83–89.  https://doi.org/10.1016/j.molcatb.2015.02.003 CrossRefGoogle Scholar
  156. Zhao K, Cao X, Di Q, Wang M, Cao H, Deng L, Liu J, Wang F, Tan T (2017) Synthesis, characterization and optimization of a two-step immobilized lipase. Renew Energy 103:383–387.  https://doi.org/10.1016/j.renene.2016.11.035 CrossRefGoogle Scholar
  157. Zheng D, Wang S, Qiu S, Lin J, Diao X (2018) Synthesis of butyl oleate catalyzed by cross-linked enzyme aggregates with magnetic nanoparticles in rotating magneto-micro-reactor. J Biotechnol 281:123–129.  https://doi.org/10.1016/j.jbiotec.2018.07.011 CrossRefPubMedGoogle Scholar
  158. Zhu YT, Ren XY, Liu YM, Wei Y, Sen QL, Liao X (2014) Covalent immobilization of porcine pancreatic lipase on carboxyl-activated magnetic nanoparticles: characterization and application for enzymatic inhibition assays. Mater Sci Eng C 38:278–285.  https://doi.org/10.1016/j.msec.2014.02.011 CrossRefGoogle Scholar
  159. Zou B, Hu Y, Jiang L, Jia R, Huang H (2013) Mesoporous material SBA-15 modified by amino acid ionic liquid to immobilize lipase via ionic bonding and cross-linking method. Ind Eng Chem Res 52:2844–2851.  https://doi.org/10.1021/ie303363p CrossRefGoogle Scholar
  160. Zou B, Song C, Xu X, Xia J, Huo S, Cui F (2014) Enhancing stabilities of lipase by enzyme aggregate coating immobilized onto ionic liquid modified mesoporous materials. Appl Surf Sci 311:62–67.  https://doi.org/10.1016/j.apsusc.2014.04.210 CrossRefGoogle Scholar
  161. Zubiolo C, Santos RCA, Carvalho NB, Soares CMF, Lima AS, De Aquino Santana LCL (2014) Encapsulation in a sol-gel matrix of lipase from Aspergillus niger obtained by bioconversion of a novel agricultural residue. Bioprocess Biosyst Eng.  https://doi.org/10.1007/s00449-014-1151-3

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Danielle Gonçalves Filho
    • 1
  • Amanda Gonçalves Silva
    • 1
  • Carla Zanella Guidini
    • 1
    Email author
  1. 1.Campus de Patos de Minas, Faculdade de Engenharia QuímicaUniversidade Federal de UberlândiaPatos de MinasBrazil

Personalised recommendations