Advertisement

Applied Microbiology and Biotechnology

, Volume 103, Issue 17, pp 6949–6972 | Cite as

Cell surface display of proteins on filamentous fungi

  • Jesús Urbar-Ulloa
  • Paul Montaño-Silva
  • Ana Sofía Ramírez-Pelayo
  • Elisa Fernández-Castillo
  • Lorena Amaya-Delgado
  • Benjamín Rodríguez-Garay
  • Jorge VerdínEmail author
Mini-Review
  • 104 Downloads

Abstract

Protein display approaches have been useful to endow the cell surface of yeasts with new catalytic activities so that they can act as enhanced whole-cell biocatalysts. Despite their biotechnological potential, protein display technologies remain poorly developed for filamentous fungi. The lignocellulolytic character of some of them coupled to the cell surface biosynthesis of valuable molecules by a single or a cascade of several displayed enzymes is an appealing prospect. Cell surface protein display consists in the co-translational fusion of a functional protein (passenger) to an anchor one, usually a cell-wall–resident protein. The abundance, spacing, and local environment of the displayed enzymes—determined by the relationship of the anchor protein with the structure and dynamics of the engineered cell wall—are factors that influence the performance of display-based biocatalysts. The development of protein display strategies in filamentous fungi could be based on the field advances in yeasts; however, the unique composition, structure, and biology of filamentous fungi cell walls require the customization of the approach to those microorganisms. In this prospective review, the cellular bases, the design principles, and the available tools to foster the development of cell surface protein display technologies in filamentous fungi are discussed.

Keywords

Protein display Cell surface engineering Cell wall Filamentous fungi PIR proteins GPI-CWP 

Notes

Funding information

This work was supported by SENER-CONACYT Mexico, grant 245750.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Abe H, Shimma YI, Jigami Y (2003) In vitro oligosaccharide synthesis using intact yeast cells that display glycosyltransferases at the cell surface through cell wall-anchored protein Pir. Glycobiology 13:87–95.  https://doi.org/10.1093/glycob/cwg014 Google Scholar
  2. Abe H, Ohba M, Shimma Y (2004) Yeast cells harboring human α-1, 3-fucosyltransferase at the cell surface engineered using Pir, a cell wall-anchored protein. FEMS Yeast Res 4:417–425.  https://doi.org/10.1016/S1567-1356(03)00193-4 Google Scholar
  3. Abramyan J, Stajich JE (2012) Species-specific chitin-binding module 18 expansion in the amphibian pathogen Batrachochytrium dendrobatidis. MBio 3:e00150–e00112.  https://doi.org/10.1128/mBio.00150-12 Google Scholar
  4. Adachi T, Ito J, Kawata K, Kaya M, Ishida H, Sahara H, Hata Y, Ogino C, Fukuda H, Kondo A (2008) Construction of an Aspergillus oryzae cell-surface display system using a putative GPI-anchored protein. Appl Microbiol Biotechnol 81:711–719.  https://doi.org/10.1007/s00253-008-1687-8 Google Scholar
  5. Akagi KI, Watanabe J, Hara M, Kezuka Y, Chikaishi E, Yamaguchi T, Akutsu H, Nonaka T, Watanabe T, Ikegami T (2006) Identification of the substrate interaction region of the chitin-binding domain of Streptomyces griseus chitinase C. J Biochem 139:483–493.  https://doi.org/10.1093/jb/mvj062 Google Scholar
  6. An J, Zhang L, Li L, Liu D, Cheng H, Wang H, Nawaz MZ, Cheng H, Deng Z (2016) An alternative approach to synthesizing galactooligosaccharides by cell-surface display of β-galactosidase on Yarrowia lipolytica. J Agric Food Chem 64:3819–3827.  https://doi.org/10.1021/acs.jafc.5b06138 Google Scholar
  7. Ananphongmanee V, Srisala J, Sritunyalucksana K, Boonchird C (2015) Yeast surface display of two proteins previously shown to be protective against white spot syndrome virus (WSSV) in shrimp. PLoS One 10:e0128764.  https://doi.org/10.1371/journal.pone.0128764 Google Scholar
  8. Andrés I, Gallardo O, Parascandola P, Javier Pastor FI, Zueco J (2005) Use of the cell wall protein Pir4 as a fusion partner for the expression of Bacillus sp. BP-7 xylanase A in Saccharomyces cerevisiae. Biotechnol Bioeng 89:690–697.  https://doi.org/10.1002/bit.20375 Google Scholar
  9. Andreu C, Del Olmo M (2013) Yeast arming by the Aga2p system: effect of growth conditions in galactose on the efficiency of the display and influence of expressing leucine-containing peptides. Appl Microbiol Biotechnol 97:9055–9069.  https://doi.org/10.1007/s00253-013-5086-4 Google Scholar
  10. Andreu C, Del Olmo ML (2017) Development of a new yeast surface display system based on Spi1 as an anchor protein. Appl Microbiol Biotechnol 101:287–299.  https://doi.org/10.1007/s00253-016-7905-x Google Scholar
  11. Antecka A, Bizukojc M, Ledakowicz S (2016a) Modern morphological engineering techniques for improving productivity of filamentous fungi in submerged cultures. World J Microbiol Biotechnol 32:193.  https://doi.org/10.1007/s11274-016-2148-7 Google Scholar
  12. Antecka A, Blatkiewicz M, Bizukojc M, Ledakowicz S (2016b) Morphology engineering of basidiomycetes for improved laccase biosynthesis. Biotechnol Lett 38:667–672.  https://doi.org/10.1007/s10529-015-2019-6 Google Scholar
  13. Ao J, Aldabbous M, Notaro MJ, Lojacono M, Free SJ (2016) A proteomic and genetic analysis of the Neurospora crassa conidia cell wall proteins identifies two glycosyl hydrolases involved in cell wall remodeling. Fungal Genet Biol 94:47–53.  https://doi.org/10.1016/j.fgb.2016.07.003 Google Scholar
  14. Arazoe T, Miyoshi K, Yamato T, Ogawa T, Ohsato S, Arie T, Kuwata S (2015) Tailor-made CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus. Biotechnol Bioeng 112:2543–2549.  https://doi.org/10.1002/bit.25662 Google Scholar
  15. Armenante A, Longobardi S, Rea I, De Stefano L, Giocondo M, Silipo A, Molinaro A, Giardina P (2010) The Pleurotus ostreatus hydrophobin Vmh2 and its interaction with glucans. Glycobiology 20:594–602.  https://doi.org/10.1093/glycob/cwq009 Google Scholar
  16. Aronson JM, Preston RD (1960) The microfibrillar structure of the cell walls of the filamentous fungus, Allomyces. J Biophys Biochem Cytol 8:247–256.  https://doi.org/10.1083/jcb.8.1.247 Google Scholar
  17. Arroyo J, Farkaš V, Sanz AB, Cabib E (2016) Strengthening the fungal cell wall through chitin-glucan cross-links: effects on morphogenesis and cell integrity. Cell Microbiol 18:1239–1250.  https://doi.org/10.1111/cmi.12615 Google Scholar
  18. Backhaus K, Heilmann CJ, Sorgo AG, Purschke G, de Koster CG, Klis FM, Heinisch JJ (2010) A systematic study of the cell wall composition of Kluyveromyces lactis. Yeast 27:647–660.  https://doi.org/10.1002/yea.1781 Google Scholar
  19. Bacon JS, Davidson ED, Jones D, Taylor IF (1966) The location of chitin in the yeast cell wall. Biochem J 101:36C–38C.  https://doi.org/10.1042/bj1010036C Google Scholar
  20. Bacon J, Jones D, Farmer VC, Webley DM (1968) The occurrence of α (1–3) glucan in Cryptococcus, Schizosaccharomyces and Polyporus species, and its hydrolysis by a Streptomyces culture filtrate lysing cell walls. Biochim Biophys 158:313–315.  https://doi.org/10.1016/0304-4165(68)90153-0 Google Scholar
  21. Bae J, Kuroda K, Ueda M (2015) Proximity effect among cellulose-degrading enzymes displayed on the Saccharomyces cerevisiae cell surface. Appl Environ Microbiol 81:59–66.  https://doi.org/10.1128/AEM.02864-14 Google Scholar
  22. Baek SH, Kim S, Lee K, Lee JK, Hahn JS (2012) Cellulosic ethanol production by combination of cellulase-displaying yeast cells. Enzym Microb Technol 51:366–372.  https://doi.org/10.1016/j.enzmictec.2012.08.005 Google Scholar
  23. Bai Y, Eijsink VGH, Kielak AM, van Veen JA, de Boer W (2016) Genomic comparison of chitinolytic enzyme systems from terrestrial and aquatic bacteria. Environ Microbiol 18:38–49.  https://doi.org/10.1111/1462-2920.12545 Google Scholar
  24. Baker LG, Specht CA, Donlin MJ, Lodge JK (2007) Chitosan, the deacetylated form of chitin, is necessary for cell wall integrity in Cryptococcus neoformans. Eukaryot Cell 6:855–867.  https://doi.org/10.1128/EC.00399-06 Google Scholar
  25. Barral P, Suárez C, Batanero E, Alfonso C, de Dios AJ, Rodríguez-García MI, Villalba M, Rivas G, Rodríguez R (2005) An olive pollen protein with allergenic activity, Ole e 10, defines a novel family of carbohydrate-binding modules and is potentially implicated in pollen germination. Biochem J 390:77–84.  https://doi.org/10.1042/BJ20050456 Google Scholar
  26. Bartnicki-Garcia S (2016) The evolution of fungal morphogenesis, a personal account. Mycologia 108:475–484.  https://doi.org/10.3852/15-272 Google Scholar
  27. Bartnicki-Garcia S, Lippman E (1969) Fungal morphogenesis: cell wall construction in Mucor rouxii. Science 165:302–304.  https://doi.org/10.1126/science.165.3890.302 Google Scholar
  28. Bleve G, Lezzi C, Spagnolo S, Rampino P, Perrotta C, Mita G, Grieco F (2014) Construction of a laccase chimerical gene: recombinant protein characterization and gene expression via yeast surface display. Appl Biochem Biotechnol 172:2916–2931.  https://doi.org/10.1007/s12010-014-0734-4 Google Scholar
  29. Boraston AB, Warren RA, Kilburn DG (2001) Beta-1,3-glucan binding by a thermostable carbohydrate-binding module from Thermotoga maritima. Biochemistry 40:14679–14685.  https://doi.org/10.1021/bi015760g Google Scholar
  30. Boraston AB, Bolam DN, Gilbert HJ, Davies GJ (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382:769–781.  https://doi.org/10.1042/BJ20040892 Google Scholar
  31. Bowman SM, Free SJ (2006) The structure and synthesis of the fungal cell wall. Bioessays 28:799–808.  https://doi.org/10.1002/bies.20441 Google Scholar
  32. Bowman SM, Piwowar A, Dabbous Al M, Vierula J, Free SJ (2006) Mutational analysis of the glycosylphosphatidylinositol (GPI) anchor pathway demonstrates that GPI-anchored proteins are required for cell wall biogenesis and normal hyphal growth in Neurospora crassa. Eukaryot Cell 5:587–600.  https://doi.org/10.1128/EC.5.3.587-600.2006 Google Scholar
  33. Breinig F, Schmitt MJ (2002) Spacer-elongated cell wall fusion proteins improve cell surface expression in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 58:637–644.  https://doi.org/10.1007/s00253-002-0939-2 Google Scholar
  34. Brul S, King A, Van der Vaart JM, Chapman J, Klis F, Verrips CT (1997) The incorporation of mannoproteins in the cell wall of S. cerevisiae and filamentous Ascomycetes. Antonie Van Leeuwenhoek 72:229–237.  https://doi.org/10.1023/A:1000429208049 Google Scholar
  35. Bugeja HE, Boyce KJ, Weerasinghe H, Beard S, Jeziorowski A, Pasricha S, Payne M, Schreider L, Andrianopoulos A (2012) Tools for high efficiency genetic manipulation of the human pathogen Penicillium marneffei. Fungal Genet Biol 49:772–778.  https://doi.org/10.1016/j.fgb.2012.08.003 Google Scholar
  36. Bull AT (1970) Chemical composition of wild-type and mutant Aspergillus nidulans cell walls. The nature of polysaccharide and melanin constituents. J Gen Microbiol 63:75–94.  https://doi.org/10.1099/00221287-63-1-75 Google Scholar
  37. Cabib E, Blanco N, Grau C, Rodríguez-Peña JM, Arroyo J (2007) Crh1p and Crh2p are required for the cross-linking of chitin to beta(1-6)glucan in the Saccharomyces cerevisiae cell wall. Mol Microbiol 63:921–935.  https://doi.org/10.1111/j.1365-2958.2006.05565.x Google Scholar
  38. Cairns TC, Zheng X, Zheng P, Sun J, Meyer V (2019) Moulding the mould: understanding and reprogramming filamentous fungal growth and morphogenesis for next generation cell factories. Biotechnol Biofuels 12:77.  https://doi.org/10.1186/s13068-019-1400-4 Google Scholar
  39. Caminero A, Calvo E, Valentín E, Ruiz-Herrera J, López JA, Sentandreu R (2014) Identification of Candida albicans wall mannoproteins covalently linked by disulphide and/or alkali-sensitive bridges. Yeast 31:137–144.  https://doi.org/10.1002/yea.3003 Google Scholar
  40. Caro LHP, Tettelin H, Vossen JH, Ram AFJ, Van Den Ende H, Klis FM (1997) In silicio identification of glycosyl-phosphatidylinositol-anchored plasma-membrane and cell wall proteins of Saccharomyces cerevisiae. Yeast 13:1477–1489.  https://doi.org/10.1002/(SICI)1097-0061(199712)13:15<1477::AID-YEA184>3.0.CO;2-L Google Scholar
  41. Castillo L, Martínez AI, Garcerá A, Elorza MV, Valentín E, Sentandreu R (2003) Functional analysis of the cysteine residues and the repetitive sequence of Saccharomyces cerevisiae Pir4/Cis3: the repetitive sequence is needed for binding to the cell wall beta-1,3-glucan. Yeast 20:973–983.  https://doi.org/10.1002/yea.1016 Google Scholar
  42. Champer J, Ito JI, Clemons KV, Stevens DA, Kalkum M (2016) Proteomic analysis of pathogenic fungi reveals highly expressed conserved cell wall proteins. J Fungi 2:6.  https://doi.org/10.3390/jof2010006 Google Scholar
  43. Chen L, Mulchandani A, Ge X (2017) Spore-displayed enzyme cascade with tunable stoichiometry. Biotechnol Prog 33:383–389.  https://doi.org/10.1002/btpr.2416
  44. Chen X, Xiao Y, Shen W, Govender A, Zhang L, Fan Y, Wang Z (2016) Display of phytase on the cell surface of Saccharomyces cerevisiae to degrade phytate phosphorus and improve bioethanol production. Appl Microbiol Biotechnol 100:2449–2458.  https://doi.org/10.1007/s00253-015-7170-4 Google Scholar
  45. Chen X, Zhou J, Ding Q, Luo Q, Liu L (2019) Morphology engineering of Aspergillus oryzae for L-malate production. Biotechnol Bioeng:1–12.  https://doi.org/10.1002/bit.27089
  46. Cheon SA, Jung J, Choo JH, Oh D-B, Kang HA (2014) Characterization of putative glycosylphosphatidylinositol-anchoring motifs for surface display in the methylotrophic yeast Hansenula polymorpha. Biotechnol Lett 36:2085–2094.  https://doi.org/10.1007/s10529-014-1582-6 Google Scholar
  47. Christodoulidou A, Bouriotis V, Thireos G (1996) Two sporulation-specific chitin deacetylase-encoding genes are required for the ascospore wall rigidity of Saccharomyces cerevisiae. J Biol Chem 271:31420–31425.  https://doi.org/10.1074/jbc.271.49.31420 Google Scholar
  48. Coban HB, Demirci A, Turhan I (2015) Microparticle-enhanced Aspergillus ficuum phytase production and evaluation of fungal morphology in submerged fermentation. Bioprocess Biosyst Eng 38:1075–1080.  https://doi.org/10.1007/s00449-014-1349-4 Google Scholar
  49. Corvis Y, Walcarius A, Rink R, Mrabet NT, Rogalska E (2005) Preparing catalytic surfaces for sensing applications by immobilizing enzymes via hydrophobin layers. Anal Chem 77:1622–1630.  https://doi.org/10.1021/ac048897w Google Scholar
  50. Cox PW, Paul GC, Thomas CR (1998) Image analysis of the morphology of filamentous micro-organisms. Microbiology 144:817–827.  https://doi.org/10.1099/00221287-144-4-817 Google Scholar
  51. Da Silva Ferreira ME, Kress MRVZ, Savoldi M, Goldman MHS, Härtl A, Heinekamp T, Brakhage AA, Goldman GH (2006) The akuBKU80 mutant deficient for nonhomologous end joining is a powerful tool for analyzing pathogenic in Aspergillus fumigatus. Eukaryot Cell 5:207–211.  https://doi.org/10.1128/EC.5.1.207-211.2006
  52. Damveld RA, Arentshorst M, vanKuyk PA, Klis FM, van den Hondel CAMJJ, Ram AFJ (2005) Characterisation of CwpA, a putative glycosylphosphatidylinositol-anchored cell wall mannoprotein in the filamentous fungus Aspergillus niger. Fungal Genet Biol 42:873–885.  https://doi.org/10.1016/j.fgb.2005.06.006 Google Scholar
  53. Davis LL, Bartnicki-Garcia S (1984) The co-ordination of chitosan and chitin synthesis in Mucor rouxii. J Gen Microbiol 130:2095–2102.  https://doi.org/10.1099/00221287-130-8-2095 Google Scholar
  54. De Groot PWJ, Hellingwerf KJ, Klis FM (2003) Genome-wide identification of fungal GPI proteins. Yeast 20:781–796.  https://doi.org/10.1002/yea.1007 Google Scholar
  55. De Groot PWJ, Yin QY, Weig M, Sosinska GJ, Klis FM, de Koster CG (2007) Mass spectrometric identification of covalently bound cell wall proteins from the fission yeast Schizosaccharomyces pombe. Yeast 24:267–278.  https://doi.org/10.1002/yea.1443 Google Scholar
  56. De Groot PWJ, Brandt BW, Horiuchi H, Ram AFJ, de Koster CG, Klis FM (2009) Comprehensive genomic analysis of cell wall genes in Aspergillus nidulans. Fungal Genet Biol 46(Suppl 1):S72–S81.  https://doi.org/10.1016/j.fgb.2008.07.022 Google Scholar
  57. Donat S, Hasenberg M, Schäfer T, Ohlsen K, Gunzer M, Einsele H, Löffler J, Beilhack A, Krappmann S (2012) Surface display of Gaussia princeps luciferase allows sensitive fungal pathogen detection during cutaneous aspergillosis. Virulence 3:51–61.  https://doi.org/10.4161/viru.3.1.18799 Google Scholar
  58. Duquesne S, Bozonnet S, Bordes F, Dumon C, Nicaud JM, Marty A (2014) Construction of a highly active xylanase displaying oleaginous yeast: comparison of anchoring systems. PLoS One 9:e95128.  https://doi.org/10.1371/journal.pone.0095128 Google Scholar
  59. Ecker M, Deutzmann R, Lehle L, Mrsa V, Tanner W (2006) Pir proteins of Saccharomyces cerevisiae are attached to beta-1,3-glucan by a new protein-carbohydrate linkage. J Biol Chem 281:11523–11529.  https://doi.org/10.1074/jbc.M600314200 Google Scholar
  60. Eisenhaber B, Schneider G, Wildpaner M, Eisenhaber F (2004) A sensitive predictor for potential GPI lipid modification sites in fungal protein sequences and its application to genome-wide studies for Aspergillus nidulans, Candida albicans, Neurospora crassa, Saccharomyces cerevisiae and Schizosaccharomyces pombe. J Mol Biol 337:243–253.  https://doi.org/10.1016/j.jmb.2004.01.025 Google Scholar
  61. Ene IV, Adya AK, Wehmeier S, Brand AC, MacCallum DM, Gow NAR, Brown AJP (2012a) Host carbon sources modulate cell wall architecture, drug resistance and virulence in a fungal pathogen. Cell Microbiol 14:1319–1335.  https://doi.org/10.1111/j.1462-5822.2012.01813.x Google Scholar
  62. Ene IV, Heilmann CJ, Sorgo AG, Walker LA, de Koster CG, Munro CA, Klis FM, Brown AJP (2012b) Carbon source-induced reprogramming of the cell wall proteome and secretome modulates the adherence and drug resistance of the fungal pathogen Candida albicans. Proteomics 12:3164–3179.  https://doi.org/10.1002/pmic.201200228 Google Scholar
  63. Etschmann MMW, Huth I, Walisko R, Schuster J, Krull R, Holtmann D, Wittmann SJ (2015) Improving 2-phenylethanol and 6-pentyl-α-pyrone production with fungi by microparticle-enhanced cultivation (MPEC). Yeast 32:145–157.  https://doi.org/10.1002/yea.3022 Google Scholar
  64. Fajardo-Somera RA, Jöhnk B, Bayram Ö, Valerius O, Braus GH, Riquelme M (2015) Dissecting the function of the different chitin synthases in vegetative growth and sexual development in Neurospora crassa. Fungal Genet Biol 75:30–45.  https://doi.org/10.1016/j.fgb.2015.01.002 Google Scholar
  65. Fokina O, Fenchel A, Winandy L, Fischer R (2016) Immobilization of LccC laccase from Aspergillus nidulans on hard surfaces via fungal hydrophobins. Appl Environ Microbiol 82:6395–6402.  https://doi.org/10.1128/AEM.01413-16 Google Scholar
  66. Fontaine T, Simenel C, Dubreucq G, Adam O, Delepierre M, Lemoine J, Vorgias CE, Diaquin M, Latge JP (2000) Molecular organization of the alkali-insoluble fraction of Aspergillus fumigatus cell wall. J Biol Chem 275:27594–27607.  https://doi.org/10.1074/jbc.M909975199 Google Scholar
  67. Forment JV, Ramón D, MacCabe AP (2006) Consecutive gene deletions in Aspergillus nidulans: application of the Cre/loxP system. Curr Genet 50:217–224.  https://doi.org/10.1007/s00294-006-0081-2 Google Scholar
  68. Forsberg Z, Nelson CE, Dalhus B, Mekasha S, Loose JSM, Crouch LI, Røhr ÅK, Gardner JG, Eijsink VGH, Vaaje-Kolstad G (2016) Structural and functional analysis of a lytic polysaccharide monooxygenase important for efficient utilization of chitin in Cellvibrio japonicus. J Biol Chem 291:7300–7312.  https://doi.org/10.1074/jbc.M115.700161 Google Scholar
  69. Free SJ (2013) Fungal cell wall organization and biosynthesis. Adv Genet 81:33–82.  https://doi.org/10.1016/B978-0-12-407677-8.00002-6 Google Scholar
  70. Frieman MB, Cormack BP (2003) The ω-site sequence of glycosylphosphatidylinositol-anchored proteins in Saccharomyces cerevisiae can determine distribution between the membrane and the cell wall. Mol Microbiol 50:883–896.  https://doi.org/10.1046/j.1365-2958.2003.03722.x Google Scholar
  71. Frieman MB, Cormack BP (2004) Multiple sequence signals determine the distribution of glycosylphosphatidylinositol proteins between the plasma membrane and cell wall in Saccharomyces cerevisiae. Microbiology 150:3105–3114.  https://doi.org/10.1099/mic.0.27420-0 Google Scholar
  72. Fujita Y, Takahashi S, Ueda M, Tanaka A (2002) Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl Environ Microbiol 68:5136–5141.  https://doi.org/10.1128/AEM.68.10.5136-5141.2002 Google Scholar
  73. Fujita Y, Ito J, Ueda M, Fukuda H (2004) Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic. Appl Environ Microbiol 70:1207–1212.  https://doi.org/10.1128/AEM.70.2.1207-1212.2004 Google Scholar
  74. Fukamizo T, Ohkawa T, Sonoda K, Toyoda H, Nishiguchi T, Ouchi S, Goto S (1992) Chitinous components of the cell wall of Fusarium oxysporum. Biosci Biotechnol Biochem 56:1632–1636.  https://doi.org/10.1271/bbb.56.1632 Google Scholar
  75. Gandía M, Xu S, Font C, Marcos JF (2016) Disruption of ku70 involved in non-homologous end-joining facilitates homologous recombination but increases temperature sensitivity in the phytopathogenic fungus Penicillium digitatum. Fungal Biol 120:317–323.  https://doi.org/10.1016/j.funbio.2015.11.001 Google Scholar
  76. Gandier JA, Langelaan DN, Won A, O’Donnell K, Grondin JL, Spencer HL, Wong P, Tillier E, Yip C, Smith SP, Master ER (2017) Characterization of a Basidiomycota hydrophobin reveals the structural basis for a high-similarity class I subdivision. Sci Rep 7:45863.  https://doi.org/10.1038/srep45863 Google Scholar
  77. Gao D, Zeng J, Yu X, Dong T, Chen S (2014) Improved lipid accumulation by morphology engineering of oleaginous fungus Mortierella isabellina. Biotechnol Bioeng 111:1758–1766.  https://doi.org/10.1002/bit.25242 Google Scholar
  78. Geoghegan IA, Gurr SJ (2017) Investigating chitin deacetylation and chitosan hydrolysis during vegetative growth in Magnaporthe oryzae. Cell Microbiol 19:e12743.  https://doi.org/10.1111/cmi.12743 Google Scholar
  79. Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, Riley R, Salamov A, Zhao X, Korzeniewski F, Smirnova T, Nordberg H, Dubchak I, Shabalov I (2014) MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res 42:D699–D704.  https://doi.org/10.1093/nar/gkt1183 Google Scholar
  80. Grün CH, Hochstenbach F, Humbel BM, Verkleij AJ, Sietsma JH, Klis FM, Kamerling JP, Vliegenthart JFG (2005) The structure of cell wall alpha-glucan from fission yeast. Glycobiology 15:245–257.  https://doi.org/10.1093/glycob/cwi002 Google Scholar
  81. Guillén D, Sánchez S, Rodríguez-Sanoja R (2010) Carbohydrate-binding domains: multiplicity of biological roles. Appl Microbiol Biotechnol 85:1241–1249.  https://doi.org/10.1007/s00253-009-2331-y Google Scholar
  82. Guirimand G, Sasaki K, Inokuma K, Bamba T, Hasunuma T, Kondo A (2016) Cell surface engineering of Saccharomyces cerevisiae combined with membrane separation technology for xylitol production from rice straw hydrolysate. Appl Microbiol Biotechnol 100:3477–3487.  https://doi.org/10.1007/s00253-015-7179-8 Google Scholar
  83. Hakanpää J, Paananen A, Askolin S, Nakari-Setälä T, Parkkinen T, Penttilä M, Linder MB, Rouvinen J (2004) Atomic resolution structure of the HFBII hydrophobin, a self-assembling amphiphile. J Biol Chem 279:534–539.  https://doi.org/10.1074/jbc.M309650200 Google Scholar
  84. Hamada K, Terashima H, Arisawa M, Kitada K (1998) Amino acid sequence requirement for efficient incorporation of glycosylphosphatidylinositol-associated proteins into the cell wall of Saccharomyces cerevisiae. J Biol Chem 273:26946–26953.  https://doi.org/10.1074/jbc.273.41.26946 Google Scholar
  85. Hamada K, Terashima H, Arisawa M, Yabuki N, Kitada K (1999) Amino acid residues in the omega-minus region participate in cellular localization of yeast glycosylphosphatidylinositol-attached proteins. J Bacteriol 181:3886–3889 https://jb.asm.org/content/181/13/3886. Accessed 28 March 2019Google Scholar
  86. He X, Shang J, Li F, Liu H (2014) Yeast cell surface display of linoleic acid isomerase from Propionibacterium acnesand its application for the production of trans-10, cis-12 conjugated linoleic acid. Biotechnol Appl Biochem 62:1–8.  https://doi.org/10.1002/bab.1249 Google Scholar
  87. Henry C, Fontaine T, Heddergott C, Robinet P, Aimanianda V, Beau R, Beauvais A, Mouyna I, Prevost M-C, Fekkar A, Zhao Y, Perlin D, Latgé J-P (2016) Biosynthesis of cell wall mannan in the conidium and the mycelium of Aspergillus fumigatus. Cell Microbiol 18:1881–1891.  https://doi.org/10.1111/cmi.12665 Google Scholar
  88. Hernandez-Gomez MC, Rydahl MG, Rogowski A, Morland C, Cartmell A, Crouch L, Labourel A, Fontes CMGA, Willats WGT, Gilbert HJ, Knox JP (2015) Recognition of xyloglucan by the crystalline cellulose-binding site of a family 3a carbohydrate-binding module. FEBS Lett 589:2297–2303.  https://doi.org/10.1016/j.febslet.2015.07.009 Google Scholar
  89. Hettle A, Fillo A, Abe K, Massel P, Pluvinage B, Langelaan DN, Smith SP, Boraston AB (2017) Properties of a family 56 carbohydrate-binding module and its role in the recognition and hydrolysis of β-1,3-glucan. J Biol Chem 292:16955–16968.  https://doi.org/10.1074/jbc.M117.806711 Google Scholar
  90. Honda S, Selker EU (2009) Tools for fungal proteomics: multifunctional Neurospora vectors for gene replacement, protein expression and protein purification. Genetics 182:11–23.  https://doi.org/10.1534/genetics.108.098707 Google Scholar
  91. Hou S, Li X, Feng XZ, Wang R, Wang C, Yu L, Qiao M-Q (2009) Surface modification using a novel type I hydrophobin HGFI. Anal Bioanal Chem 394:783–789.  https://doi.org/10.1007/s00216-009-2776-y Google Scholar
  92. Humbel BM, Konomi M, Takagi T, Kamasawa N, Ishijima SA, Osumi M (2015) In situ localization of beta-glucans in the cell wall of Schizosaccharomyces pombe. Yeast 18:433–444.  https://doi.org/10.1002/yea.694 Google Scholar
  93. Inokuma K, Hasunuma T, Kondo A (2014) Efficient yeast cell-surface display of exo- and endo-cellulase using the SED1 anchoring region and its original promoter. Biotechnol Biofuels 7:8.  https://doi.org/10.1186/1754-6834-7-8 Google Scholar
  94. Inokuma K, Yoshida T, Ishii J, Hasunuma T, Kondo A (2015) Efficient co-displaying and artificial ratio control of α-amylase and glucoamylase on the yeast cell surface by using combinations of different anchoring domains. Appl Microbiol Biotechnol 99:1655–1663.  https://doi.org/10.1007/s00253-014-6250-1 Google Scholar
  95. Ishibashi K, Suzuki K, Ando Y, Takakura C, Inoue H (2006) Nonhomologous chromosomal integration of foreign DNA is completely dependent on MUS-53 (human Lig4 homolog) in Neurospora. Proc Natl Acad Sci U S A 103:14871–14876.  https://doi.org/10.1073/pnas.0604477103 Google Scholar
  96. Ito J, Kosugi A, Tanaka T, Kuroda K, Shibasaki S, Ogino C, Ueda M, Fukuda H, Doi RH, Kondo A (2009) Regulation of the display ratio of enzymes on the Saccharomyces cerevisiae cell surface by the immunoglobulin G and cellulosomal enzyme binding domains. Appl Environ Microbiol 75:4149–4154.  https://doi.org/10.1128/AEM.00318-09 Google Scholar
  97. Jaafar L, Moukadiri I, Zueco J (2003) Characterization of a disulphide-bound Pir-cell wall protein (Pir-CWP) of Yarrowia lipolytica. Yeast 20:417–426.  https://doi.org/10.1002/yea.973 Google Scholar
  98. Jiang Z-B, Song H-T, Gupta N, Ma L-X, Wu Z-B (2007) Cell surface display of functionally active lipases from Yarrowia lipolytica in Pichia pastoris. Protein Expr Purif 56:35–39.  https://doi.org/10.1016/j.pep.2007.07.003 Google Scholar
  99. Kandasamy R, Vediyappan G, Chaffin WL (2000) Evidence for the presence of pir-like proteins in Candida albicans. FEMS Microbiol Lett 186:239–243.  https://doi.org/10.1111/j.1574-6968.2000.tb09111.x Google Scholar
  100. Kapteyn JC, Ram AF, Groos EM, Kollar R, Montijn RC, Van den Ende H, Llobell A, Cabib E, Klis FM (1997) Altered extent of cross-linking of beta1,6-glucosylated mannoproteins to chitin in Saccharomyces cerevisiae mutants with reduced cell wall beta1,3-glucan content. J Bacteriol 179:6279–6284.  https://doi.org/10.1128/jb.179.20.6279-6284.1997 Google Scholar
  101. Kapteyn JC, Hoyer LL, Hecht JE, Müller WH, Andel A, Verkleij AJ, Makarow M, Van den Ende H, Klis FM (2000) The cell wall architecture of Candida albicans wild-type cells and cell wall-defective mutants. Mol Microbiol 35:601–611.  https://doi.org/10.1046/j.1365-2958.2000.01729.x Google Scholar
  102. Kar B, Patel P, Ao J, Free SJ (2019) Neurospora crassa family GH72 glucanosyltransferases function to crosslink cell wall glycoprotein N-linked galactomannan to cell wall lichenin. Fungal Genet Biol 123:60–69.  https://doi.org/10.1016/j.fgb.2018.11.007 Google Scholar
  103. Karahalil E, Coban HB, Turhan I (2019) A current approach to the control of filamentous fungal growth in media: microparticle enhanced cultivation technique. Crit Rev Biotechnol 39:192–202.  https://doi.org/10.1080/07388551.2018.1531821 Google Scholar
  104. Karkowska-Kuleta J, Kozik A (2015) Cell wall proteome of pathogenic fungi. Acta Biochim Pol 62:339–351.  https://doi.org/10.18388/abp.2015_1032 Google Scholar
  105. Katahira S, Fujita Y, Mizuike A, Fukuda H, Kondo A (2004) Construction of a xylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Appl Environ Microbiol 70:5407–5414.  https://doi.org/10.1128/AEM.70.9.5407-5414.2004 Google Scholar
  106. Katayama T, Tanaka Y, Okabe T, Nakamura H, Fujii W, Kitamoto K, Maruyama JI (2016) Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae. Biotechnol Lett 38:637–642.  https://doi.org/10.1007/s10529-015-2015-x Google Scholar
  107. Kershaw MJ, Talbot NJ (1998) Hydrophobins and repellents: proteins with fundamental roles in fungal morphogenesis. Fungal Genet Biol 23:18–33.  https://doi.org/10.1006/fgbi.1997.1022 Google Scholar
  108. Khasa YP, Conrad S, Sengul M, Plautz S, Meagher MM, Inan M (2011) Isolation of Pichia pastoris PIR genes and their utilization for cell surface display and recombinant protein secretion. Yeast 28:213–226.  https://doi.org/10.1002/yea.1832 Google Scholar
  109. Kim S, Baek SH, Lee K, Hahn JS (2013) Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and β-glucosidase. Microb Cell Factories 12:14.  https://doi.org/10.1186/1475-2859-12-14 Google Scholar
  110. Kimoto H, Akamatsu M, Fujii Y, Tatsumi H, Kusaoke H, Taketo A (2010) Discoidin domain of chitosanase is required for binding to the fungal cell wall. J Mol Microbiol Biotechnol 18:14–23.  https://doi.org/10.1159/000274308 Google Scholar
  111. Klis FM, Caro LH, Vossen JH, Kapteyn JC, Ram AF, Montijn RC, Van Berkel MA, Van den Ende H (1997) Identification and characterization of a major building block in the cell wall of Saccharomyces cerevisiae. Biochem Soc Trans 25:856–860.  https://doi.org/10.1042/bst0250856 Google Scholar
  112. Klis FM, Boorsma A, De Groot PWJ (2006) Cell wall construction in Saccharomyces cerevisiae. Yeast 23:185–202.  https://doi.org/10.1002/yea.1349 Google Scholar
  113. Kollar R, Petráková E, Ashwell G, Robbins PW, Cabib E (1995) Architecture of the yeast cell wall. The linkage between chitin and beta(1-->3)-glucan. J Biol Chem 270:1170–1178.  https://doi.org/10.1074/jbc.270.3.1170 Google Scholar
  114. Kollar R, Reinhold BB, Petráková E, Yeh HJ, Ashwell G, Drgonová J, Kapteyn JC, Klis FM, Cabib E (1997) Architecture of the yeast cell wall. Beta(1-->6)-glucan interconnects mannoprotein, beta(1-->)3-glucan, and chitin. J Biol Chem 272:17762–17775.  https://doi.org/10.1074/jbc.272.28.17762 Google Scholar
  115. Kondo A, Shigechi H, Abe M, Uyama K, Matsumoto T, Takahashi S, Ueda M, Tanaka A, Kishimoto M, Fukuda H (2002) High-level ethanol production from starch by a flocculent Saccharomyces cerevisiae strain displaying cell-surface glucoamylase. Appl Microbiol Biotechnol 58:291–296.  https://doi.org/10.1007/s00253-001-0900-9 Google Scholar
  116. Konomi M, Fujimoto K, Toda T, Osumi M (2003) Characterization and behaviour of alpha-glucan synthase in Schizosaccharomyces pombe as revealed by electron microscopy. Yeast 20:427–438.  https://doi.org/10.1002/yea.974 Google Scholar
  117. Kotaka A, Sahara H, Kuroda K, Kondo A, Ueda M, Hata Y (2010) Enhancement of beta-glucosidase activity on the cell-surface of sake yeast by disruption of SED1. J Biosci Bioeng 109:442–446.  https://doi.org/10.1016/j.jbiosc.2009.11.003 Google Scholar
  118. Krappmann S, Sasse C, Braus GH (2006) Gene targeting in Aspergillus fumigatus by homologous recombination is facilitated in a nonhomologous end-joining-deficient genetic background. Eukaryot Cell 5:212–215.  https://doi.org/10.1128/EC.5.1.212-215.2006 Google Scholar
  119. Kulcinskaja E, Rosengren A, Ibrahim R, Kolenová K, Stålbrand H (2013) Expression and characterization of a Bifidobacterium adolescentis beta-mannanase carrying mannan-binding and cell association motifs. Appl Environ Microbiol 79:133–140.  https://doi.org/10.1128/AEM.02118-12 Google Scholar
  120. Kuranda MJ, Robbins PW (1991) Chitinase is required for cell separation during growth of Saccharomyces cerevisiae. J Biol Chem 266:19758–19767 http://www.jbc.org/content/266/29/19758.full.pdf. Accessed 28 March 2019Google Scholar
  121. Kuroda K, Ueda M (2013) Arming technology in yeast-novel strategy for whole-cell biocatalyst and protein engineering. Biomolecules 3:632–650.  https://doi.org/10.3390/biom3030632 Google Scholar
  122. Kuroda K, Matsui K, Higuchi S, Kotaka A, Sahara H, Hata Y, Ueda M (2009) Enhancement of display efficiency in yeast display system by vector engineering and gene disruption. Appl Microbiol Biotechnol 82:713–719.  https://doi.org/10.1007/s00253-008-1808-4 Google Scholar
  123. Kwan AHY, Winefield RD, Sunde M, Matthews JM, Haverkamp RG, Templeton MD, Mackay JP (2006) Structural basis for rodlet assembly in fungal hydrophobins. Proc Natl Acad Sci U S A 103:3621–3626.  https://doi.org/10.1073/pnas.0505704103 Google Scholar
  124. Kwan AH, Macindoe I, Vukašin PV, Morris VK, Kass I, Gupte R, Mark AE, Templeton MD, Mackay JP, Sunde M (2008) The Cys3-Cys4 loop of the hydrophobin EAS is not required for rodlet formation and surface activity. J Mol Biol 382:708–720.  https://doi.org/10.1016/j.jmb.2008.07.034 Google Scholar
  125. Lackner DH, Carré A, Guzzardo PM, Banning C, Mangena R, Henley T, Oberndorfer S, Gapp BV, Nijman SMB, Brummelkamp TR, Bürckstümmer T (2015) A generic strategy for CRISPR-Cas9-mediated gene tagging. Nat Commun 6:10237.  https://doi.org/10.1038/ncomms10237 Google Scholar
  126. Latgé JP, Beauvais A (2014) Functional duality of the cell wall. Curr Opin Microbiol 20:111–117.  https://doi.org/10.1016/j.mib.2014.05.009 Google Scholar
  127. Latge JP, Mouyna I, Tekaia F, Beauvais A (2005) Specific molecular features in the organization and biosynthesis of the cell wall of Aspergillus fumigatus. Med Mycol 43:S15–S22.  https://doi.org/10.1080/13693780400029155 Google Scholar
  128. Lee MJ, Sheppard DC (2016) Recent advances in the understanding of the Aspergillus fumigatus cell wall. J Microbiol 54:232–242.  https://doi.org/10.1007/s12275-016-6045-4 Google Scholar
  129. Levdansky E, Kashi O, Sharon H, Shadkchan Y, Osherov N (2010) The Aspergillus fumigatus cspA gene encoding a repeat-rich cell wall protein is important for normal conidial cell wall architecture and interaction with host cells. Eukaryot Cell 9:1403–1415.  https://doi.org/10.1128/EC.00126-10 Google Scholar
  130. Li X, Jin X, Lu X, Chu F, Shen J, Ma Y, Liu M, Zhu J (2014) Construction and characterization of a thermostable whole-cell chitinolytic enzyme using yeast surface display. World J Microbiol Biotechnol 30:2577–2585.  https://doi.org/10.1007/s11274-014-1681-5 Google Scholar
  131. Li W, Shi H, Ding H, Wang L, Zhang Y, Li X, Wang F (2015) Cell surface display and characterization of Rhizopus oryzae lipase in Pichia pastoris using Sed1p as an anchor protein. Curr Microbiol 71:150–155.  https://doi.org/10.1007/s00284-015-0835-5 Google Scholar
  132. Lin L, Chen Y, Li J, Wang S, Sun W, Tian C (2017) Disruption of non-anchored cell wall protein NCW-1 promotes cellulase production by increasing cellobiose uptake in Neurospora crassa. Biotechnol Lett 39:545–551.  https://doi.org/10.1007/s10529-016-2274-1 Google Scholar
  133. Linder MB, Szilvay GR, Nakari-Setälä T, Penttilä ME (2005) Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiol Rev 29:877–896.  https://doi.org/10.1016/j.femsre.2005.01.004 Google Scholar
  134. Liu L, Free SJ (2015) Characterization of the Sclerotinia sclerotiorum cell wall proteome. Mol Plant Pathol 17:985–995.  https://doi.org/10.1111/mpp.12352 Google Scholar
  135. Liu WS, Pan XX, Jia B, Zhao HY, Xu L, Liu Y, Yan YJ (2010) Surface display of active lipases Lip7 and Lip8 from Yarrowia lipolytica on Saccharomyces cerevisiae. Appl Microbiol Biotechnol 88:885–891.  https://doi.org/10.1007/s00253-010-2782-1 Google Scholar
  136. Liu H, Wang P, Gong G, Wang L, Zhao G, Zheng Z (2013) Morphology engineering of Penicillium chrysogenum by RNA silencing of chitin synthase gene. Biotechnol Lett 35:423–429.  https://doi.org/10.1007/s10529-012-1099-9 Google Scholar
  137. Liu Y, Zhang T, Qiao J, Liu X, Bo J, Wang J, Lu F (2014) High-yield phosphatidylserine production via yeast surface display of phospholipase D from Streptomyces chromofuscus on Pichia pastoris. J Agric Food Chem 62:5354–5360.  https://doi.org/10.1021/jf405836x Google Scholar
  138. Liu R, Chen L, Jiang Y, Zhou Z, Zou G (2015) Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system. Cell Discov 1:15007.  https://doi.org/10.1038/celldisc.2015.7 Google Scholar
  139. Loibl M, Strahl S (2013) Protein O-mannosylation: what we have learned from baker’s yeast. Biochim Biophys Acta 1833:2438–2446.  https://doi.org/10.1016/j.bbamcr.2013.02.008 Google Scholar
  140. Lowman DW, West LJ, Bearden DW, Wempe MF, Power TD, Ensley HE, Haynes K, Williams DL, Kruppa MD (2011) New insights into the structure of (1→3,1→6)-β-D-glucan side chains in the Candida glabrata cell wall. PLoS One 6:e27614.  https://doi.org/10.1371/journal.pone.0027614 Google Scholar
  141. Lu CF, Montijn RC, Brown JL, Klis F, Kurjan J, Bussey H, Lipke PN (1995) Glycosyl phosphatidylinositol-dependent cross-linking of alpha-agglutinin and beta 1,6-glucan in the Saccharomyces cerevisiae cell wall. J Cell Biol 128:333–340.  https://doi.org/10.1083/jcb.128.3.333 Google Scholar
  142. Lu H, Li C, Tang W, Wang Z, Xia J, Zhang S, Zhuang Y, Chu J, Noorman H (2015) Dependence of fungal characteristics on seed morphology and shear stress in bioreactors. Bioprocess Biosyst Eng 38:917–928.  https://doi.org/10.1007/s00449-014-1337-8 Google Scholar
  143. Macindoe I, Kwan AH, Ren Q, Morris VK, Yang W, Mackay JP, Sunde M (2012) Self-assembly of functional, amphipathic amyloid monolayers by the fungal hydrophobin EAS. Proc Natl Acad Sci U S A 109:E804–E811.  https://doi.org/10.1073/pnas.1114052109 Google Scholar
  144. Maddi A, Free SJ (2010) α-1,6-Mannosylation of N-linked oligosaccharide present on cell wall proteins is required for their incorporation into the cell wall in the filamentous fungus Neurospora crassa. Eukaryot Cell 9:1766–1775.  https://doi.org/10.1128/EC.00134-10 Google Scholar
  145. Maddi A, Bowman SM, Free SJ (2009) Trifluoromethanesulfonic acid-based proteomic analysis of cell wall and secreted proteins of the ascomycetous fungi Neurospora crassa and Candida albicans. Fungal Genet Biol 46:768–781.  https://doi.org/10.1016/j.fgb.2009.06.005 Google Scholar
  146. Maddi A, Dettman A, Fu C, Seiler S, Free SJ (2012a) WSC-1 and HAM-7 are MAK-1 MAP kinase pathway sensors required for cell wall integrity and hyphal fusion in Neurospora crassa. PLoS One 7:e42374.  https://doi.org/10.1371/journal.pone.0042374 Google Scholar
  147. Maddi A, Fu C, Free SJ (2012b) The Neurospora crassa dfg5 and dcw1 genes encode α-1,6-mannanases that function in the incorporation of glycoproteins into the cell wall. PLoS One 7:e38872.  https://doi.org/10.1371/journal.pone.0038872 Google Scholar
  148. Magaña-Ortíz D, Coconi-Linares N, Ortíz-Vázquez E, Fernández F, Loske AM, Gómez-Lim MA (2013) A novel and highly efficient method for genetic transformation of fungi employing shock waves. Fungal Genet Biol 56:9–16.  https://doi.org/10.1016/j.fgb.2013.03.008 Google Scholar
  149. Mahadevan PR, Tatum EL (1967) Localization of structural polymers in the cell wall of Neurospora crassa. J Cell Biol 35:295–302.  https://doi.org/10.1083/jcb.35.2.295 Google Scholar
  150. Manners DJ, Masson AJ, Patterson JC (1973) The structure of a β-(1→3)-d-glucan from yeast cell walls. Biochem J 135:19–30.  https://doi.org/10.1042/bj1350019 Google Scholar
  151. Martín-Cuadrado AB, Encinar del Dedo J, de Medina-Redondo M, Fontaine T, del Rey F, Latgé JP, Vázquez de Aldana CR (2008) The Schizosaccharomyces pombe endo-1,3-beta-glucanase Eng1 contains a novel carbohydrate binding module required for septum localization. Mol Microbiol 69:188–200.  https://doi.org/10.1111/j.1365-2958.2008.06275.x Google Scholar
  152. Martínez-Núñez L, Riquelme M (2015) Role of BGT-1 and BGT-2, two predicted GPI-anchored glycoside hydrolases/glycosyltransferases, in cell wall remodeling in Neurospora crassa. Fungal Genet Biol 85:58–70.  https://doi.org/10.1016/j.fgb.2015.11.001 Google Scholar
  153. Matsumoto T, Fukuda H, Ueda M, Tanaka A, Kondo A (2002) Construction of yeast strains with high cell surface lipase activity by using novel display systems based on the Flo1p flocculation functional domain. Appl Environ Microbiol 68:4517–4522.  https://doi.org/10.1128/AEM.68.9.4517-4522.2002 Google Scholar
  154. Matsumoto T, Ito M, Fukuda H, Kondo A (2004) Enantioselective transesterification using lipase-displaying yeast whole-cell biocatalyst. Appl Microbiol Biotechnol 64:481–485.  https://doi.org/10.1007/s00253-003-1486-1 Google Scholar
  155. Matsuoka H, Hashimoto K, Saijo A, Takada Y, Kondo A, Ueda M, Ooshima H, Tachibana T, Azuma M (2014) Cell wall structure suitable for surface display of proteins in Saccharomyces cerevisiae. Yeast 31:67–76.  https://doi.org/10.1002/yea.2995 Google Scholar
  156. Matsu-ura T, Baek M, Kwon J, Hong C (2015) Efficient gene editing in Neurospora crassa with CRISPR technology. Fungal Biol Biotechnol 2:4.  https://doi.org/10.1186/s40694-015-0015-1 Google Scholar
  157. Mazáň M, Mazáňová K, Farkaš V (2008) Phenotype analysis of Saccharomyces cerevisiae mutants with deletions in Pir cell wall glycoproteins. Antonie Van Leeuwenhoek 94:335–342.  https://doi.org/10.1007/s10482-008-9228-0 Google Scholar
  158. McIntyre M, Muller C, Dynesen J, Nielsen J (2001) Metabolic engineering of the morphology of Aspergillus. Adv Biochem Eng Biotechnol 73:103–128Google Scholar
  159. Meyer V, Arentshorst M, El-Ghezal A, Drews AC, Kooistra R, van den Hondel CAMJJ, Ram AFJ (2007) Highly efficient gene targeting in the Aspergillus niger kusA mutant. J Biotechnol 128:770–775.  https://doi.org/10.1016/j.jbiotec.2006.12.021 Google Scholar
  160. Mizutani O, Masaki K, Gomi K, Iefuji H (2012) Midified Cre-loxP recombination in Aspergillus oryzae by direct introduction of Cre recombinase for marker gene rescue. Appl Environ Microbiol 78:4126–4133.  https://doi.org/10.1128/AEM.00080-12 Google Scholar
  161. Moukadiri I, Zueco J (2001) Evidence for the attachment of Hsp150/Pir2 to the cell wall of Saccharomyces cerevisiae through disulfide bridges. FEMS Yeast Res 1:241–245.  https://doi.org/10.1111/j.1567-1364.2001.tb00040.x Google Scholar
  162. Moukadiri I, Armero J, Abad A, Sentandreu R, Zueco J (1997) Identification of a mannoprotein present in the inner layer of the cell wall of Saccharomyces cerevisiae. J Bacteriol 179:2154–2162.  https://doi.org/10.1128/jb.179.7.2154-2162.1997 Google Scholar
  163. Moukadiri I, Jaafar L, Zueco J (1999) Identification of two mannoproteins released from cell walls of a Saccharomyces cerevisiae mnn1 mnn9 double mutant by reducing agents. J Bacteriol 181:4741–4745 https://jb.asm.org/content/jb/181/16/4741.full.pdf. Accessed 28 March 2019Google Scholar
  164. Moura MVH, da Silva GP, de O MAC, Torres FAG, Freire DMG, Almeida RV (2015) Displaying lipase B from Candida antarctica in Pichia pastoris using the yeast surface display approach: prospection of a new anchor and characterization of the whole cell biocatalyst. PLoS One 10:e0141454.  https://doi.org/10.1371/journal.pone.0141454 Google Scholar
  165. Mrsa V, Tanner W (1999) Role of NaOH-extractable cell wall proteins Ccw5p, Ccw6p, Ccw7p and Ccw8p (members of the Pir protein family) in stability of the Saccharomyces cerevisiae cell wall. Yeast 15:813–820.  https://doi.org/10.1002/(SICI)1097-0061(199907)15:10A<813::AID-YEA421>3.0.CO;2-Y Google Scholar
  166. Mrsa V, Seidl T, Gentzsch M, Tanner W (1997) Specific labelling of cell wall proteins by biotinylation. Identification of four covalently linked O-mannosylated proteins of Saccharomyces cerevisiae. Yeast 13:1145–1154.  https://doi.org/10.1002/(SICI)1097-0061(19970930)13:12<1145::AID-YEA163>3.0.CO;2-Y Google Scholar
  167. Murai T, Ueda M, Kawaguchi T, Arai M, Tanaka A (1998) Assimilation of cellooligosaccharides by a cell surface-engineered yeast expressing beta-glucosidase and carboxymethylcellulase from Aspergillus aculeatus. Appl Environ Microbiol 64:4857–4861 https://aem.asm.org/content/aem/64/12/4857.full.pdf. Accessed 28 March 2019 Google Scholar
  168. Nakamura T, Mine S, Hagihara Y, Ishikawa K, Ikegami T, Uegaki, K (2008) Tertiary structure and carbohydrate recognition by the chitin-binding domain of a hyperthermophilic chitinase from Pyrococcus furiosus. J Mol Biol 381:670–680.  https://doi.org/10.1016/j.jmb.2008.06.006
  169. Nakamura Y, Matsumoto T, Nomoto F, Ueda M, Fukuda H, Kondo A (2006) Enhancement of activity of lipase-displaying yeast cells and their application to optical resolution of (R,S)-1-benzyloxy-3-chloro-2-propyl monosuccinate. Biotechnol Prog 22:998–1002.  https://doi.org/10.1021/bp060136m Google Scholar
  170. Nakamura H, Katayama T, Okabe T, Iwashita K, Fujii W, Kitamoto K, Maruyama J (2017) Highly efficient gene targeting in Aspergillus oryzae industrial strains under ligD mutation introduced by genome editing: strain-specific differences in the effects of deleting EcdR, the negative regulator of sclerotia formation. J Gen Appl Microbiol 63:172–178.  https://doi.org/10.2323/jgam.2016.10.002 Google Scholar
  171. Nakari-Setala T, Azeredo J, MHA (2002) Expression of a fungal hydrophobin in the Saccharomyces cerevisiae cell wall: effect on cell surface properties and immobilization. Appl Environ Microbiol 68:3385–3391.  https://doi.org/10.1128/AEM.68.7.3385-3391.2002 Google Scholar
  172. Nakazawa T, Ando Y, Kitaaki K, Nakahori K, Kamada T (2011) Efficient gene targeting in deltaCC.ku70 or deltaCc.lig4 mutants of the agaricomycete Coprinopsis cinerea. Fungal Genet Biol 48:939–946.  https://doi.org/10.1016/j.fgb.2011.06.003 Google Scholar
  173. Nayak T, Szewczyk E, Oakley CE, Osmani A, Ukil L, Murray SL, Hynes MJ, Osmani SA, Oakley BR (2006) A versatile and efficient gene-targeting system for Aspergillus nidulans. Genetics 172:1557–1566.  https://doi.org/10.1534/genetics.105.052563 Google Scholar
  174. Neubert P, Halim A, Zauser M, Essig A, Joshi HJ, Zatorska E, Larsen ISB, Loibl M, Castells-Ballester J, Aebi M, Clausen H, Strahl S (2016) Mapping the O-mannose glycoproteome in Saccharomyces cerevisiae. Mol Cell Proteomics 15:1323–1337.  https://doi.org/10.1074/mcp.M115.057505 Google Scholar
  175. Ninomiya Y, Suzuki K, Ishii C, Inoue H (2004) Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci U S A 101:12248–12253.  https://doi.org/10.1073/pnas.0402780101 Google Scholar
  176. Nødvig CS, Nielsen JB, Kogle ME, Mortensen UH (2015) A CRISPR-Cas9 system for genetic engineering of filamentous fungi. PLoS One 10:e0133085.  https://doi.org/10.1371/journal.pone.0133085 Google Scholar
  177. Oda K, Kakizono D, Yamada O, Iefuji H, Akita O, Iwashita K (2006) Proteomic analysis of extracellular proteins from Aspergillus oryzae grown under submerged and solid-state culture conditions. Appl Environ Microbiol 72:3448–3457.  https://doi.org/10.1128/AEM.72.5.3448-3457.2006 Google Scholar
  178. Osumi M, Sato M, Ishijima SA, Konomi M, Takagi T, Yaguchi H (1998) Dynamics of cell wall formation in fission yeast, Schizosaccharomyces pombe. Fungal Genet Biol 24:178–206.  https://doi.org/10.1006/fgbi.1998.1067 Google Scholar
  179. Ouyang H, Chen X, Lü Y, Wilson IBH, Tang G, Wang A, Jin C (2013) One single basic amino acid at the ω-1 or ω-2 site is a signal that retains glycosylphosphatidylinositol-anchored protein in the plasma membrane of Aspergillus fumigatus. Eukaryot Cell 12:889–899.  https://doi.org/10.1128/EC.00351-12 Google Scholar
  180. Pan ZY, Yang ZM, Pan L, Zheng SP, Han SY, Lin Y (2014) Displaying Candida antarctica lipase B on the cell surface of Aspergillus niger as a potential food-grade whole-cell catalyst. J Ind Microbiol Biotechnol 41:711–720.  https://doi.org/10.1007/s10295-014-1410-y Google Scholar
  181. Pannunzio NR, Watanabe G, Lieber MR (2018) Nonhomologous DNA end-joining for repair of DNA double-strand breaks. J Biol Chem 293:10512–10523.  https://doi.org/10.1074/jbc.TM117.000374 Google Scholar
  182. Perpiñá C, Vinaixa J, Andreu C, del Olmo M (2015) Development of new tolerant strains to hydrophilic and hydrophobic organic solvents by the yeast surface display methodology. Appl Microbiol Biotechnol 99:775–789.  https://doi.org/10.1007/s00253-014-6048-1 Google Scholar
  183. Phienluphon A, Mhuantong W, Boonyapakron K, Deenarn P, Champreda V, Wichadakul D, Suwannarangsee S (2019) Identification and evaluation of novel anchoring proteins for cell surface display on Saccharomyces cerevisiae. Appl Microbiol Biotechnol 13:87–13.  https://doi.org/10.1007/s00253-019-09667-5 Google Scholar
  184. Pohl C, Kiel JAKW, Driessen AJM, Bovenberg RAL, Nygård Y (2016) CRISPR/Cas9 based genome editing of Penicillium chrysogenum. ACS Synth Biol 5:754–764.  https://doi.org/10.1021/acssynbio.6b00082 Google Scholar
  185. Puccia R, Vallejo MC, Matsuo AL (2011) The Paracoccidioides cell wall: past and present layers toward understanding interaction with the host. Front Microbiol 2:257.  https://doi.org/10.3389/fmicb.2011.00257 Google Scholar
  186. Qi X, Su X, Guo H, Qi J, Cheng H (2015) A ku70 null mutant improves gene targeting frequency in the fungal pathogen Verticillium dahlia. World J Microbiol Biotechnol 31:1889–1897.  https://doi.org/10.1007/s11274-015-1907-1 Google Scholar
  187. Qiu Z, Tan H, Zhou S, Cao L (2014) Surface display of a bifunctional glutathione synthetase on Saccharomyces cerevisiae for converting chicken feather hydrolysate into glutathione. Mol Biotechnol 56:726–730.  https://doi.org/10.1007/s12033-014-9750-4 Google Scholar
  188. Reese AJ, Doering TL (2003) Cell wall α-1, 3-glucan is required to anchor the Cryptococcus neoformans capsule. Mol Microbiol 50:1401–1409.  https://doi.org/10.1046/j.1365-2958.2003.03780.x Google Scholar
  189. Riquelme M, Bartnicki-Garcia S, González-Prieto JM, Sánchez-León E, Verdín-Ramos JA, Beltrán-Aguilar A, Freitag M (2007) Spitzenkörper localization and intracellular traffic of green fluorescent protein-labeled CHS-3 and CHS-6 chitin synthases in living hyphae of Neurospora crassa. Eukaryot Cell 6:1853–1864.  https://doi.org/10.1128/EC.00088-07 Google Scholar
  190. Riquelme M, Yarden O, Bartnicki-Garcia S, Bowman B, Castro-Longoria E, Free SJ, Fleißner A, Freitag M, Lew RR, Mouriño-Pérez R, Plamann M, Rasmussen C, Richthammer C, Roberson RW, Sánchez-León E, Seiler S, Watters MK (2011) Architecture and development of the Neurospora crassa hypha—a model cell for polarized growth. Fungal Biol 115:446–474.  https://doi.org/10.1016/j.funbio.2011.02.008 Google Scholar
  191. Rodríguez-Peña JM, Cid VJ, Arroyo J, Nombela C (2000) A novel family of cell wall-related proteins regulated differently during the yeast life cycle. Mol Cell Biol 20:3245–3255.  https://doi.org/10.1128/MCB.20.9.3245-3255.2000 Google Scholar
  192. Ruiz-Herrera J (2012) Fungal cell wall. Structure, synthesis, and assembly. CRC, Boca RatonGoogle Scholar
  193. Ruiz-Herrera J, Martínez AI, Sentandreu R (2002) Determination of the stability of protein pools from the cell wall of fungi. Res Microbiol 153:373–378.  https://doi.org/10.1016/S0923-2508(02)01335-9 Google Scholar
  194. Ruiz-Herrera J, Ortiz-Castellanos L, Martínez AI, León-Ramírez C, Sentandreu R (2008) Analysis of the proteins involved in the structure and synthesis of the cell wall of Ustilago maydis. Fungal Genet Biol 45(Suppl 1):S71–S76.  https://doi.org/10.1016/j.fgb.2008.04.010 Google Scholar
  195. Sakamoto T, Hasunuma T, Hori Y, Yamada R, Kondo A (2012) Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. J Biotechnol 158:203–210.  https://doi.org/10.1016/j.jbiotec.2011.06.025 Google Scholar
  196. Samar D, Kieler JB, Klutts JS (2015) Identification and deletion of Tft1, a predicted glycosyltransferase necessary for cell wall β-1,3;1,4-glucan synthesis in Aspergillus fumigatus. PLoS One 10:e0117336.  https://doi.org/10.1371/journal.pone.0117336 Google Scholar
  197. Sánchez-León E, Riquelme M (2015) Live imaging of β-1,3-glucan synthase FKS-1 in Neurospora crassa hyphae. Fungal Genet Biol 82:104–107.  https://doi.org/10.1016/j.fgb.2015.07.001 Google Scholar
  198. Sánchez-León E, Verdín J, Freitag M, Roberson RW, Bartnicki-Garcia S, Riquelme M (2011) Traffic of chitin synthase 1 (CHS-1) to the Spitzenkörper and developing septa in hyphae of Neurospora crassa: actin dependence and evidence of distinct microvesicle populations. Eukaryot Cell 10:683–695.  https://doi.org/10.1128/EC.00280-10 Google Scholar
  199. Sato N, Matsumoto T, Ueda M, Tanaka A, Fukuda H, Kondo A (2002) Long anchor using Flo1 protein enhances reactivity of cell surface-displayed glucoamylase to polymer substrates. Appl Microbiol Biotechnol 60:469–474.  https://doi.org/10.1007/s00253-002-1121-6 Google Scholar
  200. Scholtmeijer K, Janssen MI, Gerssen B, de Vocht ML, van Leeuwen BM, van Kooten TG, Wösten HAB, Wessels JGH (2002) Surface modifications created by using engineered hydrophobins. Appl Environ Microbiol 68:1367–1373.  https://doi.org/10.1128/AEM.68.3.1367-1373.2002 Google Scholar
  201. Scholtmeijer K, de Vocht ML, Rink R, Robillard GT, Wösten HAB (2009) Assembly of the fungal SC3 hydrophobin into functional amyloid fibrils depends on its concentration and is promoted by cell wall polysaccharides. J Biol Chem 284:26309–26314.  https://doi.org/10.1074/jbc.M109.005553 Google Scholar
  202. Schuster M, Schweizer G, Reissmann S, Kahmann R (2016) Genome editing in Ustilago maydis using the CRISPR-Cas system. Fungal Genet Biol 89:3–9.  https://doi.org/10.1016/j.fgb.2015.09.001 Google Scholar
  203. Seidl-Seiboth V, Gruber S, Sezerman U, Schwecke T, Albayrak A, Neuhof T, von Döhren H, Baker SE, Kubicek CP (2011) Novel hydrophobins from Trichoderma define a new hydrophobin subclass: protein properties, evolution, regulation and processing. J Mol Evol 72:339–351.  https://doi.org/10.1007/s00239-011-9438-3 Google Scholar
  204. Shanmugam K, Ramalingam S, Venkataraman G, Hariharan GN (2019) The CRISPR/Cas9 system for targeted genome engineering in free-living fungi: advances and opportunities for lichenized fungi. Front Microbiol 10:62.  https://doi.org/10.3389/fmicb.2019.00062 Google Scholar
  205. Shen Z, Jacobs-Lorena M (1998) A type I peritrophic matrix protein from the malaria vector Anopheles gambiae binds to chitin. Cloning, expression, and characterization. J Biol Chem 273:17665–17670.  https://doi.org/10.1074/jbc.273.28.17665 Google Scholar
  206. Sherrington SL, Sorsby E, Mahtey N, Kumwenda P, Lenardon MD, Brown I, Ballou ER, MacCallum DM, Hall RA (2017) Adaptation of Candida albicans to environmental pH induces cell wall remodelling and enhances innate immune recognition. PLoS Pathog 13:e1006403.  https://doi.org/10.1371/journal.ppat.1006403 Google Scholar
  207. Shi B, Ke X, Yu H, Xie J, Jia Y, Guo R (2015) Novel properties for endoglucanase acquired by cell-surface display technique. J Microbiol Biotechnol 25:1856–1862.  https://doi.org/10.4014/jmb.1503.03029 Google Scholar
  208. Shibasaki S, Ueda M, Iizuka T, Hirayama M (2001) Quantitative evaluation of the enhanced green fluorescent protein displayed on the cell surface of Saccharomyces cerevisiae by fluorometric and confocal laser scanning microscopic analyses. Appl Microbiol Biotechnol 55:471–475.  https://doi.org/10.1007/s002530000539 Google Scholar
  209. Shigechi H, Koh J, Fujita Y, Matsumoto T, Bito Y, Ueda M, Satoh E, Fukuda H, Kondo A (2004) Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and alpha-amylase. Appl Environ Microbiol 70:5037–5040.  https://doi.org/10.1128/AEM.70.8.5037-5040.2004 Google Scholar
  210. Shimma YI, Saito F, Oosawa F, Jigami Y (2006) Construction of a library of human glycosyltransferases immobilized in the cell wall of Saccharomyces cerevisiae. Appl Environ Microbiol 72:7003–7012.  https://doi.org/10.1128/AEM.01378-06 Google Scholar
  211. Shinya S, Ohnuma T, Yamashiro R, Kimoto H, Kusaoke H, Anbazhagan P, Juffer AH, Fukamizo T (2013) The first identification of carbohydrate binding modules specific to chitosan. J Biol Chem 288:30042–30053.  https://doi.org/10.1074/jbc.M113.503243 Google Scholar
  212. Shinya S, Nishimura S, Kitaoku Y, Numata T, Kimoto H, Kusaoke H, Ohnuma T, Fukamizo T (2016) Mechanism of chitosan recognition by CBM32 carbohydrate-binding modules from a Paenibacillus sp. IK-5 chitosanase/glucanase. Biochem J 473:1085–1095.  https://doi.org/10.1042/BCJ20160045 Google Scholar
  213. Smits GJ, Schenkman LR, Brul S, Pringle JR, Klis FM (2006) Role of cell cycle-regulated expression in the localized incorporation of cell wall proteins in yeast. Mol Biol Cell 17:3267–3280.  https://doi.org/10.1091/mbc.E05-08-0738 Google Scholar
  214. Snoek ISI, van der Krogt ZA, Touw H, Kerkman R, Pronk JT, Bovenberg RAL, van den Berg MA, Daran JM (2009) Construction of an hdfA Penicillium chrysogenum strain impaired in non-homologous end-joining and analysis of its potential for functional analysis studies. Fungal Genet Biol 46:418–426.  https://doi.org/10.1016/j.fgb.2009.02.008 Google Scholar
  215. Srikrishnan S, Chen W, Da Silva NA (2013) Functional assembly and characterization of a modular xylanosome for hemicellulose hydrolysis in yeast. Biotechnol Bioeng 110:275–285.  https://doi.org/10.1002/bit.24609 Google Scholar
  216. Steiger MG, Vitikainen M, Uskonen P, Brunner K, Adam G, Pakula T, Penttilä M, Saloheimo M, Mach RL, Mach-Aigner AR (2011) Transformation system for Hypocrea jecorina (Trichoderma reesei) that favors homologs integration and employs reusable bidirectionality selectable markers. Appl Environ Microbiol 77:114–121.  https://doi.org/10.1128/AEM.02100-10 Google Scholar
  217. Stringer MA, Dean RA, Sewall TC, Timberlake WE (1991) Rodletless, a new Aspergillus developmental mutant induced by directed gene inactivation. Genes Dev 5:1161–1171.  https://doi.org/10.1101/gad.5.7.1161 Google Scholar
  218. Sugawara T, Sato M, Takagi T, Kamasaki T, Ohno N, Osumi M (2003) In situ localization of cell wall alpha-1,3-glucan in the fission yeast Schizosaccharomyces pombe. J Electron Microsc 52:237–242.  https://doi.org/10.1093/jmicro/52.2.237 Google Scholar
  219. Sumita T, Yoko-o T, Shimma Y-I, Jigami Y (2005) Comparison of cell wall localization among Pir family proteins and functional dissection of the region required for cell wall binding and bud scar recruitment of Pir1p. Eukaryot Cell 4:1872–1881.  https://doi.org/10.1128/EC.4.11.1872-1881.2005 Google Scholar
  220. Sunna A, Gibbs MD, Bergquist PL (2001) Identification of novel beta-mannan- and beta-glucan-binding modules: evidence for a superfamily of carbohydrate-binding modules. Biochem J 356:791–798.  https://doi.org/10.1042/0264-6021:3560791 Google Scholar
  221. Tabuchi S, Ito J, Adachi T, Ishida H, Hata Y, Okazaki F, Tanaka T, Ogino C, Kondo A (2010) Display of both N- and C-terminal target fusion proteins on the Aspergillus oryzae cell surface using a chitin-binding module. Appl Microbiol Biotechnol 87:1783–1789.  https://doi.org/10.1007/s00253-010-2664-6 Google Scholar
  222. Takagi T, Yokoi T, Shibata T, Morisaka H, Kuroda K, Ueda M (2015) Engineered yeast whole-cell biocatalyst for direct degradation of alginate from macroalgae and production of non-commercialized useful monosaccharide from alginate. Appl Microbiol Biotechnol 100:1723–1732.  https://doi.org/10.1007/s00253-015-7035-x Google Scholar
  223. Takahashi T, Masuda T, Koyama Y (2006) Enhanced gene targeting frequency in ku70 and ku80 disruption mutants of Aspergillus sojae and Aspergillus oryzae. Mol Gen Genomics 275:460–470.  https://doi.org/10.1007/s00438-006-0104-1 Google Scholar
  224. Takahasi K, Ochiai M, Horiuchi M, Kumeta H, Ogura K, Ashida M, Inagaki F (2009) Solution structure of the silkworm betaGRP/GNBP3 N-terminal domain reveals the mechanism for beta-1,3-glucan-specific recognition. Proc Natl Acad Sci U S A 106:11679–11684.  https://doi.org/10.1073/pnas.0901671106 Google Scholar
  225. Takatsuji Y, Yamasaki R, Iwanaga A, Lienemann M, Linder MB, Haruyama T (2013) Solid-support immobilization of a “swing” fusion protein for enhanced glucose oxidase catalytic activity. Colloids Surf B: Biointerfaces 112:186–191.  https://doi.org/10.1016/j.colsurfb.2013.07.051 Google Scholar
  226. Tanaka T, Kondo A (2015) Cell surface engineering of industrial microorganisms for biorefining applications. Biotechnol Adv 33:1403–1411.  https://doi.org/10.1016/j.biotechadv.2015.06.002 Google Scholar
  227. Toh-e A, Yasunaga S, Nisogi H, Tanaka K, Oguchi T, Matsui Y (1993) Three yeast genes, PIR1, PIR2 and PIR3, containing internal tandem repeats, are related to each other, and PIR1 and PIR2 are required for tolerance to heat shock. Yeast 9:481–494.  https://doi.org/10.1002/yea.320090504 Google Scholar
  228. Tsai SL, DaSilva NA, Chen W (2013) Functional display of complex cellulosomes on the yeast surface via adaptive assembly. ACS Synth Biol 2:14–21.  https://doi.org/10.1021/sb300047u Google Scholar
  229. Ueda M, Tanaka A (2000) Cell surface engineering of yeast: construction of arming yeast with biocatalyst. J Biosci Bioeng 90:125–136.  https://doi.org/10.1016/S1389-1723(00)80099-7 Google Scholar
  230. Vaaje-Kolstad G, Horn SJ, van Aalten DMF, Synstad B, Eijsink VGH (2005) The non-catalytic chitin-binding protein CBP21 from Serratia marcescens is essential for chitin degradation. J Biol Chem 280:28492–28497.  https://doi.org/10.1074/jbc.M504468200 Google Scholar
  231. Van Bloois E, Winter RT, Kolmar H, Fraaije MW (2011) Decorating microbes: surface display of proteins on Escherichia coli. Trends Biotechnol 29:79–86.  https://doi.org/10.1016/j.tibtech.2010.11.003 Google Scholar
  232. Van Dellen K, Ghosh SK, Robbins PW, Loftus B, Samuelson J (2002) Entamoeba histolytica lectins contain unique 6-Cys or 8-Cys chitin-binding domains. Infect Immun 70:3259–3263.  https://doi.org/10.1128/IAI.70.6.3259-3263.2002 Google Scholar
  233. Van der Vaart JM, Biesebeke Te R, Chapman JW, Toschka HY, Klis FM, Verrips CT (1997) Comparison of cell wall proteins of Saccharomyces cerevisiae as anchors for cell surface expression of heterologous proteins. Appl Environ Microbiol 63:615–620 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC168351/pdf/630615.pdf. Accessed 28 March 2019Google Scholar
  234. Verdin J, Bartnicki-Garcia S, Riquelme M (2009) Functional stratification of the Spitzenkörper of Neurospora crassa. Mol Microbiol 74:1044–1053.  https://doi.org/10.1111/j.1365-2958.2009.06917.x Google Scholar
  235. Voltersen V, Blango MG, Herrmann S, Schmidt F, Heinekamp T, Strassburger M, Krüger T, Bacher P, Lother J, Weiss E, Hünniger K, Liu H, Hortschansky P, Scheffold A, Löffler J, Krappmann S, Nietzsche S, Kurzai O, Einsele H, Kniemeyer O, Filler SG, Reichard U, Brakhage AA (2018) Proteome analysis reveals the conidial surface protein CcpA essential for virulence of the pathogenic fungus Aspergillus fumigatus. mBio 9:e01557–e01518.  https://doi.org/10.1128/mBio.01557-18
  236. Wang T, Sun H, Zhang J, Liu Q, Wang L, Chen P, Wang F, Li H, Xiao Y, Zhao X (2014) The establishment of Saccharomyces boulardii surface display system using a single expression vector. Fungal Genet Biol 64:1–10.  https://doi.org/10.1016/j.fgb.2013.11.006 Google Scholar
  237. Wang P, He J, Sun Y, Reynolds M, Zhang L, Han S, Liang S, Sui H, Lin Y (2016) Display of fungal hydrophobin on the Pichia pastoris cell surface and its influence on Candida antarctica lipase B. Appl Microbiol Biotechnol 100:5883–5895.  https://doi.org/10.1007/s00253-016-7431-x Google Scholar
  238. Washida M, Takahashi S, Ueda M, Tanaka A (2001) Spacer-mediated display of active lipase on the yeast cell surface. Appl Microbiol Biotechnol 56:681–686.  https://doi.org/10.1007/s002530100718 Google Scholar
  239. Wei Q, Zhang H, Guo D, Ma S (2016) Cell surface display of four types of Solanum nigrum metallothionein on Saccharomyces cerevisiae for biosorption of cadmium. J Microbiol Biotechnol 26:846–853.  https://doi.org/10.4014/jmb.1512.12041 Google Scholar
  240. Weig M, Jänsch L, Gross U, de Koster CG, Klis FM, De Groot PWJ (2004) Systematic identification in silico of covalently bound cell wall proteins and analysis of protein-polysaccharide linkages of the human pathogen Candida glabrata. Microbiology 150:3129–3144.  https://doi.org/10.1099/mic.0.27256-0 Google Scholar
  241. Wessels JG (1997) Hydrophobins: proteins that change the nature of the fungal surface. Adv Microb Physiol 38:1–45.  https://doi.org/10.1016/S0065-2911(08)60154-X Google Scholar
  242. Wessels J, De Vries O, Asgeirsdottir SA, Schuren F (1991) Hydrophobin genes involved in formation of aerial hyphae and fruit bodies in Schizophyllum. Plant Cell 3:793–799.  https://doi.org/10.1105/tpc.3.8.793 Google Scholar
  243. Wilde C, Gold ND, Bawa N, Tambor JHM, Mougharbel L, Storms R, Martin VJJ (2012) Expression of a library of fungal β-glucosidases in Saccharomyces cerevisiae for the development of a biomass fermenting strain. Appl Microbiol Biotechnol 95:647–659.  https://doi.org/10.1007/s00253-011-3788-z Google Scholar
  244. Wosten H, De Vries O, Wessels J (1993) Interfacial self-assembly of a fungal hydrophobin into a hydrophobic rodlet layer. Plant Cell 5:1567–1574.  https://doi.org/10.1105/tpc.5.11.1567 Google Scholar
  245. Wösten HA, van Wetter MA, Lugones LG, van der Mei HC, Busscher HJ, Wessels JG (1999) How a fungus escapes the water to grow into the air. Curr Biol 9:85–88.  https://doi.org/10.1016/S0960-9822(99)80019-0 Google Scholar
  246. Wucherpfenning T, Hestler T, Krull R (2011) Morphology engineering—osmolality and its effect on Aspergillus niger morphology and productivity. Microb Cell Factories 10:58.  https://doi.org/10.1186/1475-2859-10-58 Google Scholar
  247. Yamamoto M, Ezure T, Watanabe T, Tanaka H, Aono R (1998) C-Terminal domain of β-1,3-glucanase H in IAM1165 has a role in binding to insoluble β-1,3-glucan. FEBS Lett 433:41–43.  https://doi.org/10.1016/s0014-5793(98)00881-3
  248. Yanase S, Hasunuma T, Yamada R, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes. Appl Microbiol Biotechnol 88:381–388.  https://doi.org/10.1007/s00253-010-2784-z Google Scholar
  249. Yang N, Yu Z, Jia D, Xie Z, Zhang K, Xia Z, Lei L, Qiao M (2014) The contribution of Pir protein family to yeast cell surface display. Appl Microbiol Biotechnol 98:2897–2905.  https://doi.org/10.1007/s00253-014-5538-5 Google Scholar
  250. Yuzbasheva EY, Yuzbashev TV, Laptev IA, Konstantinova TK, Sineoky SP (2011) Efficient cell surface display of Lip2 lipase using C-domains of glycosylphosphatidylinositol-anchored cell wall proteins of Yarrowia lipolytica. Appl Microbiol Biotechnol 91:645–654.  https://doi.org/10.1007/s00253-011-3265-8 Google Scholar
  251. Yuzbasheva EY, Yuzbashev TV, Perkovskaya NI, Mostova EB, Vybornaya TV, Sukhozhenko AV, Toropygin IY, Sineoky SP (2015) Cell surface display of Yarrowia lipolytica lipase Lip2p using the cell wall protein YlPir1p, its characterization, and application as a whole-cell biocatalyst. Appl Biochem Biotechnol 175:3888–3900.  https://doi.org/10.1007/s12010-015-1557-7 Google Scholar
  252. Zhang C, Meng X, Wei X, Lu L (2016a) Highly efficient CRISPR mutagenesis by microhomology-mediated end joining in Aspergillus fumigatus. Fungal Genet Biol 86:47–57.  https://doi.org/10.1016/j.fgb.2015.12.007 Google Scholar
  253. Zhang L, An J, Li L, Wang H, Liu D, Li N, Cheng H, Deng Z (2016b) Highly efficient fructooligosaccharides production by an erythritol-producing yeast Yarrowia lipolytica displaying fructosyltransferase. J Agric Food Chem 64:3828–3837.  https://doi.org/10.1021/acs.jafc.6b00115 Google Scholar
  254. Zhao ZX, Wang HC, Qin X, Wang XS, Qiao MQ, Anzai JI, Chen Q (2009) Self-assembled film of hydrophobins on gold surfaces and its application to electrochemical biosensing. Colloids Surf B: Biointerfaces 71:102–106.  https://doi.org/10.1016/j.colsurfb.2009.01.011 Google Scholar
  255. Zlotnik H, Fernandez MP, Bowers B, Cabib E (1984) Saccharomyces cerevisiae mannoproteins form an external cell wall layer that determines wall porosity. J Bacteriol 159:1018–1026 https://jb.asm.org/content/jb/159/3/1018.full.pdf. Accessed 28 March 2019Google Scholar
  256. Zonneveld B (1972) Morphogenesis in Aspergillus nidulans: the significance of α-1, 3-glucan of the cell wall and α-1, 3-glucanase for cleistothecium development. Biochim Biophys Acta Gen Subj 273:174–187.  https://doi.org/10.1016/0304-4165(72)90205-X Google Scholar
  257. Zonneveld BJ (1974) Alpha-1,3 glucan synthesis correlated with alpha-1,3 glucanase synthesis, conidiation and fructification in morphogenetic mutants of Aspergillus nidulans. J Gen Microbiol 81:445–451.  https://doi.org/10.1099/00221287-81-2-445 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jesús Urbar-Ulloa
    • 1
  • Paul Montaño-Silva
    • 1
  • Ana Sofía Ramírez-Pelayo
    • 1
  • Elisa Fernández-Castillo
    • 1
  • Lorena Amaya-Delgado
    • 1
  • Benjamín Rodríguez-Garay
    • 2
  • Jorge Verdín
    • 1
    Email author
  1. 1.Industrial Biotechnology, CIATEJ-Jalisco State Scientific Research and Technology Assistance CenterMexico National Council for Science and TechnologyZapopanMexico
  2. 2.Plant Biotechnology, CIATEJ-Jalisco State Scientific Research and Technology Assistance CenterMexico National Council for Science and TechnologyZapopanMexico

Personalised recommendations