Advertisement

Changes of porcine gut microbiota in response to dietary chlorogenic acid supplementation

  • Jiali Chen
  • Bing Yu
  • Daiwen Chen
  • Ping Zheng
  • Yuheng Luo
  • Zhiqing Huang
  • Junqiu Luo
  • Xiangbing Mao
  • Jie Yu
  • Jun HeEmail author
Applied microbial and cell physiology

Abstract

Chlorogenic acids (CGA), the most abundant natural polyphenol present in human diet and plants, have attracted considerable research interest because of their broad bioactivities including the antimicrobial activity. However, little is known about their influences on intestinal bacterial communities. Here, we described a response in intestinal microbiome to CGA using a porcine model. Twenty-four weaned pigs were allotted to two groups and fed with a basal diet or a basal diet containing 1000 mg/kg CGA. Results showed that CGA significantly increased the length of the small intestine (P < 0.05) and enhanced the activity of diamine oxidase (DAO) and the concentration of MHC-II in the jejunal and ileal mucosa (P < 0.05). Moreover, the acetate concentration in ileum and cecum digesta, and the propionate and butyrate concentrations in the cecum digesta, were significantly elevated by CGA (P < 0.05). Interestingly, CGA significantly increased the total 16S rRNA gene copies and bacterial alpha diversity in the cecum (P < 0.05). The relative abundance of bacteria from phyla Firmicutes and Bacteroidetes was increased in the cecum digesta (P < 0.05), whereas the abundance of bacteria from phylum Protebacteria was decreased by CGA (P < 0.05). Importantly, pigs on CGA-containing diet had higher abundance of Lactobacillus spp., Prevotella spp., Anaerovibrio spp., and Alloprevotella spp. in the cecum (P < 0.05). Not only did our study suggest a synergic response of intestinal barrier function and microbiota to the CGA, but the result will also contribute to understanding of the mechanisms behind the CGA-modulated gut health.

Keywords

Chlorogenic acid Microbiota Gut Health Weaned pigs 

Notes

Funding

This study was supported by the key Research and Development program of Sichuan Province (2018NZDZX0005) and the Youth Innovation teams of Animal Feed Biotechnology of Sichuan Province (2016TD0028).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Supplementary material

253_2019_10025_MOESM1_ESM.pdf (441 kb)
ESM 1 (PDF 441 kb)

References

  1. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J, Qin J, Sicheritz-Ponten T, Tims S, Torrents D, Ugarte E, Zoetendal EG, Wang J, Guarner F, Pedersen O, de Vos WM, Brunak S, Doré J, Consortium M, Weissenbach J, Ehrlich SD, Bork P (2011) Enterotypes of the human gut microbiome. Nature 473(7346):174–180.  https://doi.org/10.1038/nature09944 CrossRefGoogle Scholar
  2. Bajko E, Kalinowska M, Borowski P, Siergiejczyk L, Lewandowski W (2016) 5-O-Caffeoylquinic acid: a spectroscopic study and biological screening for antimicrobial activity. LWT-Food Sci Technol 65(1):471–479.  https://doi.org/10.1016/j.lwt.2015.08.024 CrossRefGoogle Scholar
  3. Booth AN, Emerson OH, Jones FT, DeEds F (1957) Urinary metabolites of caffeic and chlorogenic acids. J Biol Chem 229(1):51–59.  https://doi.org/10.1515/bchm2.1957.306.1-2.279 Google Scholar
  4. Camara-Lemarroy CR, Metz LM, Yong VW (2018) Focus on the gut-brain axis: multiple sclerosis, the intestinal barrier and the microbiome. World J Gastroentero 24(37):4217–4223. CNKI:SUN:ZXXY.0.2018-37-001 CrossRefGoogle Scholar
  5. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336.  https://doi.org/10.1038/nmeth.f.303 CrossRefGoogle Scholar
  6. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA 108 (Supplement-1): 4516-4522. doi:  https://doi.org/10.1073/pnas.1000080107
  7. Cera KR, Mahan DC, Cross RF, Reinhart GA, Whitmoyer RE (1988) Effect of age, weaning and postweaning diet on small intestinal growth and jejunal morphology in young swine. J Anim Sci 66(22):574–584.  https://doi.org/10.1016/0377-8401(88)90091-0 CrossRefGoogle Scholar
  8. Chen J, Zheng P, Zhang C, Yu B, He J, Yu J, Luo J, Mao X, Huang Z, Chen D (2017) Benzoic acid beneficially affects growth performance of weaned pigs which was associated with changes in gut bacterial populations, morphology indices and growth factor gene expression. J Anim Physiol An N 101(6):1137–1146.  https://doi.org/10.1111/jpn.12627 CrossRefGoogle Scholar
  9. Chen J, Li Y, Yu B, Chen D, Mao X, Zheng P, Luo J, He J (2018a) Dietary chlorogenic acid improves growth performance of weaned pigs through maintaining antioxidant capacity and intestinal digestion and absorption function. J Anim Sci 96(3):1108–1118.  https://doi.org/10.1093/jas/skx078 CrossRefGoogle Scholar
  10. Chen J, Xie H, Chen D, Yu B, Mao X, Zheng P, Yu J, Luo Y, Luo J, He J (2018b) Chlorogenic acid improves intestinal development via suppressing mucosa inflammation and cell apoptosis in weaned pigs. Acs Omega 3(2):2211–2219.  https://doi.org/10.1021/acsomega.7b01971 CrossRefGoogle Scholar
  11. Chen J, Yu B, Chen D, Huang Z, Mao X, Zheng P, Yu J, Luo J, He J (2018c) Chlorogenic acid improves intestinal barrier functions by suppressing mucosa inflammation and improving antioxidant capacity in weaned pigs. J Nutr Biochem 59:84–92.  https://doi.org/10.1016/j.jnutbio.2018.06.005 CrossRefGoogle Scholar
  12. Chung L, Orberg ET, Geis AL, Chan JL, Fu K, Shields CED, Dejea CM, Fathi P, Chen J, Finard BB, Ada T, McAllister F, Fan H, Wu X, Ganguly S, Lebid A, Metz P, SWV M, Housseau F (2018) Bacteroides fragilis toxin coordinates a pro-carcinogenic inflammatory cascade via targeting of colonic epithelial cells. Cell Host & Microbe 23(2):203–214.e5.  https://doi.org/10.1016/j.chom.2018.02.004 CrossRefGoogle Scholar
  13. Cowan TE, Palmnäs MS, Yang J, Bomhof MR, Ardell KL, Reimer RA, Vogel HJ, Shearer J (2014) Chronic coffee consumption in the diet-induced obese rat: impact on gut microbiota and serum metabolomics. J Nutr Biochem 25(4):489–495.  https://doi.org/10.1016/j.jnutbio.2013.12.009 CrossRefGoogle Scholar
  14. del Mar R-AM, Gordillo I (2010) New platforms of the violence in internet. In: Cipolla Ficarra FV (ed) International conference on advances in new technologies, interactive interfaces, and communicability. Springer, Berlin, Heidelberg, pp 142–150Google Scholar
  15. R Development Core Team (2013) R: a language and environment for statistical computing, Version 2.15.3. http://www.r-project.org/
  16. Dolara P, Luceri C, De Filippo C, Femia AP, Giovannelli L, Caderni G, Cecchini C, Silvi S, Orpianesi C, Cresci A (2005) Red wine polyphenols influence carcinogenesis, intestinal microflora, oxidative damage and gene expression profiles of colonic mucosa in F344 rats. Mutat Res/Fund Mol M 591(1–2):237–246.  https://doi.org/10.1016/j.mrfmmm.2005.04.022 CrossRefGoogle Scholar
  17. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10(10):996–998.  https://doi.org/10.1038/nmeth.2604 CrossRefGoogle Scholar
  18. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16):2194–2200.  https://doi.org/10.1093/bioinformatics/btr381 CrossRefGoogle Scholar
  19. Franklin MA, Mathew AG, Vickers JR, Clift RA (2002) Characterization of microbial populations and volatile fatty acid concentrations in the jejunum, ileum, and cecum of pigs weaned at 17 vs 24 days of age. J Anim Sci 80(11):2904–2910.  https://doi.org/10.2527/2002.80112904x CrossRefGoogle Scholar
  20. Gonthier MP, Verny MA, Besson C, Scalbert A (2003) Chlorogenic acid bioavailability largely depends on its metabolism by the gut microflora in rats. J Nutr 133(6):1853–1859.  https://doi.org/10.1093/jn/133.6.1853 CrossRefGoogle Scholar
  21. Gonthier MP, Remesy C, Scalbert A, Cheynier V, Souquet JM, Poutanen K, Aura AM (2006) Microbial metabolism of caffeic acid and its esters chlorogenic and caftaric acids by human faecal microbiota in vitro. Biomed Pharmacother 60(9):536–540.  https://doi.org/10.1016/j.biopha.2006.07.084 CrossRefGoogle Scholar
  22. Halas D, Hansen CF, Hampson DJ, Mullan BP, Kim JC, Wilson RH, Pluske JR (2010) Dietary supplementation with benzoic acid improves apparent ileal digestibility of total nitrogen and increases villous height and caecal microbial diversity in weaner pigs. Anim Feed Sci Tech 160(3–4):0–147.  https://doi.org/10.1016/j.anifeedsci.2010.07.001 Google Scholar
  23. Hara H, Orita N, Hatano S, Ichikawa H, Hara Y, Matsumoto N, Kimura Y, Terada A, Mitsuoka T (1995) Effect of tea polyphenols on fecal flora and fecal metabolic products of pigs. J Vet Med Sci 57(1):45–49.  https://doi.org/10.1292/jvms.57.45 CrossRefGoogle Scholar
  24. Holling TM, Schooten E, van Den Elsen PJ (2004) Function and regulation of MHC class II molecules in T-lymphocytes: of mice and men. Hum Immunol 65(4):282–290.  https://doi.org/10.1016/j.humimm.2004.01.005 CrossRefGoogle Scholar
  25. Hooper LV, Macpherson AJ (2010) Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol 10(3):159–169.  https://doi.org/10.1038/nri2710 CrossRefGoogle Scholar
  26. Hu TG, Wen P, Fu HZ, Lin GY, Liao ST, Zou YX (2019) Protective effect of mulberry (Morus atropurpurea) fruit against diphenoxylate-induced constipation in mice through the modulation of gut microbiota. Food Funct 10(3):1513–1528.  https://doi.org/10.1039/C9FO00132H CrossRefGoogle Scholar
  27. Ianiro G, Bibbo S, Scaldaferri F, Gasbarrini A, Cammarota G (2014) Fecal microbiota transplantation in inflammatory bowel disease: beyond the excitement. Medicine 93(19):e97.  https://doi.org/10.1097/MD.0000000000000097 CrossRefGoogle Scholar
  28. Iraporda C, Errea A, Romanin DE, Cayet D, Pereyra E, Pignataro O, Sirard JC, Garrote GL, Abraham AG, Rumbob M (2015) Lactate and short chain fatty acids produced by microbial fermentation downregulate proinflammatory responses in intestinal epithelial cells and myeloid cells. Immunobiology 220(10):1161–1169.  https://doi.org/10.1016/j.imbio.2015.06.004 CrossRefGoogle Scholar
  29. Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI (2011) Human nutrition, the gut microbiome and the immune system. Nature 474(7351):327–336.  https://doi.org/10.1038/nature10213 CrossRefGoogle Scholar
  30. Khan M, Raoult D, Richet H, Lepidi H, La Scola B (2007) Growth-promoting effects of single-dose intragastrically administered probiotics in chickens. Br Poult Sci 48(6):732–735.  https://doi.org/10.1080/00071660701716222 CrossRefGoogle Scholar
  31. Kim YS, Milner JA (2007) Dietary modulation of colon cancer risk. J Nutr 137(11):2576S–2579S.  https://doi.org/10.1093/jn/137.11.2576s CrossRefGoogle Scholar
  32. Koutsos A, Lima M, Conterno L, Gasperotti M, Bianchi M, Fava F, Vrhovsek U, Lovegrove JA, Tuohy KM (2017) Effects of commercial apple varieties on human gut microbiota composition and metabolic output using an in vitro colonic model. Nutrients 9(6):533.  https://doi.org/10.3390/nu9060533 CrossRefGoogle Scholar
  33. Leonard SG, Sweeney T, Bahar B, Lynch BP, O'Doherty JV (2011) Effects of dietary seaweed extract supplementation in sows and post-weaned pigs on performance, intestinal morphology, intestinal microflora and immune status. Brit J Nutr 106(5):688–699.  https://doi.org/10.1017/S0007114511000997 CrossRefGoogle Scholar
  34. Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444(7122):1022–1023.  https://doi.org/10.1038/4441022a CrossRefGoogle Scholar
  35. Li X, Liu Y, Hou X, Peng H, Zhang L, Jiang Q, Shi M, Ji Y, Wang Y, Shi W (2013) Chlorogenic acid inhibits the replication and viability of enterovirus 71 in vitro. PLoS One 8(9):e76007.  https://doi.org/10.1371/journal.pone.0076007 CrossRefGoogle Scholar
  36. Liang N, Kitts D (2016) Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutrients 8(1):16.  https://doi.org/10.3390/nu8010016 CrossRefGoogle Scholar
  37. Lou Z, Wang H, Zhu S, Ma C, Wang Z (2011) Antibacterial activity and mechanism of action of chlorogenic acid. J Food Sci 76(6):M398–M403.  https://doi.org/10.1111/j.1750-3841.2011.02213.x CrossRefGoogle Scholar
  38. Ludwig IA, Paz de Peña M, Cid C, Crozier A (2013) Catabolism of coffee chlorogenic acids by human colonic microbiota. Biofactors 39(6):623–632.  https://doi.org/10.1002/biof.1124 CrossRefGoogle Scholar
  39. Luo Y, Zhang L, Li H, Smidt H, Wright ADG, Zhang K, Ding X, Zeng Q, Bai S, Wang J, Li J, Zheng P, Tian G, Ji C, Chen D (2017) Different types of dietary fibers trigger specific alterations in composition and predicted functions of colonic bacterial communities in BALB/c mice. Front Microbiol 8:966.  https://doi.org/10.3389/fmicb.2017.00966 CrossRefGoogle Scholar
  40. Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957–2963.  https://doi.org/10.1093/bioinformatics/btr507 CrossRefGoogle Scholar
  41. Mahboob T, Azlan AM, Tan TC, Samudi C, Sekaran SD, Nissapatorn V, Wiart C (2016) Anti-encystment and amoebicidal activity of Lonicera japonica Thunb. and its major constituent chlorogenic acid in vitro. Asian Pac J Trop Med 9(9):866–871.  https://doi.org/10.1016/j.apjtm.2016.07.008 CrossRefGoogle Scholar
  42. Meurens F, Summerfield A, Nauwynck H, Saif L, Gerdts V (2012) The pig: a model for human infectious diseases. Trends Microbiol 20(1):50–57.  https://doi.org/10.1016/j.tim.2011.11.002 CrossRefGoogle Scholar
  43. Mills CE, Tzounis X, Oruna-Concha MJ, Mottram DS, Gibson GR, Spencer JP (2015) In vitro colonic metabolism of coffee and chlorogenic acid results in selective changes in human faecal microbiota growth. Brit J Nutr 113(8):1220–1227.  https://doi.org/10.1017/S0007114514003948 CrossRefGoogle Scholar
  44. Muthuswamy S, Rupasinghe HV (2007) Fruit phenolics as natural antimicrobial agents: selective antimicrobial activity of catechin, chlorogenic acid and phloridzin. J Food Agric Environ 5(3–4):81–85.  https://doi.org/10.3168/jds.2006-793 Google Scholar
  45. Nieto N, Torres MI, Fernández MI, Girón MD, Ríos A, Suárez MD, Gil A (2000) Experimental ulcerative colitis impairs antioxidant defense system in rat intestine. Digest Dis Sci 45(9):1820–1827.  https://doi.org/10.1023/a:1005565708038 CrossRefGoogle Scholar
  46. O'Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7(7):688–693.  https://doi.org/10.1038/sj.embor.7400731 CrossRefGoogle Scholar
  47. Puupponen-Pimiä R, Nohynek L, Hartmann-Schmidlin S, Kähkönen M, Heinonen M, Määttä-Riihinen K, Oksman-Caldentey KM (2005) Berry phenolics selectively inhibit the growth of intestinal pathogens. J Appl Microbiol 98(4):991–1000.  https://doi.org/10.1111/j.1365-2672.2005.02547.x CrossRefGoogle Scholar
  48. Queipo-Ortuño MI, Boto-Ordóñez M, Murri M, Gomez-Zumaquero JM, Clemente-Postigo M, Estruch R, Cardona DF, Andrés-Lacueva C, Tinahones FJ (2012) Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers. Am J Clin Nutr 95(6):1323–1334.  https://doi.org/10.3945/ajcn.111.027847 CrossRefGoogle Scholar
  49. Rechner AR, Spencer JP, Kuhnle G, Hahn U, Rice-Evans CA (2001) Novel biomarkers of the metabolism of caffeic acid derivatives in vivo. Free Radical Bio Med 30(11):1213–1222.  https://doi.org/10.1016/S0891-5849(01)00506-8 CrossRefGoogle Scholar
  50. Relman DA (2012) Microbiology: learning about who we are. Nature 486(7402):194–195.  https://doi.org/10.1038/486194a CrossRefGoogle Scholar
  51. Romano M, Polk WH, Awad JA, Arteaga CL, Nanney LB, Wargovich MJ, Kraus ER, Boland CR, Coffey RJ (1992) Transforming growth factor alpha protection against drug-induced injury to the rat gastric mucosa in vivo. J Clin Invest 90(6):2409–2421.  https://doi.org/10.1172/JCI116132 CrossRefGoogle Scholar
  52. Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9(8):313–323.  https://doi.org/10.1038/nri2614 CrossRefGoogle Scholar
  53. Ruan Z, Liu S, Zhou Y, Mi S, Liu G, Wu X, Yao K, Assaad H, Deng Z, Hou Y, Wu G, Yin Y (2014) Chlorogenic acid decreases intestinal permeability and increases expression of intestinal tight junction proteins in weaned rats challenged with LPS. PLoS One 9(6):e97815.  https://doi.org/10.1371/journal.pone.0097815 CrossRefGoogle Scholar
  54. Sánchez-Patán F, Cueva C, Monagas M, Walton GE, Gibson MGR, Quintanilla-López JE, Rosa LA, Martín-Álvarez PJ, Victoria MAM, Bartolomé B (2012) In vitro fermentation of a red wine extract by human gut microbiota: changes in microbial groups and formation of phenolic metabolites. J Agric Food Chem 60(9):2136–2147.  https://doi.org/10.1021/jf2040115 CrossRefGoogle Scholar
  55. Sembries S, Dongowski G, Jacobasch G, Mehrländer K, Will F, Dietrich H (2003) Effects of dietary fibre-rich juice colloids from apple pomace extraction juices on intestinal fermentation products and microbiota in rats. Brit J Nutr 90(03):607–615.  https://doi.org/10.1079/bjn2003925 CrossRefGoogle Scholar
  56. Spor A, Koren O, Ley R (2011) Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol 9(4):279–290.  https://doi.org/10.1038/nrmicro2540 CrossRefGoogle Scholar
  57. Tarnecki AM, Burgos FA, Ray CL, Arias CR (2017) Fish intestinal microbiome: diversity and symbiosis unravelled by metagenomics. J Appl Microbiol 123(1):2–17.  https://doi.org/10.1111/jam.13415 CrossRefGoogle Scholar
  58. Thom E (2007) The effect of chlorogenic acid enriched coffee on glucose absorption in healthy volunteers and its effect on body mass when used long-term in overweight and obese people. J Int Med Res 35(6):900–908.  https://doi.org/10.1016/S0379-6779(01)00605-1 CrossRefGoogle Scholar
  59. Thompson JS, Vaughan WP, Forst CF, Jacobs DL, Weekly JS, Rikkers LF (1987) The effect of the route of nutrient delivery on gut structure and diamine oxidase levels. JPEN-Parenter Enter 11(1):28–32.  https://doi.org/10.1177/014860718701100128 CrossRefGoogle Scholar
  60. Tian G, Wu X, Chen D, Yu B, He J (2017) Adaptation of gut microbiome to different dietary non-starch polysaccharide fractions in a porcine model. Mol Nutr Food Res 61(10):1700012.  https://doi.org/10.1002/mnfr.201700012 CrossRefGoogle Scholar
  61. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microb 73(16):5261–5267.  https://doi.org/10.1128/aem.00062-07 CrossRefGoogle Scholar
  62. Wells JM, Brummer RJ, Derrien M, MacDonald TT, Troost F, Cani PD, Theodorou V, Dekker J, Méheust A, Vos WMD (2016) Homeostasis of the gut barrier and potential biomarkers. Am J Physiol-Gastr L 312(3):G171–G193.  https://doi.org/10.1152/ajpgi.00048.2015 Google Scholar
  63. Wu Y, Liu W, Li Q, Li Y, Yan Y, Huang F, Wu X, Zhou Q, Shu X, Ruan Z (2017) Dietary chlorogenic acid regulates gut microbiota, serum-free amino acids and colonic serotonin levels in growing pigs. Int J Food Sci Nutr 69(5):566–573.  https://doi.org/10.1080/09637486.2017.1394449 CrossRefGoogle Scholar
  64. Xiao Y, Yan H, Diao H, Yu B, He J, Yu J, Zheng P, Mao X, Luo Y, Chen D (2017) Early gut microbiota intervention suppresses DSS-induced inflammatory responses by deactivating TLR/NLR signalling in pigs. Sci Rep-UK 7(1):3224.  https://doi.org/10.1038/s41598-017-03161-6 CrossRefGoogle Scholar
  65. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, Knight R, Gordon JI (2012) Human gut microbiome viewed across age and geography. Nature 486(7402):222–227.  https://doi.org/10.1038/nature11053 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jiali Chen
    • 1
    • 2
  • Bing Yu
    • 1
    • 2
  • Daiwen Chen
    • 1
    • 2
  • Ping Zheng
    • 1
    • 2
  • Yuheng Luo
    • 1
    • 2
  • Zhiqing Huang
    • 1
    • 2
  • Junqiu Luo
    • 1
    • 2
  • Xiangbing Mao
    • 1
    • 2
  • Jie Yu
    • 1
    • 2
  • Jun He
    • 1
    • 2
    Email author
  1. 1.Institute of Animal NutritionSichuan Agricultural UniversityChengduPeople’s Republic of China
  2. 2.Key Laboratory of Animal Disease–Resistance NutritionChengduPeople’s Republic of China

Personalised recommendations