Advertisement

Applied Microbiology and Biotechnology

, Volume 103, Issue 17, pp 6933–6948 | Cite as

Degradation and transformation of fluoroquinolones by microorganisms with special emphasis on ciprofloxacin

  • Marina Rusch
  • Astrid Spielmeyer
  • Holger Zorn
  • Gerd HamscherEmail author
Mini-Review
  • 72 Downloads

Abstract

Although internationally recognized as the “highest priority critically important antimicrobials,” fluoroquinolones are extensively used in both human and veterinary medicine. Poor metabolism and recalcitrance of fluoroquinolones have led to their worldwide presence in municipal wastewaters as well as in manure and, consequently, in several environmental compartments. Being one of the most widely used fluoroquinolones in human medicine and, aside from that, the main metabolite of the veterinary drug enrofloxacin, ciprofloxacin is the most frequently detected fluoroquinolone in effluents of European wastewater treatment plants. Due to serious global concerns about the increasing emergence of bacterial (multi)resistances toward the highly efficient fluoroquinolones, special attention has been paid to their environmental degradation by various microorganisms. This review summarizes research on microbial transformation and degradation of fluoroquinolones with special emphasis on ciprofloxacin, presents an overview of the main ciprofloxacin biotransformation products, and takes a closer look at their biological relevance. Furthermore, own data, experiences, and publications gathered from our recent research in the field are acknowledged.

Keywords

Ciprofloxacin Biotransformation Biodegradation Fungi Metabolism Metabolites 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2019_10017_MOESM1_ESM.pdf (247 kb)
ESM 1 (PDF 246 kb)

References

  1. Accinelli C, Saccà ML, Batisson I, Fick J, Mencarelli M, Grabic R (2010) Removal of oseltamivir (Tamiflu) and other selected pharmaceuticals from wastewater using a granular bioplastic formulation entrapping propagules of Phanerochaete chrysosporium. Chemosphere 81:436–443.  https://doi.org/10.1016/j.chemosphere.2010.06.074 Google Scholar
  2. Adjei MD, Heinze TM, Deck J, Freeman JP, Williams AJ, Sutherland JB (2006) Transformation of the antibacterial agent norfloxacin by environmental mycobacteria. Appl Environ Microbiol 72:5790–5793.  https://doi.org/10.1128/AEM.03032-05 Google Scholar
  3. Adjei MD, Heinze TM, Deck J, Freeman JP, Williams AJ, Sutherland JB (2007) Acetylation and nitrosation of ciprofloxacin by environmental strains of mycobacteria. Can J Microbiol 53:144–147.  https://doi.org/10.1139/w06-101 Google Scholar
  4. Al-Ahmad A, Daschner FD, Kümmerer K (1999) Biodegradability of cefotiam, ciprofloxacin, meropenem, penicillin G, and sulfamethoxazole and inhibition of waste water bacteria. Arch Environ Contam Toxicol 37:158–163.  https://doi.org/10.1007/s002449900501 Google Scholar
  5. Alexy R, Kümpel T, Kümmerer K (2004) Assessment of degradation of 18 antibiotics in the closed bottle test. Chemosphere 57:505–512.  https://doi.org/10.1016/j.chemosphere.2004.06.024 Google Scholar
  6. Amorim CL, Moreira IS, Maia AS, Tiritan ME, Castro PML (2014) Biodegradation of ofloxacin, norfloxacin, and ciprofloxacin as single and mixed substrates by Labrys portucalensis F11. Appl Microbiol Biotechnol 98:3181–3190.  https://doi.org/10.1007/s00253-013-5333-8 Google Scholar
  7. Anadón A, Martínez-Larrañaga MR, Iturbe J, Martínez MA, Díaz MJ, Frejo MT, Martínez M (2001) Pharmacokinetics and residues of ciprofloxacin and its metabolites in broiler chickens. Res Vet Sci 71:101–109.  https://doi.org/10.1053/rvsc.2001.0494 Google Scholar
  8. Andrews JM (2001) Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48:5–16.  https://doi.org/10.1093/jac/48.suppl_1.5 Google Scholar
  9. Andriamalala A, Vieublé-Gonod L, Dumeny V, Cambier P (2018) Fate of sulfamethoxazole, its main metabolite N-ac-sulfamethoxazole and ciprofloxacin in agricultural soils amended or not by organic waste products. Chemosphere 191:607–615.  https://doi.org/10.1016/j.chemosphere.2017.10.093 Google Scholar
  10. Backhaus T, Scholze M, Grimme LH (2000) The single substance and mixture toxicity of quinolones to bioluminescent bacterium Vibrio fischeri. Aquat Toxicol 49:49–61.  https://doi.org/10.1016/S0166-445X(99)00069-7 Google Scholar
  11. Bártíková H, Podlipná R, Skálová L (2016) Veterinary drugs in the environment and their toxicity to plants. Chemosphere 144:2290–2301.  https://doi.org/10.1016/j.chemosphere.2015.10.137 Google Scholar
  12. Becker D, Varela della Giustina S, Rodriguez-Mozaz S, Schoevaart R, Barceló D, de Cazes M, Belleville M-P, Sanchez-Marcano J, de Gunzburg J, Couillerot O, Völker J, Oehlmann J, Wagner M (2016) Removal of antibiotics in wastewater by enzymatic treatment with fungal laccase—degradation of compounds does not always eliminate toxicity. Bioresour Technol 219:500–509.  https://doi.org/10.1016/j.biortech.2016.08.004 Google Scholar
  13. Berendsen BJA, Lahr J, Nibbeling C, Jansen LJM, Bongers IEA, Wipfler EL, van de Schans MGM (2018) The persistence of a broad range of antibiotics during calve, pig and broiler manure storage. Chemosphere 204:267–276.  https://doi.org/10.1016/j.chemosphere.2018.04.042 Google Scholar
  14. Blánquez A, Guillén F, Rodríguez J, Arias ME, Hernández M (2016) The degradation of two fluoroquinolone based antimicrobials by SilA, an alkaline laccase from Streptomyces ipomoeae. World J Microbiol Biotechnol 32:52.  https://doi.org/10.1007/s11274-016-2032-5 Google Scholar
  15. Borner K, Lode H (1986) Biotransformation von ausgewählten Gyrasehemmern. Infection 14:S54–S59Google Scholar
  16. Boxall ABA, Johnson P, Smith EJ, Sinclair CJ, Stutt E, Levy LS (2006) Uptake of veterinary medicines from soil into plants. J Agric Food Chem 54:2288–2297.  https://doi.org/10.1021/jf053041t Google Scholar
  17. Cassini A, Högberg LD, Plachouras D, Quattrocchi A, Hoxha A, Simonsen GS, Colomb-Cotinat M, Kretzschmar ME, Devleesschauwer B, Cecchini M, Ouakrim DA, Oliveira TC, Struelens MJ, Suetens C, Monnet DL, Burden of AMR Collaborative Group (2019) Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis 19:56–66.  https://doi.org/10.1016/S1473-3099(18)30605-4 Google Scholar
  18. Chakraborty P, Abraham J (2017) Comparative study on degradation of norfloxacin and ciprofloxacin by Ganoderma lucidum JAPC1. Korean J Chem Eng 34:1122–1128.  https://doi.org/10.1007/s11814-016-0345-6 Google Scholar
  19. Chen Y, Rosazza JPN, Reese CP, Chang H-Y, Nowakowski MA, Kiplinger JP (1997) Microbial models of soil metabolism: biotransformations of danofloxacin. J Ind Microbiol Biotechnol 19:378–384.  https://doi.org/10.1038/sj.jim.2900409 Google Scholar
  20. Chowdhury F, Langenkämper G, Grote M (2016) Studies on uptake and distribution of antibiotics in red cabbage. J Verbr Lebensm 11:61–69.  https://doi.org/10.1007/s00003-015-1008-y Google Scholar
  21. Chung HS, Lee Y-J, Rahman MM, Abd El-Aty AM, Lee HS, Kabir MH, Kim SW, Park B-J, Kim J-E, Hacimüftüoğlu F, Nahar N, Shin H-C, Shim J-H (2017) Uptake of the veterinary antibiotics chlortetracycline, enrofloxacin, and sulphathiazole from soil by radish. Sci Total Environ 605-606:322–331.  https://doi.org/10.1016/j.scitotenv.2017.06.231 Google Scholar
  22. Cruz-Morató C, Rodríguez-Rodríguez CE, Marco-Urrea E, Sarrà M, Caminal G, Vicent T, Jelić A, García-Galán MJ, Pérez S, Díaz-Cruz MS, Petrović M, Barceló D (2012) Biodegradation of pharmaceuticals by fungi and metabolites identification. In: Vicent T, Caminal G, Eljarrat E, Barceló D (eds) Emerging organic contaminants in sludges. Springer, Berlin, pp 165–213Google Scholar
  23. Cruz-Morató C, Ferrando-Climent L, Rodriguez-Mozaz S, Barceló D, Marco-Urrea E, Vicent T, Sarrà M (2013) Degradation of pharmaceuticals in non-sterile urban wastewater by Trametes versicolor in a fluidized bed bioreactor. Water Res 47:5200–5210.  https://doi.org/10.1016/j.watres.2013.06.007 Google Scholar
  24. Cruz-Morató C, Lucas D, Llorca M, Rodriguez-Mozaz S, Gorga M, Petrovic M, Barceló D, Vicent T, Sarrà M, Marco-Urrea E (2014) Hospital wastewater treatment by fungal bioreactor: removal efficiency for pharmaceuticals and endocrine disruptor compounds. Sci Total Environ 493:365–376.  https://doi.org/10.1016/j.scitotenv.2014.05.117 Google Scholar
  25. Čvančarová M, Moeder M, Filipová A, Reemtsma T, Cajthaml T (2013) Biotransformation of the antibiotic agent flumequine by ligninolytic fungi and residual antibacterial activity of the transformation mixtures. Environ Sci Technol 47:14128–14136.  https://doi.org/10.1021/es403470s Google Scholar
  26. Čvančarová M, Moeder M, Filipová A, Cajthaml T (2015) Biotransformation of fluoroquinolone antibiotics by ligninolytic fungi—metabolites, enzymes and residual antibacterial activity. Chemosphere 136:311–320.  https://doi.org/10.1016/j.chemosphere.2014.12.012 Google Scholar
  27. Dalla Bona M, Di Leva V, De Liguoro M (2014) The sensitivity of Daphnia magna and Daphnia curvirostris to 10 veterinary antibacterials and to some of their binary mixtures. Chemosphere 115:67–74.  https://doi.org/10.1016/j.chemosphere.2014.02.003 Google Scholar
  28. Domagala JM (1994) Structure-activity and structure-side-effect relationships for the quinolone antibacterials. J Antimicrob Chemother 33:685–706Google Scholar
  29. Drusano G, Labro M-T, Cars O, Mendes P, Shah P, Sörgel F, Weber W (1998) Pharmacokinetics and pharmacodynamics of fluoroquinolones. Clin Microbiol Infec 4:2S27–2S41.  https://doi.org/10.1111/j.1469-0691.1998.tb00692.x Google Scholar
  30. Ebert I, Bachmann J, Kühnen U, Küster A, Kussatz C, Maletzki D, Schlüter C (2011) Toxicity of the fluoroquinolone antibiotics enrofloxacin and ciprofloxacin to photoautotrophic aquatic organisms. Environ Toxicol Chem 30:2786–2792.  https://doi.org/10.1002/etc.678 Google Scholar
  31. ECDC (2018) Antimicrobial consumption—annual epidemiological report for 2017. http://ecdc.europa.eu/sites/portal/files/documents/AER_for_2017-antimicrobial-consumption.pdf. Accessed 8 July 2019
  32. EFSA (2019) The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2017. EFSA J 17:5598.  https://doi.org/10.2903/j.efsa.2019.5598 Google Scholar
  33. Eggen T, Asp TN, Grave K, Hormazabal V (2011) Uptake and translocation of metformin, ciprofloxacin and narasin in forage- and crop plants. Chemosphere 85:26–33.  https://doi.org/10.1016/j.chemosphere.2011.06.041 Google Scholar
  34. Feng N-X, Yu J, Xiang L, Yu L-Y, Zhao H-M, Mo C-H, Li Y-W, Cai Q-Y, Wong M-H, Li QX (2019) Co-metabolic degradation of the antibiotic ciprofloxacin by the enriched bacterial consortium XG and its bacterial community composition. Sci Total Environ 665:41–51.  https://doi.org/10.1016/j.scitotenv.2019.01.322 Google Scholar
  35. Ferrando-Climent L, Cruz-Morató C, Marco-Urrea E, Vicent T, Sarrà M, Rodriguez-Mozaz S, Barceló D (2015) Non conventional biological treatment based on Trametes versicolor for the elimination of recalcitrant anticancer drugs in hospital wastewater. Chemosphere 136:9–19.  https://doi.org/10.1016/j.chemosphere.2015.03.051 Google Scholar
  36. Gao N, Liu C-X, Xu Q-M, Cheng J-S, Yuan Y-J (2018) Simultaneous removal of ciprofloxacin, norfloxacin, sulfamethoxazole by co-producing oxidative enzymes system of Phanerochaete chrysosporium and Pycnoporus sanguineus. Chemosphere 195:146–155.  https://doi.org/10.1016/j.chemosphere.2017.12.062 Google Scholar
  37. Girardi C, Greve J, Lamshöft M, Fetzer I, Miltner A, Schäffer A, Kästner M (2011) Biodegradation of ciprofloxacin in water and soil and its effects on the microbial communities. J Hazard Mater 198:22–30.  https://doi.org/10.1016/j.jhazmat/2011.10.004 Google Scholar
  38. Golet EM, Xifra I, Siegrist H, Alder AC, Giger W (2003) Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil. Environ Sci Technol 37:3243–3249.  https://doi.org/10.1021/es0264448 Google Scholar
  39. Gomes MP, Gonçalves CA, de Brito JCM, Souza AM, da Silva Cruz FV, Bicalho EM, Figueredo CC, Garcia QS (2017) Ciprofloxacin induces oxidative stress in duckweed (Lemna minor L.): implications for energy metabolism and antibiotic-uptake ability. J Hazard Mater 328:140–149.  https://doi.org/10.1016/j.jhazmat.2017.01.005 Google Scholar
  40. Granneman GR, Snyder KM, Shu VS (1986) Difloxacin metabolism and pharmacokinetics in humans after single oral doses. Antimicrob Agents Chemother 30:689–693.  https://doi.org/10.1128/aac.30.5.689 Google Scholar
  41. Grenni P, Ancona V, Caracciolo AB (2018) Ecological effects of antibiotics on natural ecosystems: a review. Microchem J 136:25–39.  https://doi.org/10.1016/j.microc.2017.02.006 Google Scholar
  42. Gros M, Cruz-Morato C, Marco-Urrea E, Longrée P, Singer H, Sarrà M, Hollender J, Vicent T, Rodriguez-Mozaz S, Barceló D (2014) Biodegradation of the X-ray contrast agent iopromide and the fluoroquinolone antibiotic ofloxacin by the white rot fungus Trametes versicolor in hospital wastewaters and identification of degradation products. Water Res 60:228–241.  https://doi.org/10.1016/j.watres.2014.04.042 Google Scholar
  43. Grote M, Meriç DH, Langenkämper G, Hayen H, Betsche T, Freitag M (2009) Untersuchungen zum Transfer pharmakologisch wirksamer Substanzen aus der Nutztierhaltung in Poree und Weißkohl. J Verbr Lebensm 4:287–304.  https://doi.org/10.1007/s00003-009-0316-5 Google Scholar
  44. Gulde R, Meier U, Schymanski EL, Kohler HP, Helbling DE, Derrer S, Rentsch D, Fenner K (2016) Systematic exploration of biotransformation reactions of amine-containing micropollutants in activated sludge. Environ Sci Technol 50:2908–2920.  https://doi.org/10.1021/acs.est.5b05186 Google Scholar
  45. Halling-Sørensen B, Holten Lützhøft HC, Andersen HR, Ingerslev F (2000) Environmental risk assessment of antibiotics: comparison of mecillinam, trimethoprim and ciprofloxacin. J Antimicrob Chemother 46:53–58.  https://doi.org/10.1093/jac/46.suppl_1.53 Google Scholar
  46. Hamscher G, Mohring SAI (2012) Tierarzneimittel in Böden und in der aquatischen Umwelt. Chem Ing Tech 84:1052–1061.  https://doi.org/10.1002/cite.201100255 Google Scholar
  47. Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9:177–192.  https://doi.org/10.1038/nrmicro2519 Google Scholar
  48. Hooper DC (1999) Mode of action of fluoroquinolones. Drugs 58:6–10.  https://doi.org/10.2165/00003495-199958002-00002 Google Scholar
  49. Hüttel W, Hoffmeister D (2010) Fungal biotransformations in pharmaceutical sciences. In: Hofrichter M (ed) The mycota X: industrial applications, 2nd edn. Springer, Berlin, pp 293–317Google Scholar
  50. Jia A, Wan Y, Xiao Y, Hu J (2012) Occurrence and fate of quinolone and fluoroquinolone antibiotics in a municipal sewage treatment plant. Water Res 46:387–394.  https://doi.org/10.1016/j.watres.2011.10.055 Google Scholar
  51. Jia Y, Khanal SK, Shu H, Zhang H, Chen G-H, Lu H (2018) Ciprofloxacin degradation in anaerobic sulfate-reducing bacteria (SRB) sludge system: mechanism and pathways. Water Res 136:64–74.  https://doi.org/10.1016/j.watres.2018.02.057 Google Scholar
  52. Jung CM, Heinze TM, Strakosha R, Elkins CA, Sutherland JB (2009) Acetylation of fluoroquinolone antimicrobial agents by an Escherichia coli strain isolated from a municipal wastewater treatment plant. J Appl Microbiol 106:564–571.  https://doi.org/10.1111/j.1365-2672.2008.04026.x Google Scholar
  53. Karl W, Schneider J, Wetzstein H-G (2006) Outlines of an “exploding” network of metabolites generated from the fluoroquinolone enrofloxacin by the brown rot fungus Gloeophyllum striatum. Appl Microbiol Biotechnol 71:101–113.  https://doi.org/10.1007/s00253-005-0177-5 Google Scholar
  54. Kees F, Raasch W, Grobecker H (1992) Strukturelle Charakterisierung eines unbekannten Metaboliten von Ciprofloxacin. Arzneimittel-Forsch Drug Res 42:570–575Google Scholar
  55. Kim D-W, Heinze TM, Kim B-S, Schnackenberg LK, Woodling KA, Sutherland JB (2011) Modification of norfloxacin by Microbacterium sp. strain isolated from a wastewater treatment plant. Appl Environ Microbiol 77:6100–6108.  https://doi.org/10.1128/AEM.00545-11 Google Scholar
  56. Kim D-W, Feng J, Chen H, Kweon O, Gao Y, Yu L-R, Burrowes VJ, Sutherland JB (2013) Identification of the enzyme responsible for N-acetylation of norfloxacin by Microbacterium sp. strain 4N2-2. Appl Environ Microbiol 79:314–321.  https://doi.org/10.1128/AEM.02347-12 Google Scholar
  57. Knapp JS, Bromley-Challoner KCA (2003) Recalcitrant organic compounds. In: Mara D, Horan N (eds) The handbook of water and wastewater microbiology, 1st edn. Academic, London, pp 559–595Google Scholar
  58. Kümmerer K, Al-Ahmad A, Mersch-Sundermann V (2000) Biodegradability of some antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in a simple test. Chemosphere 40:701–710.  https://doi.org/10.1016/S0045-6535(99)00439-7 Google Scholar
  59. Larsson DGJ, de Pedro C, Paxeus N (2007) Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J Hazard Mater 148:751–755.  https://doi.org/10.1016/j.hazmat.2007.07.008 Google Scholar
  60. Lewis G, Juhasz A, Smith E (2012) Environmental metabolites of fluoroquinolones: synthesis, fractionation and toxicological assessment of some biologically active metabolites of ciprofloxacin. Environ Sci Pollut Res 19:2697–2707.  https://doi.org/10.1007/s11356-012-0766-7 Google Scholar
  61. Liao X, Li B, Zou R, Dai Y, Xie S, Yuan B (2016) Biodegradation of antibiotic ciprofloxacin: pathways, influential factors, and bacterial community structure. Environ Sci Pollut Res 23:7911–7918.  https://doi.org/10.1007/s11356-016-6054-1 Google Scholar
  62. Lillenberg M, Litvin SV, Nei L, Roasto M, Sepp K (2010) Enrofloxacin and ciprofloxacin uptake by plants from soil. Agron Res 8:807–814Google Scholar
  63. Lindberg RH, Olofsson U, Rendahl P, Johansson MI, Tysklind M, Andersson BAV (2006) Behavior of fluoroquinolones and trimethoprim during mechanical, chemical, and active sludge treatment of sewage water and digestion of sludge. Environ Sci Technol 40:1042–1048.  https://doi.org/10.1021/es0516211 Google Scholar
  64. Liyanage GY, Manage PM (2018) Removal of ciprofloxacin (CIP) by bacteria isolated from hospital effluent water and identification of degradation pathways. Int J Med Pharm Drug Res 2:37–47.  https://doi.org/10.22161/ijmpd.2.3.1 Google Scholar
  65. Loos R, Carvalho R, António DC, Comero S, Locoro G, Tavazzi S, Paracchini B, Ghiani M, Lettieri T, Blaha L, Jarosova B, Voorspoels S, Servaes K, Haglund P, Fick J, Lindberg RH, Schwesig D, Gawlik BM (2013) EU-wide monitoring survey of emerging polar organic contaminants in wastewater treatment plant effluents. Water Res 47:6475–6487.  https://doi.org/10.1016/j.watres.2013.08.024 Google Scholar
  66. Lucas D, Badia-Fabregat M, Vicent T, Caminal G, Rodríguez-Mozaz S, Balcázar JL, Barceló D (2016) Fungal treatment for removal of antibiotics and antibiotic resistance genes in veterinary hospital wastewater. Chemosphere 152:301–308.  https://doi.org/10.1016/j.chemosphere.2016.02.113 Google Scholar
  67. Magdaleno A, Saenz ME, Juárez AB, Moretton J (2015) Effects of six antibiotics and their binary mixtures on growth of Pseudokirchneriella subcapitata. Ecotoxicol Environ Saf 113:72–78.  https://doi.org/10.1016/j.ecoenv.2014.11.021 Google Scholar
  68. Maia AS, Ribeiro AR, Amorim CL, Barreiro JC, Cass QB, Castro PM, Tiritan ME (2014) Degradation of fluoroquinolone antibiotics and identification of metabolites/transformation products by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1333:87–98.  https://doi.org/10.1016/j.chroma.2014.01.069 Google Scholar
  69. Maia AS, Tiritan ME, Castro PML (2018) Enantioselective degradation of ofloxacin and levofloxacin by the bacterial strains Labrys portucalensis F11 and Rhodococcus sp. FP1. Ecotoxicol Environ Saf 155:144–151.  https://doi.org/10.1016/j.ecoenv.2018.02.067 Google Scholar
  70. Marco-Urrea E, Pérez-Trujillo M, Vicent T, Caminal G (2009) Ability of white-rot fungi to remove selected pharmaceuticals and identification of degradation products of ibuprofen by Trametes versicolor. Chemosphere 74:765–772.  https://doi.org/10.1016/j.chemosphere.2008.10.040 Google Scholar
  71. Marengo JR, Kok RA, Burrows LA, Velagaleti RR, Stamm JM (2001) Biodegradation of 14C-sarafloxacin hydrochloride, a fluoroquinolone antimicrobial by Phanerochaete chrysosporium. J Sci Ind Res 60:121–130Google Scholar
  72. Marquez B, Pourcelle V, Vallet CM, Mingeot-Leclercq M-P, Tulkens PM, Marchand-Bruynaert J, Van Bambeke F (2014) Pharmacological characterization of 7-(4-(piperazin-1-yl)) ciprofloxacin derivatives: antibacterial activity, cellular accumulation, susceptibility to efflux transporters, and intracellular activity. Pharm Res 31:1290–1301.  https://doi.org/10.1007/s11095-013-1250-x Google Scholar
  73. Martens R, Wetzstein H-G, Zadrazil F, Capelari M, Hoffmann P, Schmeer N (1996) Degradation of the fluoroquinolone enrofloxacin by wood-rotting fungi. Appl Environ Microbiol 62:4206–4209Google Scholar
  74. Martins N, Pereira R, Abrantes N, Pereira J, Gonçalves F, Marques CR (2012) Ecotoxicological effects of ciprofloxacin on freshwater species: data integration and derivation of toxicity thresholds for risk assessment. Ecotoxicol 21:1167–1176.  https://doi.org/10.1007/s10646-012-0871-x Google Scholar
  75. Migliore L, Cozzolino S, Fiori M (2003) Phytotoxicity to and uptake of enrofloxacin in crop plants. Chemosphere 52:1233–1244.  https://doi.org/10.1016/S0045-6535(03)00272-8 Google Scholar
  76. Nakamura R, Yamaguchi T, Sekine Y, Hashimoto M (1983) Determination of a new antibacterial agent (AT-2266) and its metabolites in plasma and urine by high-performance liquid chromatography. J Chromatogr 278:321–328Google Scholar
  77. Nguyen ST, Ding X, Butler MM, Tashjian TF, Peet NP, Bowlin TL (2011) Preparation and antibacterial evaluation of decarboxylated fluoroquinolones. Bioorg Med Chem Lett 21:5961–5963.  https://doi.org/10.1016/j.bmcl.2011.07.060 Google Scholar
  78. Nguyen LN, Nghiem LD, Oh S (2018) Aerobic biotransformation of the antibiotic ciprofloxacin by Bradyrhizobium sp. isolated from activated sludge. Chemosphere 211:600–607.  https://doi.org/10.1016/j.chemosphere.2018.08.004 Google Scholar
  79. Opriş O, Copaciu F, Loredana Soran M, Ristoiu D, Niinemets Ü, Copolovici L (2013) Influence of nine antibiotics on key secondary metabolites and physiological characteristics in Triticum aestivum: leaf volatiles as a promising new tool to assess toxicity. Ecotoxicol Environ Saf 87:70–79.  https://doi.org/10.1016/j.ecoenv.2012.09.019 Google Scholar
  80. Palmer AC, Angelino E, Kishony R (2010) Chemical decay of an antibiotic inverts selection for resistance. Nat Chem Biol 6:105–107.  https://doi.org/10.1038/nchembio.289 Google Scholar
  81. Pan M, Chu LM (2017) Transfer of antibiotics from wastewater or animal manure to soil and edible crops. Environ Pollut 231:829–836.  https://doi.org/10.1016/j.envpol.2017.08.051 Google Scholar
  82. Pan L-J, Li J, Li C-X, Tang X-D, Yu G-W, Wang Y (2018) Study of ciprofloxacin biodegradation by a Thermus sp. isolated from pharmaceutical sludge. J Hazard Mater 343:59–67.  https://doi.org/10.1016/j.hazmat.2017.09.009 Google Scholar
  83. Papich MG, Riviere JE (2009) Fluoroquinolone antimicrobial drugs. In: Riviere JE, Papich MG (eds) Veterinary pharmacology and therapeutics, 9th edn. Wiley-Blackwell, Iowa, pp 983–1012Google Scholar
  84. Parshikov IA, Khasaeva FM (2018) Fungal transformation of ofloxacin and enrofloxacin. Asian J Microbiol Biotechnol Environ Sci 20:368–371.  https://doi.org/10.18411/0972-3005N2_18 Google Scholar
  85. Parshikov IA, Sutherland JB (2012) Microbial transformations of antimicrobial quinolones and related drugs. J Ind Microbiol Biotechnol 39:1731–1740.  https://doi.org/10.1007/s10295-012-1194-x Google Scholar
  86. Parshikov IA, Freeman JP, Lay JO, Beger RD, Williams AJ, Sutherland JB (1999) Regioselective transformation of ciprofloxacin to N-acetylciprofloxacin by the fungus Mucor ramannianus. FEMS Microbiol Lett 177:131–135.  https://doi.org/10.1111/j.1574-6968.1999.tb13723.x Google Scholar
  87. Parshikov IA, Freeman JP, Lay JO, Beger RD, Williams AJ, Sutherland JB (2000) Microbiological transformation of enrofloxacin by the fungus Mucor ramannianus. Appl Environ Microbiol 66:2664–2667.  https://doi.org/10.1128/AEM.66.6.2664-2667.2000 Google Scholar
  88. Parshikov IA, Freeman JP, Lay JO, Moody JD, Williams AJ, Beger RD, Sutherland JB (2001a) Metabolism of the veterinary fluoroquinolone sarafloxacin by the fungus Mucor ramannianus. J Ind Microbiol Biotechnol 26:140–144.  https://doi.org/10.1038/sj/jim/7000077 Google Scholar
  89. Parshikov IA, Heinze TM, Moody JD, Freeman JP, Williams AJ, Sutherland JB (2001b) The fungus Pestalotiopsis guepini as a model for biotransformation of ciprofloxacin and norfloxacin. Appl Microbiol Biotechnol 56:474–477.  https://doi.org/10.1007/s002530100672 Google Scholar
  90. Parshikov IA, Moody JD, Heinze TM, Freeman JP, Williams AJ, Sutherland JB (2002a) Transformation of cinoxacin by Beauveria bassiana. FEMS Microbiol Lett 214:133–136.  https://doi.org/10.1111/j.1574-6968.2002.tb11336.x Google Scholar
  91. Parshikov IA, Moody JD, Freeman JP, Lay JO, Williams AJ, Heinze TM, Sutherland JB (2002b) Formation of conjugates from ciprofloxacin and norfloxacin in cultures of Trichoderma viride. Mycologia 94:1–5.  https://doi.org/10.2307/3761840 Google Scholar
  92. Paul T, Dodd MC, Strathmann TJ (2010) Photolytic and photocatalytic decomposition of aqueous ciprofloxacin: transformation products and residual antibacterial activity. Water Res 44:3121–3132.  https://doi.org/10.1016/j.watres.2010.03.002 Google Scholar
  93. Prieto A, Möder M, Rodil R, Adrian L, Marco-Urrea E (2011) Degradation of the antibiotics norfloxacin and ciprofloxacin by a white-rot fungus and identification of degradation products. Bioresour Technol 102:10987–10995.  https://doi.org/10.1016/j.biortech.2011.08.055 Google Scholar
  94. Purkayastha N, Capone S, Beck AK, Seebach D, Leeds J, Thompson K, Moser HE (2015) Antibacterial activity of enrofloxacin and ciprofloxacin derivatives of β-octaarginine. Chem Biodivers 12:179–193.  https://doi.org/10.1002/cbdv.201400456 Google Scholar
  95. Rhodes CJ (2014) Mycoremediation (bioremediation with fungi)—growing mushrooms to clean the earth. Chem Speciat Bioavailab 26:196–198.  https://doi.org/10.3184/095422914X14047407349335 Google Scholar
  96. Riaz L, Mahmood T, Coyne MS, Khalid A, Rashid A, Hayat MT, Gulzar A, Amjad M (2017) Physiological and antioxidant response of wheat (Triticum aestivum) seedlings to fluoroquinolone antibiotics. Chemosphere 177:250–257.  https://doi.org/10.1016/j.chemosphere.2017.03.033 Google Scholar
  97. Robicsek A, Strahilevitz J, Jacoby GA, Macielag M, Abbanat D, Park CH, Bush K, Hooper DC (2006) Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat Med 12:83–88.  https://doi.org/10.1038/nm1347 Google Scholar
  98. Robinson AA, Belden JB, Lydy MJ (2005) Toxicity of fluoroquinolone antibiotics to aquatic organisms. Environ Toxicol Chem 24:423–430.  https://doi.org/10.1897/04-210R.1 Google Scholar
  99. Robson RA (1992) Quinolone pharmacokinetics. Int J Antimicrob Agents 2:3–10.  https://doi.org/10.1016/0924-8579(92)90020-R Google Scholar
  100. Rosendahl I, Siemens J, Kindler R, Groeneweg J, Zimmermann J, Czerwinski S, Lamshöft M, Laabs V, Wilke B-M, Vereecken H, Amelung W (2012) Persistence of the fluoroquinolone antibiotic difloxacin in soil and lacking effects on nitrogen turnover. J Environ Qual 41:1275–1283.  https://doi.org/10.2134/jeq2011.0459 Google Scholar
  101. Rusch M, Kauschat A, Spielmeyer A, Römpp A, Hausmann H, Zorn H, Hamscher G (2015) Biotransformation of the antibiotic danofloxacin by Xylaria longipes leads to an efficient reduction of its antibacterial activity. J Agric Food Chem 63:6897–6904.  https://doi.org/10.1021/acs.jafc.5b02343 Google Scholar
  102. Rusch M, Spielmeyer A, Meißner J, Kietzmann M, Zorn H, Hamscher G (2017) Efficient reduction of antibacterial activity and cytotoxicity of fluoroquinolones by fungal-mediated N-oxidation. J Agric Food Chem 65:3118–3126.  https://doi.org/10.1021/acs.jafc.7b01246 Google Scholar
  103. Rusch M, Spielmeyer A, Zorn H, Hamscher G (2018) Biotransformation of ciprofloxacin by Xylaria longipes: structure elucidation and residual antibacterial activity of metabolites. Appl Microbiol Biotechnol 102:8573–8584.  https://doi.org/10.1007/s00253-018-9231-y Google Scholar
  104. Sarmah AK, Meyer MT, Boxall AB (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725–759.  https://doi.org/10.1016/j.chemosphere.2006.03.026 Google Scholar
  105. Schulz J, Kemper N, Hartung J, Janusch F, Mohring SAI, Hamscher G (2019) Analysis of fluoroquinolones in dusts from intensive livestock farming and the co-occurrence of fluoroquinolone-resistant Escherichia coli. Sci Rep 9:5117.  https://doi.org/10.1038/s41598-019-41528-z Google Scholar
  106. Shi L, Zhou X, Zhang Y, Gu G (2009) Occurrence and removal of fluoroquinolone antibiotics in a sewage treatment plant in Shanghai, China. 3rd Int Conf Bioinform Biomed Eng 1–4.  https://doi.org/10.1109/ICBBE.2009.5163140
  107. Singh SK, Khajuria R, Kaur L (2017) Biodegradation of ciprofloxacin by the white rot fungus Pleaurotus ostreatus. 3 Biotech 7:69.  https://doi.org/10.1007/s13205-017-0684-y Google Scholar
  108. Slana M, Pahor V, Cvitkovič Maričič L, Sollner-Dolenc M (2014) Excretion pattern of enrofloxacin after oral treatment of chicken broilers. J Vet Pharmacol Ther 37:611–614.  https://doi.org/10.1111/jvp.12130 Google Scholar
  109. Sörgel F (1989) Metabolism of gyrase inhibitors. Rev Infect Dis 11:S1119–S1129.  https://doi.org/10.1093/clinids/11.Supplement_5.S1119 Google Scholar
  110. Sturini M, Speltini A, Maraschi F, Pretali L, Profumo A, Fasani E, Albini A, Migliavacca R, Nucleo E (2012) Photodegradation of fluoroquinolones in surface water and antimicrobial activity of the photoproducts. Water Res 46:5575–5582.  https://doi.org/10.1016/j.watres.2012.07.043 Google Scholar
  111. Sun J, Zeng Q, Tsang DCW, Zhu LZ, Li XD (2017) Antibiotics in the agricultural soils from the Yangtze River Delta, China. Chemosphere 189:301–308.  https://doi.org/10.1016/j.chemosphere.2017.09.040 Google Scholar
  112. Terzic S, Senta I, Matosic M, Ahel M (2011) Identification of biotransformation products of macrolide and fluoroquinolone antimicrobials in membrane bioreactor treatment by ultrahigh-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. Anal Bioanal Chem 401:353–363.  https://doi.org/10.1007/s00216-011-5060-x Google Scholar
  113. Touahar IE, Haroune L, Ba S, Bellenger J-P, Cabana H (2014) Characterization of combined cross-linked enzyme aggregates from laccase, versatile peroxidase and glucose oxidase, and their utilization for the elimination of pharmaceuticals. Sci Total Environ 481:90–99.  https://doi.org/10.1016/j.scitotenv.2014.01.132 Google Scholar
  114. Trouchon T, Lefebvre S (2016) A review of enrofloxacin for veterinary use. Open J Vet Med 6:40–58.  https://doi.org/10.4236/ojvm.2016.62006 Google Scholar
  115. Wang L, Qiang Z, Li Y, Ben W (2017) An insight into the removal of fluoroquinolones in activated sludge process: sorption and biodegradation characteristics. J Environ Sci 56:263–271.  https://doi.org/10.1016/j.jes.2016.10.006 Google Scholar
  116. Wetzstein H-G, Hallenbach W (2011) Tuning of antibacterial activity of a cyclopropyl fluoroquinolone by variation of the substituent at position C-8. J Antimicrob Chemother 66:2801–2808.  https://doi.org/10.1093/jac/dkr372 Google Scholar
  117. Wetzstein H-G, Schmeer N, Karl W (1997) Degradation of the fluoroquinolone enrofloxacin by the brown rot fungus Gloeophyllum striatum: identification of metabolites. Appl Environ Microbiol 63:4272–4281Google Scholar
  118. Wetzstein H-G, Stadler M, Tichy H-V, Dalhoff A, Karl W (1999) Degradation of ciprofloxacin by basidiomycetes and identification of metabolites generated by the brown rot fungus Gloeophyllum striatum. Appl Environ Microbiol 65:1556–1563Google Scholar
  119. Wetzstein H-G, Schneider J, Karl W (2006) Patterns of metabolites produced from the fluoroquinolone enrofloxacin by basidiomycetes indigenous to agricultural sites. Appl Microbiol Biotechnol 71:90–100.  https://doi.org/10.1007/s00253-005-0178-4 Google Scholar
  120. Wetzstein H-G, Schneider J, Karl W (2009) Comparative biotransformation of fluoroquinolone antibiotics in matrices of agricultural relevance. In: Henderson KL, Coats JR (eds) Veterinary pharmaceuticals in the environment, ACS symposium series, vol 1018. American Chemical Society, Washington, DC, pp 67–91Google Scholar
  121. Wetzstein H-G, Schneider J, Karl W (2012) Metabolite proving fungal cleavage of the aromatic core part of a fluoroquinolone antibiotic. AMB Express 2:3.  https://doi.org/10.1186/2191-0855-2-3 Google Scholar
  122. WHO (2017) WHO model list of essential medicines, 20th edition. http://apps.who.int/iris/bitstream/handle/10665/273826/EML-20-eng.pdf?ua=1. Accessed 8 July 2019
  123. WHO (2018) Critically important antimicrobials for human medicine, 6th revision. http://www.who.int/foodsafety/publications/antimicrobials-sixth/en/. Accessed 8 July 2019
  124. Williams AJ, Parshikov IA, Moody JD, Heinze TM, Sutherland JB (2004) Fungal transformation of an antimicrobial fluoroquinolone drug during growth on poultry litter materials. J Appl Poult Res 13:235–240.  https://doi.org/10.1093/japr/13.2.235 Google Scholar
  125. Williams AJ, Deck J, Freeman JP, Chiarelli MP, Adjei MD, Heinze TM, Sutherland JB (2007) Biotransformation of flumequine by the fungus Cunninghamella elegans. Chemosphere 67:240–243.  https://doi.org/10.1016/j.chemosphere.2006.10.016 Google Scholar
  126. Wu M-H, Que C-J, Xu G, Sun Y-F, Ma J, Xu H, Sun R, Tang L (2016) Occurrence, fate and interrelation of selected antibiotics in sewage treatment plants and their receiving surface water. Ecotoxicol Environ Saf 132:132–139.  https://doi.org/10.1016/j.ecoenv.2016.06.006 Google Scholar
  127. Zeiler HJ, Petersen U, Gau W, Ploschke HJ (1987) Antibacterial activity of the metabolites of ciprofloxacin and its significance in the bioassay. Arzneimittelforsch 37:131–134Google Scholar
  128. Zhao R, Li X, Hu M, Li S, Zhai Q, Jiang Y (2017) Efficient enzymatic degradation used as pre-stage treatment for norfloxacin removal by activated sludge. Bioprocess Biosyst Eng 40:1261–1270.  https://doi.org/10.1007/s00449-017-1786-y Google Scholar
  129. Zhao F, Chen L, Yang L, Li S, Sun L, Yu X (2018) Distribution, dynamics and determinants of antibiotics in soils in a peri-urban area of Yangtze River Delta, eastern China. Chemosphere 211:261–270.  https://doi.org/10.1016/j.chemosphere.2018.07.162 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Food Chemistry and Food BiotechnologyJustus Liebig University GiessenGiessenGermany
  2. 2.Fraunhofer Institute for Molecular Biology and Applied EcologyGiessenGermany

Personalised recommendations