Applied Microbiology and Biotechnology

, Volume 103, Issue 17, pp 7097–7110 | Cite as

Effect of “ribosome engineering” on the transcription level and production of S. albus indigenous secondary metabolites

  • Maria Lopatniuk
  • Maksym Myronovskyi
  • Alessia Nottebrock
  • Tobias Busche
  • Jörn Kalinowski
  • Bohdan Ostash
  • Viktor Fedorenko
  • Andriy LuzhetskyyEmail author
Applied genetics and molecular biotechnology


Significant resources are invested into efforts to improve the production yields of natural products from Actinobacteria, a well-recognized source of leads for several industries, most notably pharmaceutical one. Introduction of changes into genes for ribosomal protein S12 (rpsL) and/or 16S rRNA methylation (rsmG) is one of traditional approaches (referred to as ribosomal engineering) towards actinobacterial strain improvement. Yet, true potential of ribosome engineering remains unknown as it is currently coupled to empirical selection for aminoglycoside-resistance; rpsL mutations without such phenotypic expression could not be isolated. Here, we report a systematic and rational ribosome engineering approach to study the effect of a range of rpsL mutations on the production level of different biosynthetic gene clusters (BGC). The severe effect of diverse rpsL mutations together with deletion of rsmG engineered in Streptomyces albus has been revealed on the transcription level of several indigenous BGCs. The aforementioned mutations strongly impacted the transcription of indigenous BGCs, possibly because they alter the transcription of BGC-situated and global regulatory genes. The rsmG deletion with certain rpsL mutations can have a synergistic effect on the transcription level of indigenous BGCs. Our work thus provides the first streptomycete platform for rational engineering and study of virtually any nonlethal rpsL mutation. The tremendous effect of ribosome engineering on the transcription profile of the strains was reported for the first time. A library of described S. albus rpsL*/ΔrsmG strains represents a useful tool for overproducing known secondary metabolites and activating silent biosynthetic gene clusters in Actinobacteria.


Rational ribosome engineering Natural products Transcription profile Streptomyces 


Funding information

This work was supported by the ERC starting grant EXPLOGEN No. 281623, BMBF grant „MyBio“ 031B0344B to AL and DAAD scholarship Referat: 322 PZK: A/12/84540 to ML.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain studies with human participants or animals performed by any of authors.

Supplementary material

253_2019_10005_MOESM1_ESM.pdf (1.3 mb)
ESM 1 (PDF 1316 kb)


  1. Agarwal D, Gregory ST, O'Connor M (2011) Error-prone and error-restrictive mutations affecting ribosomal protein S12. J Mol Biol 410(1):1–9. Google Scholar
  2. Al-Bassam MM, Bibb MJ, Bush MJ, Chandra G, Buttner MJ (2014) Response regulator heterodimer formation controls a key stage in Streptomyces development. PLoS Genet 10(8):e1004554. Google Scholar
  3. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11(10):R106. Google Scholar
  4. Baltz RH (2011) Strain improvement in actinomycetes in the postgenomic era. J Ind Microbiol Biotechnol 38(6):657–666. Google Scholar
  5. Baltz RH (2017) Gifted microbes for genome mining and natural product discovery. J Ind Microbiol Biotechnol 44(4-5):573–588. Google Scholar
  6. Bekiesch P, Basitta P, Apel AK (2016) Challenges in the heterologous production of antibiotics in Streptomyces. Arch Pharm 349(8):594–601. Google Scholar
  7. Beltrametti F, Rossi R, Selva E, Marinelli F (2006) Antibiotic production improvement in the rare actinomycete Planobispora rosea by selection of mutants resistant to the aminoglycosides streptomycin and gentamycin and to rifamycin. J Ind Microbiol Biotechnol 33(4):283–288. Google Scholar
  8. Bilyk B, Luzhetskyy A (2014) Unusual site-specific DNA integration into the highly active pseudo-attB of the Streptomyces albus J1074 genome. Appl Microbiol Biotechnol 98(11):5095–5104. Google Scholar
  9. Chakraburtty R, Bibb M (1997) The ppGpp synthetase gene (relA) of Streptomyces coelicolor A3(2) play's a conditional role in antibiotic production and morphological differentiation. J Bacteriol 179(18):5854–5861. Google Scholar
  10. Cobb RE, Wang YJ, Zhao HM (2015) High-efficiency multiplex genome editing of streptomyces species using an engineered CRISPR/Cas System. ACS Synth Biol 4(6):723–728. Google Scholar
  11. Daniel-Ivad M, Hameed N, Tan S, Dhanjal R, Socko D, Pak P, Gverzdys T, Elliot MA, Nodwell JR (2017) An engineered allele of afsQ1 facilitates the discovery and investigation of cryptic natural products. ACS Chem Biol 12(3):628–634. Google Scholar
  12. Elliot M, Damji F, Passantino R, Chater K, Leskiw B (1998) The bldD gene of Streptomyces coelicolor A3(2): a regulatory gene involved in morphogenesis and antibiotic production. J Bacteriol 180(6):1549–1555Google Scholar
  13. Genilloud O (2017) Actinomycetes: still a source of novel antibiotics. Nat Prod Rep 34(10):1203–1232. Google Scholar
  14. Gomez-Escribano JP, Bibb MJ (2011) Engineering Streptomyces coelicolor for heterologous expression of secondary metabolite gene clusters. Microb Biotechnol 4(2):207–215. Google Scholar
  15. Gonzalez A, Rodriguez M, Brana AF, Mendez C, Salas JA, Olano C (2016) New insights into paulomycin biosynthesis pathway in Streptomyces albus J1074 and generation of novel derivatives by combinatorial biosynthesis. Microb Cell Factories 15:56. Google Scholar
  16. Herrmann S, Siegl T, Luzhetska M, Petzke L, Jilg C, Welle E, Erb A, Leadlay PF, Bechthold A, Luzhetskyy A (2012) Site-specific recombination strategies for engineering Actinomycete genomes. Appl Environ Microbiol 78(6):1804–1812. Google Scholar
  17. Higo A, Hara H, Horinouchi S, Ohnishi Y (2012) Genome-wide distribution of AdpA, a global regulator for secondary metabolism and morphological differentiation in Streptomyces, revealed the extent and complexity of the AdpA regulatory network. DNA Res 19(3):259–273. Google Scholar
  18. Hilker R, Stadermann KB, Schwengers O, Anisiforov E, Jaenicke S, Weisshaar B, Zimmermann T, Goesmann A (2016) ReadXplorer 2-detailed read mapping analysis and visualization from one single source. Bioinformatics 32(24):3702–3708. Google Scholar
  19. Hirano S, Tanaka K, Ohnishi Y, Horinouchi S (2008) Conditionally positive effect of the TetR-family transcriptional regulator AtrA on streptomycin production by Streptomyces griseus. Microbiol-Sgm 154:905–914. Google Scholar
  20. Holberger LE, Hayes CS (2009) Ribosomal protein S12 and aminoglycoside antibiotics modulate A-site mRNA cleavage and transfer-messenger RNA activity in Escherichia coli. J Biol Chem 284(46):32188–32200.
  21. Hosaka T, Xu J, Ochi K (2006) Increased expression of ribosome recycling factor is responsible for the enhanced protein synthesis during the late growth phase in an antibiotic-overproducing Streptomyces coelicolor ribosomal rpsL mutant. Mol Microbiol 61(4):883–897. Google Scholar
  22. Huser AT, Becker A, Brune I, Dondrup M, Kalinowski J, Plassmeier J, Puhler A, Wiegrabe I, Tauch A (2003) Development of a Corynebacterium glutamicum DNA microarray and validation by genome-wide expression profiling during growth with propionate as carbon source. J Biotechnol 106(2-3):269–286. Google Scholar
  23. Kim EJ, Yang I, Yoon YJ (2015) Developing Streptomyces venezuelae as a cell factory for the production of small molecules used in drug discovery. Arch Pharm Res 38(9):1606–1616. Google Scholar
  24. Koepff J, Keller M, Tsolis KC, Busche T, Ruckert C, Hamed MB, Anne J, Kalinowski J, Wiechert W, Economou A, Oldiges M (2017) Fast and reliable strain characterization of Streptomyces lividans through micro-scale cultivation. Biotechnol Bioeng 114(9):2011–2022. Google Scholar
  25. Komatsu M, Komatsu K, Koiwai H, Yamada Y, Kozone I, Izumikawa M, Hashimoto J, Takagi M, Omura S, Shin-ya K, Cane DE, Ikeda H (2013) Engineered Streptomyces avermitilis host for heterologous expression of biosynthetic gene cluster for secondary metabolites. ACS Synth Biol 2(7):384–396. Google Scholar
  26. Krasny L, Gourse RL (2004) An alternative strategy for bacterial ribosome synthesis: Bacillus subtilis rRNA transcription regulation. EMBO J 23(22):4473–4483. Google Scholar
  27. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359. Google Scholar
  28. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Proc GPD (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079. Google Scholar
  29. Li XX, Yu TF, He Q, McDowall KJ, Jiang BY, Jiang ZB, Wu LZ, Li GW, Li QL, Wang SM, Shi YY, Wang LF, Hong B (2015) Binding of a biosynthetic intermediate to AtrA modulates the production of lidamycin by Streptomyces globisporus. Mol Microbiol 96(6):1257–1271. Google Scholar
  30. McLean TC, Hoskisson PA, Seipke RF (2016) Coordinate regulation of antimycin and candicidin biosynthesis. Msphere 1(6).
  31. Miller CM, Baumberg S, Stockley PG (1997) Operator interactions by the Bacillus subtilis arginine repressor/activator, AhrC: novel positioning and DNA-mediated assembly of a transcriptional activator at catabolic sites. Mol Microbiol 26(1):37–48. Google Scholar
  32. Myronovskyi M, Luzhetskyy A (2013) Genome engineering in actinomycetes using site-specific recombinases. Appl Microbiol Biotechnol 97(11):4701–4712. Google Scholar
  33. Myronovskyi M, Welle E, Fedorenko V, Luzhetskyy A (2011) Beta-glucuronidase as a sensitive and versatile reporter in actinomycetes. Appl Environ Microbiol 77(15):5370–5383. Google Scholar
  34. Myronovskyi M, Rosenkranzer B, Luzhetskyy A (2014) Iterative marker excision system. Appl Microbiol Biotechnol 98(10):4557–4570. Google Scholar
  35. Myronovskyi M, Rosenkranzer B, Nadmid S, Pujic P, Normand P, Luzhetskyy A (2018) Generation of a cluster-free Streptomyces albus chassis strains for improved heterologous expression of secondary metabolite clusters. Metab Eng 49:316–324. Google Scholar
  36. Nishimura K, Hosaka T, Tokuyama S, Okamoto S, Ochi K (2007) Mutations in rsmG, encoding a 16S rRNA methyltransferase, result in low-level streptomycin resistance and antibiotic overproduction in Streptomyces coelicolor A3(2). J Bacteriol 189(10):3876–3883. Google Scholar
  37. Ochi K (2007) From microbial differentiation to ribosome engineering. Biosci Biotechnol Biochem 71(6):1373–1386. Google Scholar
  38. Ohnishi Y, Yamazaki H, Kato JY, Tomono A, Horinouchi S (2005) AdpA, a central transcriptional regulator in the A-factor regulatory cascade that leads to morphological development and secondary metabolism in Streptomyces griseus. Biosci Biotechnol Biochem 69(3):431–439. Google Scholar
  39. Okamoto-Hosoya Y, Sato TA, Ochi K (2000) Resistance to paromomycin is conferred by rpsL mutations, accompanied by an enhanced antibiotic production in Streptomyces coelicolor A3(2). J Antibiot 53(12):1424–1427Google Scholar
  40. Okamoto-Hosoya Y, Hosaka T, Ochi K (2003a) An aberrant protein synthesis activity is linked with antibiotic overproduction in rpsL mutants of Streptomyces coelicolor A3(2). Microbiol-Sgm 149:3299–3309. Google Scholar
  41. Okamoto-Hosoya Y, Okamoto S, Ochi K (2003b) Development of antibiotic-overproducing strains by site-directed mutagenesis of the rpsL gene in Streptomyces lividans. Appl Environ Microbiol 69(7):4256–4259. Google Scholar
  42. Olano C, Garcia I, Gonzalez A, Rodriguez M, Rozas D, Rubio J, Sanchez-Hidalgo M, Brana AF, Mendez C, Salas JA (2014) Activation and identification of five clusters for secondary metabolites in Streptomyces albus J1074. Microb Biotechnol 7(3):242–256. Google Scholar
  43. Perez-Redondo R, Rodriguez-Garcia A, Botas A, Santamarta I, Martin JF, Liras P (2012) ArgR of Streptomyces coelicolor is a versatile regulator. PLoS One 7(3):e32697. Google Scholar
  44. Rabyk M, Yushchuk O, Rokytskyy I, Anisimova M, Ostash B (2018) Genomic insights into evolution of AdpA family master regulators of morphological differentiation and secondary metabolism in Streptomyces. J Mol Evol 86(3-4):204–215. Google Scholar
  45. Rajkarnikar A, Kwon HJ, Ryu YW, Suh JW (2006) Catalytic domain of AfsKav modulates both secondary metabolism and morphologic differentiation in Streptomyces avermitilis ATCC 31272. Curr Microbiol 53(3):204–208. Google Scholar
  46. Ren HQ, Wang B, Zhao HM (2017) Breaking the silence: new strategies for discovering novel natural products. Curr Opin Biotechnol 48:21–27. Google Scholar
  47. Rodriguez H, Rico S, Diaz M, Santamaria RI (2013) Two-component systems in Streptomyces: key regulators of antibiotic complex pathways. Microb Cell Factories 12:127. Google Scholar
  48. Sambrook J, Russell DW (2006) The condensed protocols from molecular cloning : a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  49. Santos-Beneit F, Rodriguez-Garcia A, Martin JF (2011) Complex transcriptional control of the antibiotic regulator afsS in Streptomyces: PhoP and AfsR are overlapping, competitive activators. J Bacteriol 193(9):2242–2251. Google Scholar
  50. Seipke RF (2015) Strain-level diversity of secondary metabolism in Streptomyces albus. PLoS One 10(1):e0116457. Google Scholar
  51. Seipke RF, Hutchings MI (2013) The regulation and biosynthesis of antimycins. Beilstein J Org Chem 9:2556–2563. Google Scholar
  52. Seo Y, Cho KW, Rho JR, Mo SJ, Shin J (2001) A new analog of antimycin from Streptomyces sp M03033. J Microbiol Biotechnol 11(4):663–667Google Scholar
  53. Shima J, Hesketh A, Okamoto S, Kawamoto S, Ochi K (1996) Induction of actinorhodin production by rpsL (encoding ribosomal protein S12) mutations that confer streptomycin resistance in Streptomyces lividans and Streptomyces coelicolor A3(2). J Bacteriol 178(24):7276–7284Google Scholar
  54. Skinnider MA, Dejong CA, Rees PN, Johnston CW, Li HX, Webster ALH, Wyatt MA, Magarvey NA (2015) Genomes to natural products PRediction Informatics for Secondary Metabolomes (PRISM). Nucleic Acids Res 43(20):9645–9662. Google Scholar
  55. Tamehiro N, Hosaka T, Xu J, Hu HF, Otake N, Ochi K (2003) Innovative approach for improvement of an antibiotic- overproducing industrial strain of Streptomyces albus. Appl Environ Microbiol 69(11):6412–6417. Google Scholar
  56. Tanaka Y, Komatsu M, Okamoto S, Tokuyama S, Kaji A, Ikeda H, Ochi K (2009a) Antibiotic overproduction by rpsL and rsmG mutants of various Actinomycetes. Appl Environ Microbiol 75(14):4919–4922. Google Scholar
  57. Tanaka Y, Tokuyama S, Ochi K (2009b) Activation of secondary metabolite-biosynthetic gene clusters by generating rsmG mutations in Streptomyces griseus. J Antibiot 62(12):669–673. Google Scholar
  58. Tao WX, Yang AN, Deng ZX, Sun YH (2018) CRISPR/Cas9-based editing of Streptomyces for discovery, characterization, and production of natural products. Front Microbiol 9:1660. Google Scholar
  59. Tong YJ, Charusanti P, Zhang LX, Weber T, Lee SY (2015) CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth Biol 4(9):1020–1029. Google Scholar
  60. Wang GJ, Hosaka T, Ochi K (2008) Dramatic activation of antibiotic production in Streptomyces coelicolor by cumulative drug resistance mutations. Appl Environ Microbiol 74(9):2834–2840. Google Scholar
  61. Wang G, Inaoka T, Okamoto S, Ochi K (2009) A novel insertion mutation in Streptomyces coelicolor ribosomal S12 protein results in paromomycin resistance and antibiotic overproduction. Antimicrob Agents Ch 53(3):1019–1026. Google Scholar
  62. Wang R, Mast Y, Wang J, Zhang WW, Zhao GP, Wohlleben W, Lu YH, Jiang WH (2013) Identification of two-component system AfsQ1/Q2 regulon and its cross-regulation with GlnR in Streptomyces coelicolor. Mol Microbiol 87(1):30–48. Google Scholar
  63. Wang WF, Tian JZ, Li L, Ge M, Zhu H, Zheng GS, Huang H, Ruan LJ, Jiang WH, Lu YH (2015) Identification of two novel regulatory genes involved in pristinamycin biosynthesis and elucidation of the mechanism for AtrA-p-mediated regulation in Streptomyces pristinaespiralis. Appl Microbiol Biotechnol 99(17):7151–7164. Google Scholar
  64. Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, Lee SY, Fischbach MA, Muller R, Wohlleben W, Breitling R, Takano E, Medema MH (2015) antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 43(W1):W237–W243. Google Scholar
  65. Xu J, Zhang J, Zhuo J, Li Y, Tian Y, Tan H (2017) Activation and mechanism of a cryptic oviedomycin gene cluster via the disruption of a global regulatory gene, adpA, in Streptomyces ansochromogenes. J Biol Chem 292(48):19708–19720.
  66. Zaburannyi N, Rabyk M, Ostash B, Fedorenko V, Luzhetskyy A (2014) Insights into naturally minimised Streptomyces albus J1074 genome. BMC Genomics 15:97. Google Scholar
  67. Zhang YM, Muyrers JPP, Testa G, Stewart AF (2000) DNA cloning by homologous recombination in Escherichia coli. Nat Biotechnol 18(12):1314–1317Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Maria Lopatniuk
    • 1
  • Maksym Myronovskyi
    • 1
  • Alessia Nottebrock
    • 1
  • Tobias Busche
    • 2
  • Jörn Kalinowski
    • 2
  • Bohdan Ostash
    • 3
  • Viktor Fedorenko
    • 3
  • Andriy Luzhetskyy
    • 1
    • 4
    Email author
  1. 1.Department Pharmacy, Actinobacteria Metabolic Engineering GroupSaarland UniversitySaarbrückenGermany
  2. 2.Centre for Biotechnology (CiBiTec)Bielefeld UniversityBielefeldGermany
  3. 3.Department of Genetics and BiotechnologyIvan Franko National University of LvivLvivUkraine
  4. 4.Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany

Personalised recommendations