Advertisement

Applied Microbiology and Biotechnology

, Volume 103, Issue 18, pp 7491–7504 | Cite as

Functional characterization of a plant-produced infectious bursal disease virus antigen fused to the constant region of avian IgY immunoglobulins

  • Emile Rage
  • Charifa Drissi Touzani
  • Carla Marusic
  • Chiara Lico
  • Thomas Göbel
  • Alessio Bortolami
  • Francesco Bonfante
  • Anna Maria Salzano
  • Andrea Scaloni
  • Siham Fellahi
  • Mohammed El Houadfi
  • Marcello DoniniEmail author
  • Selene Baschieri
Biotechnological products and process engineering
  • 205 Downloads

Abstract

Infectious bursal disease virus (IBDV) is the cause of an economically important highly contagious disease of poultry, and vaccines are regarded as the most beneficial interventions for its prevention. In this study, plants were used to produce a recombinant chimeric IBDV antigen for the formulation of an innovative subunit vaccine. The fusion protein (PD-FcY) was designed to combine the immunodominant projection domain (PD) of the viral structural protein VP2 with the constant region of avian IgY (FcY), which was selected to enhance antigen uptake by avian immune cells. The gene construct encoding the fusion protein was transiently expressed in Nicotiana benthamiana plants and an extraction/purification protocol was set up, allowing to reduce the contamination by undesired plant compounds/proteins. Mass spectrometry analysis of the purified protein revealed that the glycosylation pattern of the FcY portion was similar to that observed in native IgY, while in vitro assays demonstrated the ability of PD-FcY to bind to the avian immunoglobulin receptor CHIR-AB1. Preliminary immunization studies proved that PD-FcY was able to induce the production of protective anti-IBDV-VP2 antibodies in chickens. In conclusion, the proposed fusion strategy holds promises for the development of innovative low-cost subunit vaccines for the prevention of avian viral diseases.

Keywords

CHIR-AB1 Glycosylation IgY IBDV Molecular farming Veterinary vaccine 

Notes

Acknowledgments

The authors thank Prof. J. R. Caston for providing the rabbit anti-VP2 polyclonal serum.

Funding

This study was funded by AVIAMED project through the ERA-NET ARIMNet2 2015 Call by the following funding agencies: Italian Ministry of Agricultural, Food and Forestry Policies (MIPAAF), and Ministry of Higher Education, Scientific Research and Professional Training of Morocco (MESRSFC). ARIMNet2 (ERA-NET) has received funding from the European Union’s Seventh Framework Programme for research, technological development, and demonstration under grant agreement no. 618127/182.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Animal experiment procedures were conducted in strict accordance with the Decree of the Italian Ministry of Health n. 26 of 4 March, 2014, on the protection of animals used for scientific purposes, implementing Directive 2010/63/EU, and approved by IZSVe’s Ethics Committee or in accordance with European and French legislations on laboratory animal care and use (French Decree 2001-464 and European Directive CEE86/609) and animal protocols approved by the Ethics Committee “Sciences et santé animale,” committee number 115. The animals were kept within the animal facilities (biosafety level 2) of IZSVe or of Agronomy and Veterinary Institute Hassan II.

This article does not contain any studies with human participants performed by any of the authors.

Supplementary material

253_2019_9992_MOESM1_ESM.pdf (1.4 mb)
ESM 1 (PDF 1477 kb)

References

  1. Belew M, Juntti N, Larsson A, Porath J (1987) A one-step purification method for monoclonal antibodies based on salt-promoted adsorption chromatography on a “thiophilic” adsorbent. J Immunol Methods 102:173–182CrossRefPubMedGoogle Scholar
  2. Berg TP (2000) Acute infectious bursal disease in poultry: a review. Avian Pathol 29:175–194.  https://doi.org/10.1080/03079450050045431 CrossRefPubMedGoogle Scholar
  3. Coulibaly F, Chevalier C, Gutsche I, Pous J, Navaza J, Bressanelli S, Delmas B, Rey FA (2005) The birnavirus crystal structure reveals structural relationships among icosahedral viruses. Cell 120:761–772.  https://doi.org/10.1016/j.cell.2005.01.009 CrossRefPubMedGoogle Scholar
  4. Czajkowsky DM, Hu J, Shao Z, Pleass RJ (2012) Fc-fusion proteins: new developments and future perspectives. EMBO Mol Med 4:1015–1028.  https://doi.org/10.1002/emmm.201201379 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Dong W, Zhang H, Huang H, Zhou J, Hu L, Lian A, Zhu L, Ma N, Yang P, Wei K, Zhu R (2016) Chicken IgY Fc linked to Bordetella avium ompA and Taishan Pinus massoniana pollen polysaccharide adjuvant enhances macrophage function and specific immune responses. Front. Microbiol 7:1708.  https://doi.org/10.3389/fmicb.2016.01708 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Drissi Touzani C, Fellahi S, Gaboun F, Fassi Fihri O, Baschieri S, Mentag R, El Houadfi M (2019) Molecular characterization and phylogenetic analysis of very virulent infectious bursal disease virus circulating in Morocco during 2016-2017. Arch Virol 164:381–390.  https://doi.org/10.1007/s00705-018-4076-3 CrossRefPubMedGoogle Scholar
  7. Eterradossi N, Saif YM (2013) Infectious bursal disease. In: Swayne DE (ed) Diseases of poultry. Wiley-Blackwell, Hoboken, pp 219–246Google Scholar
  8. Fahey KJ, Erny K, Crooks J (1989) A conformational immunogen on VP-2 of infectious bursal disease virus that induces virus-neutralizing antibodies that passively protect chickens. J Gen Virol 70:1473–1481.  https://doi.org/10.1099/0022-1317-70-6-1473 CrossRefPubMedGoogle Scholar
  9. Fernández-Arias A, Risco C, Martínez S, Albar JP, Rodríguez JF (1998) Expression of ORF A1 of infectious bursal disease virus results in the formation of virus-like particles. J Gen Virol 79:1047–1054.  https://doi.org/10.1099/0022-1317-79-5-1047 CrossRefPubMedGoogle Scholar
  10. Ge J, An Q, Song S, Gao D, Ping W (2015) Construction of recombinant baculoviruses expressing infectious bursal disease virus main protective antigen and their immune effects on chickens. PLoS One 10:e0132993.  https://doi.org/10.1371/journal.pone.0132993 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Gómez E, Lucero MS, Chimeno Zoth S, Carballeda JM (2013) Transient expression of VP2 in Nicotiana benthamiana and its use as a plant-based vaccine against infectious bursal disease virus. Vaccine 31:2623–2627.  https://doi.org/10.1016/j.vaccine.2013.03.064 CrossRefPubMedGoogle Scholar
  12. Hasan NH, Ignjatovic J, Peaston A, Hemmatzadeh F (2016) Avian influenza virus and DIVA strategies. Viral Immunol 29:198–211.  https://doi.org/10.1089/vim.2015.0127 CrossRefPubMedGoogle Scholar
  13. He Y, Bjorkman PJ (2011) Structure of FcRY, an avian immunoglobulin receptor related to mammalian mannose receptors, and its complex with IgY. Proc Natl Acad Sci USA 108:12431–12436.  https://doi.org/10.1073/pnas.1106925108 CrossRefPubMedGoogle Scholar
  14. He C-Q, Ma L-Y, Wang D, Li G-R, Ding N-Z (2009) Homologous recombination is apparent in infectious bursal disease virus. Virology 384:51–58.  https://doi.org/10.1016/j.virol.2008.11.009 CrossRefPubMedGoogle Scholar
  15. Hehle VK, Lombardi R, van Dolleweerd CJ, Paul MJ, Di Micco P, Morea V, Benvenuto E, Donini M, Ma JK (2015) Site-specific proteolytic degradation of IgG monoclonal antibodies expressed in tobacco plants. Plant Biotechnol J 13:235–245.  https://doi.org/10.1111/pbi.12266 CrossRefPubMedGoogle Scholar
  16. Ingrao F, Rauw F, Lambrecht B, Van den Berg T (2013) Infectious bursal disease: a complex host-pathogen interaction. Dev Comp Immunol 41:429–438.  https://doi.org/10.1016/j.dci.2013.03.017 CrossRefPubMedGoogle Scholar
  17. Jackwood DJ, Sommer SE, Odor E (1999) Correlation of enzyme-linked immunosorbent assay titers with protection against infectious bursal disease virus. Avian Dis 43:189–197CrossRefPubMedGoogle Scholar
  18. Jiang D, Liu Y, Wang A, Zhang G, Yang G, Chen Y, Ji P, Liu C, Song Y, Su Y, Wang G, Wang J, Zhao B, Deng R (2016) High level soluble expression and one-step purification of IBDV VP2 protein in Escherichia coli. Biotechnol Lett 38:901–908.  https://doi.org/10.1007/s10529-016-2073-8 CrossRefPubMedGoogle Scholar
  19. Kameoka D, Ueda T, Imoto T (2003) A method for the detection of asparagine deamidation and aspartate isomerization of proteins by MALDI/TOF-mass spectrometry using endoproteinase Asp-N. J Biochem 134:129–135CrossRefPubMedGoogle Scholar
  20. Kuo TT, Baker K, Yoshida M, Qiao SW, Aveson VG, Lencer WI, Blumberg RS (2010) Neonatal Fc receptor: from immunity to therapeutics. J Clin Immunol 30:777–789.  https://doi.org/10.1007/s10875-010-9468-4 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Letzel T, Coulibaly F, Rey FA, Delmas B, Jagt E, van Loon AA, Mundt E (2007) Molecular and structural bases for the antigenicity of VP2 of infectious bursal disease virus. J Virol 81:12827–12835.  https://doi.org/10.1128/JVI.01501-07 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lombardi R, Circelli P, Villani M, Buriani G, Nardi L, Coppola V, Bianco L, Benvenuto E, Donini M, Marusic C (2009) High-level HIV-1 Nef transient expression in Nicotiana benthamiana using the P19 gene silencing suppressor protein of Artichoke Mottled Crinckle Virus. BMC Biotechnol 9:96.  https://doi.org/10.1186/1472-6750-9-96 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lonoce C, Marusic C, Morrocchi E, Salzano AM, Scaloni A, Novelli F, Pioli C, Feeney M, Frigerio L, Donini M (2019) Enhancing the secretion of a glyco-engineered anti-CD20 scFv-Fc antibody in hairy root cultures. Biotechnol J 14:e1800081.  https://doi.org/10.1002/biot.201800081 CrossRefPubMedGoogle Scholar
  24. Lu Z, Lee K-J, Shao Y, Lee J-H, So Y, Choo YK, Oh DB, Hwang KA, Oh SH, Han YS, Ko K (2012) Expression of GA733-Fc fusion protein as a vaccine candidate for colorectal cancer in transgenic plants. J Biomed Biotechnol 2012:364240–364211.  https://doi.org/10.1155/2012/364240 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Mahgoub HA (2012) An overview of infectious bursal disease. Arch Virol 157:2047–2057.  https://doi.org/10.1007/s00705-012-1377-9 CrossRefPubMedGoogle Scholar
  26. Marusic C, Nuttall J, Buriani G, Lico C, Lombardi R, Baschieri S, Benvenuto E, Frigerio L (2007) Expression, intracellular targeting and purification of HIV Nef variants in tobacco cells. BMC Biotechnol 7:12.  https://doi.org/10.1186/1472-6750-7-12 CrossRefPubMedPubMedCentralGoogle Scholar
  27. McFerran JB, McNulty MS, McKillop ER, Connor TJ, McCracken RM, Collins DS, Allan GM (1980) Isolation and serological studies with infectious bursal disease viruses from fowl, turkeys and ducks: demonstration of a second serotype. Avian Pathol 9:395–404.  https://doi.org/10.1080/03079458008418423 CrossRefPubMedGoogle Scholar
  28. Montero-Morales L, Maresch D, Castilho A, Turupcu A, Ilieva KM, Crescioli S, Karagiannis SN, Lupinek C, Oostenbrink C, Altmann F, Steinkellner H (2017) Recombinant plant-derived human IgE glycoproteomics. J Proteomics 161:81–87.  https://doi.org/10.1016/j.jprot.2017.04.002 CrossRefPubMedGoogle Scholar
  29. Müller H, Scholtissek C, Becht H (1979) The genome of infectious bursal disease virus consists of two segments of double-stranded RNA. J Virol 31:584–589PubMedPubMedCentralGoogle Scholar
  30. Müller H, Mundt E, Eterradossi N, Islam MR (2012) Current status of vaccines against infectious bursal disease. Avian Pathol 41:133–139.  https://doi.org/10.1080/03079457.2012.661403 CrossRefPubMedGoogle Scholar
  31. Parvari R, Avivi A, Lentner F, Ziv E, Tel-Or S, Burstein Y, Schechter I (1988) Chicken immunoglobulin gamma-heavy chains: limited VH gene repertoire, combinatorial diversification by D gene segments and evolution of the heavy chain locus. EMBO J 7:739–744CrossRefPubMedPubMedCentralGoogle Scholar
  32. Pitcovski J, Levi BZ, Maray T, Di-Castro D, Safadi A, Krispel S, Azriel A, Gutter B, Michael A (1999) Failure of viral protein 3 of infectious bursal disease virus produced in prokaryotic and eukaryotic expression systems to protect chickens against the disease. Avian Dis 43:8–15CrossRefPubMedGoogle Scholar
  33. Purzel J, Schmitt R, Viertlboeck BC, Göbel TW (2009) Chicken IgY binds its receptor at the CH3/CH4 interface similarly as the human IgA:Fc alpha RI interaction. J Immunol 183:4554–4559.  https://doi.org/10.4049/jimmunol.0901699 CrossRefPubMedGoogle Scholar
  34. R_Core_Team (2013) R: A language and environment for statistical computing. Vienna, AustriaGoogle Scholar
  35. Richetta M, Gómez E, Lucero MS, Chimeno Zoth S, Gravisaco MJ, Calamante G, Berinstein A (2017) Comparison of homologous and heterologous prime-boost immunizations combining MVA-vectored and plant-derived VP2 as a strategy against IBDV. Vaccine 35:142–148.  https://doi.org/10.1016/j.vaccine.2016.11.029 CrossRefPubMedGoogle Scholar
  36. Salzano AM, Novi G, Arioli S, Corona S, Mora D, Scaloni A (2013) Mono-dimensional blue native-PAGE and bi-dimensional blue native/urea-PAGE or/SDS-PAGE combined with nLC–ESI-LIT-MS/MS unveil membrane protein heteromeric and homomeric complexes in Streptococcus thermophilus. J Proteomics 94:240–261.  https://doi.org/10.1016/j.jprot.2013.09.007 CrossRefPubMedGoogle Scholar
  37. Sharma JM, Kim IJ, Rautenschlein S, Yeh HY (2000) Infectious bursal disease virus of chickens: pathogenesis and immunosuppression. Dev Comp Immunol 24:223–235CrossRefPubMedGoogle Scholar
  38. Sheng L, He Z, Chen J, Liu Y, Ma M, Cai Z (2017) The impact of N-glycosylation on conformation and stability of immunoglobulin Y from egg yolk. Int J Biol Macromol 96:129–136.  https://doi.org/10.1016/j.ijbiomac.2016.12.043 CrossRefPubMedGoogle Scholar
  39. Suzuki N, Lee YC (2004) Site-specific N-glycosylation of chicken serum IgG. Glycobiology 14:275–292.  https://doi.org/10.1093/glycob/cwh031 CrossRefPubMedGoogle Scholar
  40. Taghavian O, Spiegel H, Hauck R, Hafez HM, Hafez HM, Fischer R, Schillberg S (2013) Protective oral vaccination against infectious bursal disease virus using the major viral antigenic protein VP2 produced in Pichia pastoris. PLoS One 8:e83210.  https://doi.org/10.1371/journal.pone.0083210 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Taylor AI, Fabiane SM, Sutton BJ, Calvert RA (2009) The crystal structure of an avian IgY-Fc fragment reveals conservation with both mammalian IgG and IgE. Biochemistry 48:558–562.  https://doi.org/10.1021/bi8019993 CrossRefPubMedGoogle Scholar
  42. Tesar DB, Cheung EJ, Bjorkman PJ (2008) The chicken yolk sac IgY receptor, a mammalian mannose receptor family member, transcytoses IgY across polarized epithelial cells. Mol Biol Cell 19:1587–1593.  https://doi.org/10.1091/mbc.E07-09-0972 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Topp E, Irwin R, McAllister T, Lessard M, Joensuu JJ, Kolotilin I, Conrad U, Stöger E, Mor T, Warzecha H, Hall JC, McLean MD, Cox E, Devriendt B, Potter A, Depicker A, Virdi V, Holbrook L, Doshi K, Dussault M, Friendship R, Yarosh O, Yoo HS, MacDonald J, Menassa R (2016) The case for plant-made veterinary immunotherapeutics. Biotechnol Adv 34:597–604.  https://doi.org/10.1016/j.biotechadv.2016.02.007 CrossRefPubMedGoogle Scholar
  44. Viertlboeck BC, Göbel TW (2011) The chicken leukocyte receptor cluster. Vet Immunol Immunopathol 144:1–10.  https://doi.org/10.1016/j.vetimm.2011.07.001 CrossRefPubMedGoogle Scholar
  45. Viertlboeck BC, Schweinsberg S, Hanczaruk MA, Schmitt R, Du Pasquier L, Herberg FW, Göbel TW (2007) The chicken leukocyte receptor complex encodes a primordial, activating, high-affinity IgY Fc receptor. Proc Natl Acad Sci. USA 104:11718–11723.  https://doi.org/10.1073/pnas.0702011104 CrossRefPubMedGoogle Scholar
  46. Villani ME, Morgun B, Brunetti P, Marusic C, Lombardi R, Pisoni I, Bacci C, Desiderio A, Benvenuto E, Donini M (2009) Plant pharming of a full-sized, tumour-targeting antibody using different expression strategies. Plant Biotechnol J 7:59–72.  https://doi.org/10.1111/j.1467-7652.2008.00371.x CrossRefPubMedGoogle Scholar
  47. Wang H, Shan S, Wang S, Zhang H, Ma L, Hu L, Huang H, Wei K, Zhu R (2017) Fused IgY Fc and polysaccharide adjuvant enhanced the immune effect of the recombinant VP2 and VP5 subunits-a prospect for improvement of infectious bursal disease virus subunit vaccine. Front Microbiol 8:2258.  https://doi.org/10.3389/fmicb.2017.02258 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Wu H, Singh NK, Locy RD, Scissum-Gunn K, Giambrone JJ (2004) Immunization of chickens with VP2 protein of infectious bursal disease virus expressed in Arabidopsis thaliana. Avian Dis 48:663–668.  https://doi.org/10.1637/7074 CrossRefPubMedGoogle Scholar
  49. Wu J, Yu L, Li L, Hu J, Zhou J, Zhou X (2007) Oral immunization with transgenic rice seeds expressing VP2 protein of infectious bursal disease virus induces protective immune responses in chickens. Plant Biotechnol J 5:570–578.  https://doi.org/10.1111/j.1467-7652.2007.00270.x CrossRefPubMedGoogle Scholar
  50. Yoshida M, Claypool SM, Wagner JS, Mizoguchi E, Roopenian DC, Lencer WI, Blumberg RS (2004) Human neonatal Fc receptor mediates transport of IgG into luminal secretions for delivery of antigens to mucosal dendritic cells. Immunity 20:769–783.  https://doi.org/10.1016/j.immuni.2004.05.007 CrossRefPubMedGoogle Scholar
  51. Zhu J, Arena S, Spinelli S, Liu D, Zhang G, Wei R, Cambillau C, Scaloni A, Wang G, Pelosi P (2017) Reverse chemical ecology: olfactory proteins from the giant panda and their interactions with putative pheromones and bamboo volatiles. Proc Natl Acad Sci USA 114:E9802–E9810.  https://doi.org/10.1073/pnas.1711437114 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Emile Rage
    • 1
  • Charifa Drissi Touzani
    • 2
  • Carla Marusic
    • 1
  • Chiara Lico
    • 1
  • Thomas Göbel
    • 3
  • Alessio Bortolami
    • 4
  • Francesco Bonfante
    • 4
  • Anna Maria Salzano
    • 5
  • Andrea Scaloni
    • 5
  • Siham Fellahi
    • 2
  • Mohammed El Houadfi
    • 2
  • Marcello Donini
    • 1
    Email author
  • Selene Baschieri
    • 1
  1. 1.Laboratory of BiotechnologyENEA Casaccia Research CenterRomeItaly
  2. 2.Unité de Pathologie Aviaire, Département de Pathologie et Santé Publique VétérinaireIAV Hassan IIRabatMorocco
  3. 3.Department of Veterinary SciencesLMU MunichMünchenGermany
  4. 4.Division of Comparative Biomedical ScienceIstituto Zooprofilattico Sperimentale delle VenezieLegnaroItaly
  5. 5.Proteomics & Mass Spectrometry Laboratory, ISPAAMNational Research CouncilNapoliItaly

Personalised recommendations