Advertisement

Applied Microbiology and Biotechnology

, Volume 103, Issue 17, pp 7055–7070 | Cite as

Insight into the thermostability of thermophilic L-asparaginase and non-thermophilic L-asparaginase II through bioinformatics and structural analysis

  • Xu Li
  • Xian ZhangEmail author
  • Shuqin Xu
  • Meijuan Xu
  • Taowei Yang
  • Li Wang
  • Huiling Zhang
  • Haitian Fang
  • Tolbert Osire
  • Zhiming RaoEmail author
Original Article
  • 147 Downloads

Abstract

Thermostability plays an important role in the application of L-asparaginase in the pharmaceutical and food industries. Understanding the key residues and structures that influence thermostability in L-asparaginase is necessary to obtain suitable L-asparaginase candidates. In this study, special residues and structures that altered thermostability in thermophilic L-asparaginase and non-thermophilic L-asparaginase II were identified. Interchanging these special residues and structures of L-asparaginases from the four strains, that is, Pyrococcus yayanosii CH1 (PYA), Thermococcus gammatolerans (TGA), Bacillus subtilis (BSA II), and Escherichia coli (ECA II), revealed the 51st and 298th residues of PYA (corresponding to 57th, 305th residues of ECA II) as the key residues responsible for thermal stability of thermophilic L-asparaginase and non-thermophilic L-asparaginase II. Moreover, the C terminal tightness, loop rigidity, and low surface charge around activity sites were of great significance to the thermostability of L-asparaginase. This study therefore revealed the crucial amino acid residues and structures responsible for the difference in thermostability of the thermophilic and non-thermophilic L-asparaginase and provides a reference for engineering thermostability in L-asparaginase II.

Keywords

L-Asparaginase Thermostability Mutagenesis Bioinformatics Structure analysis 

Notes

Funding information

This work was supported by the National Natural Science Foundation of China (31500065, 31870066), the National Key Research and Development Program of China (2018YFA090039), the Fundamental Research Funds for the Central Universities (JUSRP51708A), the Program of the Key Laboratory of Industrial Biotechnology, Ministry of Education, China (KLIB-KF201703), the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, the 111 Project (111-2-06), the national first-class discipline program of Light Industry Technology and Engineering (LITE2018-06), the Jiangsu province “Collaborative Innovation Center for Modern Industrial Fermentation” industry development program, the Key Research and Development Program of Ningxia Hui Autonomous Region (2017BY069), the Science and Technology Innovation Team Foundation of Ningxia Hui Autonomous Region (KJT2017001), and the Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control.

Compliance with ethical standards

Competing interests

The authors declare that they have no competing interests.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2019_9967_MOESM1_ESM.pdf (65.1 mb)
ESM 1 (PDF 66697 kb)

References

  1. Aghaiypour K, Wlodawer A, Lubkowski J (2001) Structural basis for the activity and substrate specificity of Erwinia chrysanthemi L-asparaginase. Biochemistry 40(19):5655–5664.  https://doi.org/10.1021/bi0029595 CrossRefGoogle Scholar
  2. Anishkin A, Vanegas JM, Rogers DM, Lorenzi PL, Chan WK, Purwaha P, Weinstein JN, Sukharev S, Rempe SB (2015) Catalytic role of the substrate defines specificity of therapeutic l-asparaginase. J Mol Biol 427(17):2867–2885.  https://doi.org/10.1016/j.jmb.2015.06.017 CrossRefGoogle Scholar
  3. Batool T, Makky EA, Jalal M, Yusoff MM (2016) A comprehensive review on L-asparaginase and its applications. Appl Biochem Biotechnol 178(5):900–923.  https://doi.org/10.1007/s12010-015-1917-3 CrossRefGoogle Scholar
  4. Bowie JU, Luthy R, Eisenberg D (1991) A Method To identify protein sequences that fold into a kKnown 3-dimensional structure. Science 253(5016):164–170.  https://doi.org/10.1126/science.1853201 CrossRefGoogle Scholar
  5. Brosnan MP, Kelly CT, Fogarty WM (1992) Investigation of the mechanisms of irreversible thermoinactivation of Bacillus-Stearothermophilus alpha-amylase. Eur J Biochem 203(1–2):225–231.  https://doi.org/10.1111/j.1432-1033.1992.tb19850.x CrossRefGoogle Scholar
  6. Chohan SM, Rashid N (2013) TK1656, a thermostable l-asparaginase from Thermococcus kodakaraensis, exhibiting highest ever reported enzyme activity. J Biosci Bioeng 116(4):438–443.  https://doi.org/10.1016/j.jbiosc.2013.04.005 CrossRefGoogle Scholar
  7. Covini D, Tardito S, Bussolati O, Chiarelli LR, Pasquetto MV, Digilio R, Valentini G, Scotti C (2012) Expanding targets for a metabolic therapy of cancer: L-asparaginase. Recent Pat Anticancer Drug Discov 7(1):4–13CrossRefGoogle Scholar
  8. Dhavala P, Papageorgiou AC (2009) Structure of Helicobacter pylori L-asparaginase at 1.4 angstrom resolution. Acta Crystallogr D Biol Crystallogr 65:1253–1261.  https://doi.org/10.1107/S0907444909038244 CrossRefGoogle Scholar
  9. Guo J, Coker AR, Wood SP, Cooper JB, Chohan SM, Rashid N, Akhtar M (2017) Structure and function of the thermostable L-asparaginase from Thermococcus kodakarensis. A Acta Crystallogr D Struct Biol 73(11):889–895.  https://doi.org/10.1107/s2059798317014711 CrossRefGoogle Scholar
  10. Han SS, Kyeong HH, Choi JM, Sohn YK, Lee JH, Kim HS (2016) Engineering of the conformational dynamics of an enzyme for relieving the product inhibition. ACS Catal 6(12):8440–8445CrossRefGoogle Scholar
  11. Hendriksen HV, Kornbrust BA, Ostergaard PR, Stringer MA (2009) Evaluating the potential for enzymatic acrylamide mitigation in a range of food products using an asparaginase from Aspergillus oryzae. J Agric Food Chem 57(10):4168–4176.  https://doi.org/10.1021/jf900174q CrossRefGoogle Scholar
  12. Jia MM, Xu MJ, He BB, Rao ZM (2013) Cloning, expression, and characterization of L-asparaginase from a newly isolated Bacillus subtilis B11-06. J Agric Food Chem 61(39):9428–9434.  https://doi.org/10.1021/jf402636w CrossRefGoogle Scholar
  13. Kotzia GA, Labrou NE (2009) Engineering thermal stability of L-asparaginase by in vitro directed evolution. FEBS J 276(6):1750–1761.  https://doi.org/10.1111/j.1742-4658.2009.06910.x CrossRefGoogle Scholar
  14. Kukurova K, Morales FJ, Bednarikova A, Ciesarova Z (2009) Effect of L-asparaginase on acrylamide mitigation in a fried-dough pastry model. Mol Nutr Food Res 53(12):1532–1539.  https://doi.org/10.1002/mnfr.200800600 CrossRefGoogle Scholar
  15. Laskowski RA, Macarthur MW, Moss DS, Thornton JM (1993) Procheck - a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291.  https://doi.org/10.1107/S0021889892009944 CrossRefGoogle Scholar
  16. Li L-Z, Xie T-H, Li H-J, Qing C, Zhang G-M, Sun M-S (2007) Enhancing the thermostability of Escherichia coli l-asparaginase II by substitution with pro in predicted hydrogen-bonded turn structures. Enzym Microb Technol 41(4):523–527.  https://doi.org/10.1016/j.enzmictec.2007.04.004 CrossRefGoogle Scholar
  17. Li X, Zhang X, Xu S, Zhang H, Xu M, Yang T, Wang L, Qian H, Zhang H, Fang H, Osire T, Rao Z, Yang S (2018) Simultaneous cell disruption and semi-quantitative activity assays for high-throughput screening of thermostable L-asparaginases. Sci Rep 8(1):7915.  https://doi.org/10.1038/s41598-018-26241-7 CrossRefGoogle Scholar
  18. Long S, Zhang X, Rao Z, Chen K, Xu M, Yang T, Yang S (2016) Amino acid residues adjacent to the catalytic cavity of tetramer L-asparaginase II contribute significantly to its catalytic efficiency and thermostability. Enzym Microb Technol 82:15–22.  https://doi.org/10.1016/j.enzmictec.2015.08.009 CrossRefGoogle Scholar
  19. Lovell SC, Davis IW, Arendall WB 3rd, de Bakker PI, Word JM, Prisant MG, Richardson JS, Richardson DC (2003) Structure validation by Calpha geometry: phi,psi and Cbeta deviation. Proteins 50(3):437–450.  https://doi.org/10.1002/prot.10286 CrossRefGoogle Scholar
  20. Lubkowski J, Palm GJ, Gilliland GL, Derst C, Rohm KH, Wlodawer A (1996) Crystal structure and amino acid sequence of Wolinella succinogenes L-asparaginase. Eur J Biochem 241(1):201–207.  https://doi.org/10.1111/j.1432-1033.1996.0201t.x CrossRefGoogle Scholar
  21. Maggi M, Chiarelli LR, Valentini G, Scotti C (2015) Tackling critical catalytic residues in Helicobacter pylori L-asparaginase. Biomolecules 5(2):306–317.  https://doi.org/10.3390/biom5020306 CrossRefGoogle Scholar
  22. Maggi M, Mittelman SD, Parmentier JH, Colombo G, Meli M, Whitmire JM, Merrell DS, Whitelegge J, Scotti C (2017) A protease-resistant Escherichia coli asparaginase with outstanding stability and enhanced anti-leukaemic activity in vitro. Sci Rep 7(1):14479.  https://doi.org/10.1038/s41598-017-15075-4 CrossRefGoogle Scholar
  23. Miller M, Rao JKM, Wlodawer A, Gribskov MR (1993) A left-handed crossover involved in amidohydrolase catalysis - crystal-structure of Erwinia-Chrysanthemi L-asparaginase with bound L-aspartate. FEBS Lett 328(3):275–279.  https://doi.org/10.1016/0014-5793(93)80943-O CrossRefGoogle Scholar
  24. Niu C, Zhu L, Xu X, Li Q (2016) Rational design of disulfide bonds increases thermostability of a mesophilic 1,3-1,4-beta-glucanase from Bacillus terquilensis. PLoS One 11(4):e0154036.  https://doi.org/10.1371/journal.pone.0154036 CrossRefGoogle Scholar
  25. Offman MN, Krol M, Patel N, Krishnan S, Liu J, Saha V, Bates PA (2011) Rational engineering of L-asparaginase reveals importance of dual activity for cancer cell toxicity. Blood 117(5):1614–1621.  https://doi.org/10.1182/blood-2010-07-298422 CrossRefGoogle Scholar
  26. Pieters R, Hunger SP, Boos J, Rizzari C, Silverman L, Baruchel A, Goekbuget N, Schrappe M, Pui CH (2011) L-asparaginase treatment in acute lymphoblastic leukemia: a focus on Erwinia asparaginase. Cancer 117(2):238–249.  https://doi.org/10.1002/cncr.25489 CrossRefGoogle Scholar
  27. Roberts J, Burson G, Hill JM (1968) New procedures for purification of L-asparaginase with high yield from Escherichia coli. J Bacteriol 95(6):2117–2123Google Scholar
  28. Sanches M, Krauchenco S, Polikarpov I (2007) Structure, substrate complexation and reaction mechanism of bacterial asparaginases. Curr Chem Biol 1(1):75–86.  https://doi.org/10.2174/187231307779814057 Google Scholar
  29. Shi R, Liu Y, Mu Q, Jiang Z, Yang S (2017) Biochemical characterization of a novel L-asparaginase from Paenibacillus barengoltzii being suitable for acrylamide reduction in potato chips and mooncakes. Int J Biol Macromol 96:93–99.  https://doi.org/10.1016/j.ijbiomac.2016.11.115 CrossRefGoogle Scholar
  30. Stadler RH, Blank I, Varga N, Robert F, Hau J, Guy PA, Robert MC, Riediker S (2002) Acrylamide from Maillard reaction products. Nature 419(6906):449–450.  https://doi.org/10.1038/419449a CrossRefGoogle Scholar
  31. Swain AL, Jaskolski M, Housset D, Rao JKM, Wlodawer A (1993) Crystal-structure of Escherichia-Coli L-asparaginase, an enzyme used in cancer-therapy. Proc Natl Acad Sci U S A 90(4):1474–1478.  https://doi.org/10.1073/pnas.90.4.1474 CrossRefGoogle Scholar
  32. Tomar R, Sharma P, Srivastava A, Bansal S, Ashish KB (2014) Structural and functional insights into an archaeal L-asparaginase obtained through the linker-less assembly of constituent domains. Acta Crystallogr D Struct Bio 70(Pt 12:3187–3197.  https://doi.org/10.1107/S1399004714023414 Google Scholar
  33. Veno J, Ahmad Kamarudin NH, Mohamad Ali MS, Masomian M, Raja Abd Rahman RNZ (2017) Directed evolution of recombinant C-terminal truncated Staphylococcus epidermidis lipase AT2 for the enhancement of thermostability. Int J Mol Sci 18(11).  https://doi.org/10.3390/ijms18112202
  34. Verma N, Kumar K, Kaur G, Anand S (2007) L-asparaginase: a promising chemotherapeutic agent. Crit Rev Biotechnol 27(1):45–62.  https://doi.org/10.1080/07388550601173926 CrossRefGoogle Scholar
  35. Vidya J, Sajitha S, Ushasree MV, Sindhu R, Binod P, Madhavan A, Pandey A (2017) Genetic and metabolic engineering approaches for the production and delivery of L-asparaginases: an overview. Bioresour Technol 245:1775–1781.  https://doi.org/10.1016/j.biortech.2017.05.057 CrossRefGoogle Scholar
  36. Vidya J, Ushasree MV, Pandey A (2014) Effect of surface charge alteration on stability of L-asparaginase II from Escherichia sp. Enzym Microb Technol 56:15–19.  https://doi.org/10.1016/j.enzmictec.2013.12.012 CrossRefGoogle Scholar
  37. Xia Y, Cui W, Cheng Z, Peplowski L, Liu Z, Kobayashi M, Zhou Z (2017) Improving thermostability and catalytic efficiency of the subunit-fused nitrile hydratase by semi-rational engineering. ChemCatChem 10:1370–1375.  https://doi.org/10.1002/cctc.201701374 CrossRefGoogle Scholar
  38. Yang B, Wang H, Song W, Chen X, Liu J, Luo Q, Liu L (2017) Engineering of the conformational dynamics of lipase to increase enantioselectivity. ACS Catal 7(11):7593–7599CrossRefGoogle Scholar
  39. Zhang J, Xu M, Ge X, Zhang X, Yang T, Xu Z, Rao Z (2017) Reengineering of the feedback-inhibition enzyme N-acetyl-L-glutamate kinase to enhance L-arginine production in Corynebacterium crenatum. J Ind Microbiol Biotechnol 44(2):271–283.  https://doi.org/10.1007/s10295-016-1885-9 CrossRefGoogle Scholar
  40. Zhang YQ, Tao ML, Shen WD, Zhou YZ, Ding Y, Ma Y, Zhou WL (2004) Immobilization of L-asparaginase on the microparticles of the natural silk sericin protein and its characters. Biomaterials 25(17):3751–3759.  https://doi.org/10.1016/j.biomaterials.2003.10.019 CrossRefGoogle Scholar
  41. Zheng F, Huang J, Liu X, Hu H, Long L, Chen K, Ding S (2016) N- and C-terminal truncations of a GH10 xylanase significantly increase its activity and thermostability but decrease its SDS resistance. Appl Microbiol Biotechnol 100(8):3555–3565.  https://doi.org/10.1007/s00253-015-7176-y CrossRefGoogle Scholar
  42. Zuo S, Xue D, Zhang T, Jiang B, Mu W (2014) Biochemical characterization of an extremely thermostable l-asparaginase from Thermococcus gammatolerans EJ3. J Mol Catal B Enzym 109:122–129.  https://doi.org/10.1016/j.molcatb.2014.08.021 CrossRefGoogle Scholar
  43. Zuo S, Zhang T, Jiang B, Mu W (2015a) Recent research progress on microbial L-asparaginases. Appl Microbiol Biotechnol 99(3):1069–1079.  https://doi.org/10.1007/s00253-014-6271-9 CrossRefGoogle Scholar
  44. Zuo SH, Zhang T, Jiang B, Mu WM (2015b) Reduction of acrylamide level through blanching with treatment by an extremely thermostable L-asparaginase during French fries processing. Extremophiles 19(4):841–851.  https://doi.org/10.1007/s00792-015-0763-0 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of BiotechnologyJiangnan UniversityWuxiChina
  2. 2.School of Food Science and TechnologyJiangnan UniversityWuxiChina
  3. 3.School of Agriculture Ningxia UniversityYinchuanChina

Personalised recommendations