A novel intracellular dextranase derived from Paenibacillus sp. 598K with an ability to degrade cycloisomaltooligosaccharides

  • Daiki Mizushima
  • Takatsugu Miyazaki
  • Yuh Shiwa
  • Keitarou Kimura
  • Shiho Suzuki
  • Nobuyuki Fujita
  • Hirofumi Yoshikawa
  • Atsuo Kimura
  • Shinichi Kitamura
  • Hiroshi Hara
  • Kazumi FunaneEmail author
Biotechnologically relevant enzymes and proteins


Paenibacillus sp. 598K produces cycloisomaltooligosaccharides (CIs) in culture from dextran and starch. CIs are cyclic oligosaccharides consisting of seven or more α-(1 → 6)-linked-d-glucose residues. The extracellular enzyme CI glucanotransferase (PsCITase), which is the member of glycoside hydrolase family 66, catalyzes the final stage of CI production and produces mainly cycloisomaltoheptaose. We have discovered a novel intracellular CI-degrading dextranase (PsDEX598) from Paenibacillus sp. 598K. The 69.7-kDa recombinant PsDEX598 does not digest isomaltotetraose or shorter isomaltooligosaccharides, but digests longer ones of at least up to isomaltoheptaose. It also digests oligoCIs of cycloisomaltoheptaose, cycloisomaltooctaose, and cycloisomaltononaose better than it does with megaloCIs of cycloisomaltodecaose, cycloisomaltoundecaose, and cycloisomaltododecaose, as well as an α-(1 → 6)-d-glucan of dextran 40. PsDEX598 is produced intracellularly when culture medium is supplemented with cycloisomaltoheptaose or dextran, but not with isomaltooligosaccharides (a mixture of isomaltose, isomaltotriose, and panose), starch, or glucose. The whole genomic DNA sequence of the strain 598K implies that it harbors two genes for enzymes belonging to glycoside hydrolase family 66 (PsCITase and PsDEX598), and PsDEX598 is the only dextranase in the strain. PsDEX598 does not have any carbohydrate-binding modules (CBMs) and has a low similarity (< 30%) with other family 66 dextranases, and the catalytic amino acids of this enzyme are predicted to be Asp191, Asp303, and Glu368. The strain Paenibacillus sp. 598K appears to take up CI-7, so these findings indicate that this bacterium can degrade CIs using a dextranase within the cells and so utilize them as a carbon source for growth.


Dextranase Glycoside hydrolase family 66 Cycloisomaltooligosaccharide Paenibacillus 



We would like to thank Dr. M. Kitaoka for advice on this work. We also would like to thank Enago ( for the English language review.


This study was supported in part by the Science and Technology Research Promotion Program for Agriculture, Forestry, Fisheries, and Food Industry in Agriculture, Forestry and Fisheries Research Council (26062B) and KAKENHI in Japan Society for the Promotion of Science (26450133).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals.

Supplementary material

253_2019_9965_MOESM1_ESM.pdf (1.7 mb)
ESM 1 (PDF 1.73 mb)


  1. Biwer A, Antranikian G, Heinzle E (2002) Enzymatic production of cyclodextrins. Appl Microbiol Biotechnol 59:609–617. CrossRefGoogle Scholar
  2. Das DK, Dutta SK (1996) Purification, biochemical characterization and mode of action of an extracellular endo-dextranase from the culture filtrate of Penicillium lilacinum. Int J Biochem Cell Biol 28:107–113. CrossRefGoogle Scholar
  3. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. CrossRefGoogle Scholar
  4. Fiedler G, Pajatsch M, Böck A (1996) Genetics of a novel starch utilisation pathway present in Klebsiella oxytoca. J Mol Biol 256:279–291CrossRefGoogle Scholar
  5. Fujimoto Z, Suzuki N, Kishine N, Ichinose H, Momma M, Kimura A, Funane K (2017) Carbohydrate-binding architecture of the multi-modular α-1,6-glucosyltransferase from Paenibacillus sp. 598K, which produces α-1,6-glucosyl-α-glucosaccharides from starch. Biochem J 474:2763–2778. CrossRefGoogle Scholar
  6. Funane K, Terasawa K, Mizumo Y, Ono H, Gubu S, Tokashiki T, Kawabata Y, Kim YM, Kimura A, Kobayashi M (2008) Isolation of Bacillus and Paenibacillus Bacterial strains that produce large molecules of cyclic isomaltooligosaccharides. Biosci Biotechnol Biochem 72:3277–3280. CrossRefGoogle Scholar
  7. Funane K, Kawabata Y, Suzuki R, Kim YM, Kang HK, Suzuki N, Fujimoto Z, Kimura A, Kobayashi M (2011) Deletion analysis of regions at the C-terminal part of cycloisomaltooligosaccharide glucanotransferase from Bacillus circulans T-3040. Biochim Biophys Acta 1814:428–434.
  8. Funane K, Tanaka Y, Hosaka T, Murakami K, Miyazaki T, Shiwa Y, Gibu S, Inaoka T, Kasahara K, Fujita N, Yoshikawa H, Hiraga Y, Ochi K (2018) Combined drug resistance mutations substantially enhance enzyme production in Paenibacillus agaridevorans. J Bacteriol 200:e00188–e00118. CrossRefGoogle Scholar
  9. Hashimoto Y, Yamamoto T, Fujiwara S, Takagi M (2001) Extracellular synthesis, specific recognition, and intracellular degradation of cyclomaltodextrins by the hyperthermophilic archaeon Thermococcus sp. strain B1001. J Bacteriol 183:5050–5057. CrossRefGoogle Scholar
  10. Ichinose H, Suzuki R, Miyazaki T, Kimura K, Momma M, Suzuki N, Fujimoto Z, Kimura A, Funane K (2017) Paenibacillus sp. 598K 6-α-glucosyltransferase is essential for cycloisomaltooligosaccharide synthesis from α-(1 → 4)-glucan. Appl Microbiol Biotechnol 101:4115–4128. CrossRefGoogle Scholar
  11. Igarashi T, Morisaki H, Yamamoto A, Goto N (2002) An essential amino acid residue for catalytic activity of the dextranase of Streptococcus mutans. Oral Microbiol Immunol 17:193–196. CrossRefGoogle Scholar
  12. Kim YM, Kim D (2010) Characterization of novel thermostable dextranase from Thermotoga lettingae TMO. Appl Microbiol Biotechnol 85:581–587. CrossRefGoogle Scholar
  13. Kim YK, Kitaoka M, Hayashi K, Kim CH, Côté GL (2003) A synergistic reaction mechanism of a cycloalternan-forming enzyme and a d-glucosyltransferase for the production of cycloalternan in Bacillus sp. NRRL B-21195. Carbohydr Res 338:2213–2220. CrossRefGoogle Scholar
  14. Kim YK, Kitaoka M, Hayashi K, Kim CH, Côté GL (2004) Purification and characterization of an intracellular cycloalternan-degrading enzyme from Bacillus sp. NRRL B-21195. Carbohydr Res 339:1179–1184. CrossRefGoogle Scholar
  15. Kim YM, Kiso Y, Muraki T, Kang MS, Nakai H, Saburi W, Lang W, Kang HK, Okuyama M, Mori H, Suzuki R, Funane K, Suzuki N, Momma M, Fujimoto Z, Oguma T, Kobayashi M, Kim D, Kimura A (2012) Novel dextranase catalyzing cycloisomaltooligosaccharide formation and identification of catalytic amino acids and their functions using chemical rescue approach. J Biol Chem 287:19927–19935. CrossRefGoogle Scholar
  16. Kurokawa G, Sekii M, Ishida T, Nogami T (2004) Crystal structure of a molecular complex from native β-cyclodextrin and copper (II) chloride. Supramol Chem 16:381–384. CrossRefGoogle Scholar
  17. Light SH, Cahoon LA, Halavaty AS, Freitag NE, Anderson WF (2016) Structure to function of an α-glucan metabolic pathway that promotes Listeria monocytogenes pathogenesis. Nat Microbiol.
  18. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495. CrossRefGoogle Scholar
  19. Nelson N (1944) A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153:375–380. Google Scholar
  20. Oguma T, Tobe K, Kobayashi M (1994) Purification and properties of a novel enzyme from Bacillus spp. T-3040, which catalyzes the conversion of dextran to cyclic isomaltooligosaccharides. FEBS Lett 345:135–138. CrossRefGoogle Scholar
  21. Pajatsch M, Gerhart M, Peist R, Horlacher R, Boos W, Böck A (1998) The periplasmic cyclodextrin binding protein CymE from Klebsiella oxytoca and its role in maltodextrin and cyclodextrin transport. J Bacteriol 180:2630–2635Google Scholar
  22. Park TS, Jeong HJ, Ko JA, Ryu YB, Park SJ, Kim D, Kim YM, Lee WS (2012) Biochemical characterization of thermophilic dextranase from a thermophilic bacterium, Thermoanaerobacter pseudethanolicus. J Microbiol Biotechnol 22:637–641. CrossRefGoogle Scholar
  23. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786. CrossRefGoogle Scholar
  24. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. Google Scholar
  25. Somogyi M (1938) Micromethods for the estimation of diastase. J Biol Chem 125:399–414Google Scholar
  26. Sufiate BL, Soares FEF, Moreira SS, Gouveia AS, Cardoso EF, Braga FR, Araújo JV, Queiroz JH (2018) In vitro and in silico characterization of a novel dextranase from Pochonia chlamydosporia. 3 Biotech 8:167. CrossRefGoogle Scholar
  27. Suzuki N, Kim YM, Fujimoto Z, Momma M, Okuyama M, Mori H, Funane K, Kimura A (2012a) Structural elucidation of dextran degradation mechanism by Streptococcus mutans dextranase belonging to glycoside hydrolase family 66. J Biol Chem 287:19916–19926. CrossRefGoogle Scholar
  28. Suzuki R, Terasawa K, Kimura K, Fujimoto Z, Momma M, Kobayashi M, Kimura A, Funane K (2012b) Biochemical characterization of a novel cycloisomaltooligosaccharide glucanotransferase from Paenibacillus sp. 598 K. Biochim Biophys Acta 1824:919–924. CrossRefGoogle Scholar
  29. Suzuki N, Kishine N, Fujimoto Z, Sakurai M, Momma M, Ko JA, Nam SH, Kimura A, Kim YM (2016) Crystal structure of thermophilic dextranase from Thermoanaerobacter pseudethanolicus. J Biochem 159:331–339. CrossRefGoogle Scholar
  30. Tamura H, Yamada A, Kato H (2007) Identification and characterization of a dextranase gene of Streptococcus criceti. Microbiol Immunol 51:721–732. CrossRefGoogle Scholar
  31. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. CrossRefGoogle Scholar
  32. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46:W296–W303. CrossRefGoogle Scholar
  33. Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y (2012) dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 40:W445–W451. CrossRefGoogle Scholar
  34. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Daiki Mizushima
    • 1
    • 2
  • Takatsugu Miyazaki
    • 1
    • 3
  • Yuh Shiwa
    • 4
  • Keitarou Kimura
    • 1
  • Shiho Suzuki
    • 5
  • Nobuyuki Fujita
    • 4
  • Hirofumi Yoshikawa
    • 6
  • Atsuo Kimura
    • 7
  • Shinichi Kitamura
    • 5
  • Hiroshi Hara
    • 7
    • 8
  • Kazumi Funane
    • 1
    • 9
    Email author
  1. 1.Food Research InstituteNational Agriculture and Food Research Organization (NARO)TsukubaJapan
  2. 2.Division of Medical Zoology, Department of Infection and Immunity, School of MedicineJichi Medical UniversityShimotsukeJapan
  3. 3.Research Institute of Green Science and TechnologyShizuoka UniversityShizuokaJapan
  4. 4.Department of Molecular Microbiology, Faculty of Life SciencesTokyo University of AgricultureSetagaya-kuJapan
  5. 5.Center for Research and Development of Bioresources, Organization for Research PromotionOsaka Prefecture UniversitySakaiJapan
  6. 6.Department of Bioscience, Faculty of Life SciencesTokyo University of AgricultureSetagaya-kuJapan
  7. 7.Research Faculty of AgricultureHokkaido UniversitySapporoJapan
  8. 8.Faculty of Human Life SciencesFuji Women’s UniversityIshikariJapan
  9. 9.Faculty of Life and Environmental SciencesUniversity of YamanashiKofuJapan

Personalised recommendations