Updates in understanding the hypocholesterolemia effect of probiotics on atherosclerosis

  • Adil Hassan
  • Ahmad Ud Din
  • Yuan Zhu
  • Kun Zhang
  • Tianhan Li
  • Yi Wang
  • Yang Luo
  • Guixue WangEmail author


Atherosclerosis is the major cause of cardiovascular diseases, which are considered the fatal ailment globally. Hypercholesterolaemia plays a critical role in the development of atherosclerosis and cardiovascular diseases. Many studies have been stated that probiotics could affect hypercholesterolemia via cholesterol metabolism. Probiotics are live bacteria which are good for our health when administered orally in high amounts. Recently, many studies have revealed the beneficial effects of the nutritional ingestion of probiotics which can decrease serum cholesterol levels. The aim of this review is, firstly, to explore the hypercholesterolemia effect of how it progresses into atherosclerosis and, secondly, to summarize the hypocholesterolaemia effect of probiotics on atherosclerosis and the up-to-date information on their basic mechanisms. The most important mechanisms responsible for the hypocholesterolemic effect of probiotics are the suppression of the reabsorption of bile acids and inhibition of the intestinal cholesterol absorption. Current studies indicate that numerous mechanisms within the cholesterol metabolism, e.g., ones involving the Niemann-Pick C1-Like 1 protein, 3-hydroxy-3-methylglutaryl-CoA reductase, and 7α- and 27α-hydroxylases, have been recommended where regulation may take place after oral intake of probiotics. However, these mechanisms are still poorly understood. Thus, further studies are required to examine the possible mechanisms, whereby probiotics can be utilized safely and considered for the treatment of hypercholesterolemia.


Atherosclerosis Hypocholesterolaemia Probiotic 



We are also thankful for the support from the Chongqing Engineering Laboratory in Vascular Implants and the Public Experiment Centre of State Bioindustrial Base (Chongqing).

Funding information

This study was supported by grants from the National Natural Science Foundation of China (11572064), the National Key Technology R&D Program of China (2016YFC1102305), and the Fundamental Research Funds for the Central Universities (2018CDPTCG0001-10).

Compliance with ethical standards

Conflict interest

The authors declare that they have no competing interests.

Ethical statement

This article does not contain studies with human participants or animal performed by any of the authors.


  1. Aazmi S, Teh LK, Ramasamy K, Rahman T, Salleh MZ (2015) Comparison of the anti-obesity and hypocholesterolaemic effects of single Lactobacillus casei strain Shirota and probiotic cocktail. Int J Food Sci Technol 50(7):1589–1597. CrossRefGoogle Scholar
  2. Agerholm-Larsen L, Raben A, Haulrik N, Hansen AS, Manders M, Astrup A (2000) Effect of 8 week intake of probiotic milk products on risk factors for cardiovascular diseases. Eur J Clin Nutr 54:288–297. CrossRefPubMedGoogle Scholar
  3. Aikawa M, Libby P (2004) The vulnerable atherosclerotic plaque. Cardiovasc Pathol 13(3):125–138. CrossRefPubMedGoogle Scholar
  4. Begley M, Hill C, Gahan CGM (2006) Bile salt hydrolase activity in probiotics. Appl Environ Microbiol 72(3):1729–1738. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Berliner J, Leitinger N, Watson A, Huber J, Fogelman A, Navab M (1997a) Oxidized lipids in atherogenesis: formation, destruction and action. Thromb Haemost 78(1):195–199CrossRefPubMedGoogle Scholar
  6. Berliner J, Leitinger N, Watson A, Huber J, Fogelman A, Navab M (1997b) Oxidized lipids in atherogenesis: formation, destruction and action. Thromb Haemost 78(1):195–199CrossRefPubMedGoogle Scholar
  7. Bismuth J, Lin P, Yao Q, Chen C (2008) Ceramide: a common pathway for atherosclerosis? Arteriosclerosis 196(2):497–504. CrossRefGoogle Scholar
  8. Borén J, Olin K, Lee I, Chait A, Wight TN, Innerarity TL (1998) Identification of the principal proteoglycan-binding site in LDL. A single-point mutation in apo-B100 severely affects proteoglycan interaction without affecting LDL receptor binding. J Clin Invest 101(12):2658–2664CrossRefPubMedPubMedCentralGoogle Scholar
  9. Boring L, Gosling J, Cleary M, Charo IF (1998) Decreased lesion formation in CCR2−/− mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 394:894–897. CrossRefPubMedGoogle Scholar
  10. Camejo G, Hurt-Camejo E, Wiklund O, Bondjers G (1998) Association of apo B lipoproteins with arterial proteoglycans: pathological significance and molecular basis. Arteriosclerosis 139(2):205–222. CrossRefGoogle Scholar
  11. Cappuccio FP (2013) Cardiovascular and other effects of salt consumption. Kidney Int Suppl 3(4):312–315. CrossRefGoogle Scholar
  12. Davis HR, Zhu L-j, Hoos LM, Tetzloff G, Maguire M, Liu J, Yao X, Iyer SPN, Lam M-H, Lund EG, Detmers PA, Graziano MP, Altmann SW (2004) Niemann-Pick C1 like 1 (NPC1L1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole-body cholesterol homeostasis. J Biol Chem 279(32):33586–33592. CrossRefPubMedGoogle Scholar
  13. De Rodas BZ, Gilliland SE, Maxwell CV (1996) Hypocholesterolemic action of Lactobacillus acidophilus ATCC 43121 and calcium in swine with hypercholesterolemia induced by diet. J Dairy Sci 79(12):2121–2128. CrossRefPubMedGoogle Scholar
  14. DeBose-Boyd RA (2008) Feedback regulation of cholesterol synthesis: sterol-accelerated ubiquitination and degradation of HMG CoA reductase. Cell Res 18:609–621. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Degirolamo C, Rainaldi S, Bovenga F, Murzilli S, Moschetta A (2014) Microbiota modification with probiotics induces hepatic bile acid synthesis via downregulation of the Fxr-Fgf15 axis in mice. Cell Rep 7(1):12–18. CrossRefPubMedGoogle Scholar
  16. Doublet A, Robert V, Vedie B, Rousseau-Ralliard D, Reboulleau A, Grynberg A, Paul J-L, Fournier N (2014) Contrasting effects of arachidonic acid and docosahexaenoic acid membrane incorporation into cardiomyocytes on free cholesterol turnover. Biochimica et Biophysica Acta (BBA) - Mol Cell Biol L 1841(10):1413–1421. CrossRefGoogle Scholar
  17. Duval C, Touche V, Tailleux A, Fruchart J-C, Fievet C, Clavey V, Staels B, Lestavel S (2006) Niemann–Pick C1 like 1 gene expression is down-regulated by LXR activators in the intestine. Biochem Biophys Res Commun 340(4):1259–1263. CrossRefPubMedGoogle Scholar
  18. Ehrenwald E, Fox PL (1996) Role of endogenous ceruloplasmin in low density lipoprotein oxidation by human U937 monocytic cells. J Clin Invest 97(3):884–890CrossRefPubMedPubMedCentralGoogle Scholar
  19. Elkins CA, Moser SA, Savage DC (2001) Genes encoding bile salt hydrolases and conjugated bile salt transporters in Lactobacillus johnsonii 100-100 and other Lactobacillus species. Microbiol 147(12):3403–3412. CrossRefGoogle Scholar
  20. Fukushima M, Yamada A, Endo T, Nakano M (1999) Effects of a mixture of organisms, Lactobacillus acidophilus or Streptococcus faecalis on δ6-desaturase activity in the livers of rats fed a fat- and cholesterol-enriched diet. Nutrition 15(5):373–378. CrossRefPubMedGoogle Scholar
  21. Gaziano TA (2005) Cardiovascular disease in the developing world and its cost-effective management. Circulation 112(23):3547–3553. CrossRefPubMedGoogle Scholar
  22. Geng YJ, Libby P (1995) Evidence for apoptosis in advanced human atheroma. Colocalization with interleukin-1 beta-converting enzyme. Am J Pathol 147(2):251–266PubMedPubMedCentralGoogle Scholar
  23. Gerstein HC, Mann JF, Yi Q, Zinman B, Dinneen SF, Hoogwerf B, Hallé JP, Young J, Rashkow A, Joyce C, Nawaz S (2001) Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. Jama 286(4):421–426CrossRefPubMedGoogle Scholar
  24. Gill HS, Guarner F (2004) Probiotics and human health: a clinical perspective. Postgrad Med J 80(947):516–526. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gilliland SE, Nelson CR, Maxwell C (1985) Assimilation of cholesterol by Lactobacillus acidophilus. J Appl Environ Microbiol 49(2):377–381Google Scholar
  26. Grundy SM (2008) Promise of low-density lipoprotein–lowering therapy for primary and secondary prevention. Circulation 117(4):569–573. CrossRefPubMedGoogle Scholar
  27. Gu L, Okada Y, Clinton SK, Gerard C, Sukhova GK, Libby P, Rollins BJ (1998) Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol Cell 2(2):275–281. CrossRefPubMedGoogle Scholar
  28. Guo Z, Liu XM, Zhang QX, Shen Z, Tian FW, Zhang H, Sun ZH, Zhang HP, Chen W (2011) Influence of consumption of probiotics on the plasma lipid profile: a meta-analysis of randomised controlled trials. Nutr Metab Cardiovasc Dis 21(11):844–850. CrossRefPubMedGoogle Scholar
  29. Ha C-G, Cho J-K, Chai Y-G, Ha Y, Shin S-H (2006) Purification and characterization of bile salt hydrolase from Lactobacillus plantarum CK 102. J Microbiol Biotechnol 16(7):1047–1052Google Scholar
  30. Hatakka K, Mutanen M, Holma R, Saxelin M, Korpela R (2008) Lactobacillus rhamnosus LC705 together with Propionibacterium freudenreichii ssp shermanii JS administered in capsules is ineffective in lowering serum lipids. J Am Coll Nutr 27(4):441–447. CrossRefPubMedGoogle Scholar
  31. Hazen SL, Hsu FF, Gaut JP, Crowley JR, Heinecke JW (1999) Modification of proteins and lipids by myeloperoxidase methods in enzymology. vol 300. Academic Press, pp 88–105Google Scholar
  32. Heinecke JW (1999a) Mass spectrometric quantification of amino acid oxidation products in proteins: insights into pathways that promote LDL oxidation in the human artery wall. The FASEB J 13(10):1113–1120CrossRefPubMedGoogle Scholar
  33. Heinecke JW (1999b) Mechanisms of oxidative damage by myeloperoxidase in atherosclerosis and other inflammatory disorders. J Lab Clin Med 133(4):321–325. CrossRefPubMedGoogle Scholar
  34. Hirayama K, Rafter J (2000) The role of probiotic bacteria in cancer prevention. Microbes Infect 2(6):681–686. CrossRefPubMedGoogle Scholar
  35. Hongpattarakere T, Rattanaubon P, Buntin N (2013) Improvement of freeze-dried Lactobacillus Plantarum survival using water extracts and crude fibers from food crops. Food Bioprocess Technol 6(8):1885–1896. CrossRefGoogle Scholar
  36. Huang Y, Wang J, Cheng Y, Zheng Y (2010) The hypocholesterolaemic effects of Lactobacillus acidophilus American Type Culture Collection 4356 in rats are mediated by the down-regulation of Niemann-Pick C1-Like 1. Br J Nutr 104(6):807–812. CrossRefPubMedGoogle Scholar
  37. Huang Y, Wang X, Wang J, Wu F, Sui Y, Yang L, Wang Z (2013) Lactobacillus plantarum strains as potential probiotic cultures with cholesterol-lowering activity. J Dairy Sci 96(5):2746–2753. CrossRefPubMedGoogle Scholar
  38. Huang Y, Zheng Y (2009) The probiotic Lactobacillus acidophilus reduces cholesterol absorption through the down-regulation of Niemann-Pick C1-like 1 in Caco-2 cells. Br J Nutr 103(4):473–478. CrossRefPubMedGoogle Scholar
  39. Ichim TE, Patel AN, Shafer KA (2016) Experimental support for the effects of a probiotic/digestive enzyme supplement on serum cholesterol concentrations and the intestinal microbiome. J Transl Med 14(1):184. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Ikonen E (2006) Mechanisms for cellular cholesterol transport: defects and human disease. Physiol Rev 86(4):1237–1261. CrossRefPubMedGoogle Scholar
  41. Isner JM, Kearney M, Bortman S, Passeri J (1995) Apoptosis in human atherosclerosis and restenosis. Circulation 91(11):2703–2711. CrossRefPubMedGoogle Scholar
  42. Jee S, Suh I, Kim I, Appel LJ (1999) Smoking and atherosclerotic cardiovascular disease in men with low levels of serum cholesterol: the Korea Medical Insurance Corporation Study. JAMA 282(22):2149–2155. CrossRefPubMedGoogle Scholar
  43. Jeun J, Kim S, Cho S-Y, H-j J, Park H-J, Seo J-G, Chung M-J, Lee S-J (2010) Hypocholesterolemic effects of Lactobacillus plantarum KCTC3928 by increased bile acid excretion in C57BL/6 mice. Nutrition 26(3):321–330. CrossRefPubMedGoogle Scholar
  44. Jia L, Betters JL, Yu L (2011) Niemann-Pick C1-Like 1 (NPC1L1) protein in intestinal and hepatic cholesterol transport. Ann Rev of Physioth 73(1):239–259. CrossRefGoogle Scholar
  45. Jonasson L, Holm J, Skalli O, Bondjers G, Hansson GK (1986) Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arterioscler Thromb Vasc Biol 6(2):131–138. CrossRefGoogle Scholar
  46. Jones ML, Martoni CJ, Prakash S (2012) Cholesterol lowering and inhibition of sterol absorption by Lactobacillus reuteri NCIMB 30242: a randomized controlled trial. Eur J Clin Nutr 66:1234–1241. CrossRefPubMedGoogle Scholar
  47. Jones ML, Tomaro-Duchesneau C, Prakash S (2014) The gut microbiome, probiotics, bile acids axis, and human health. Trends Microbiol 22(6):306–308. CrossRefPubMedGoogle Scholar
  48. Joyce SA, MacSharry J, Casey PG, Kinsella M, Murphy EF, Shanahan F, Hill C, Gahan CGM (2014) Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut. Proceeding of the Natl Acad Sci 111(20):7421–7426. CrossRefGoogle Scholar
  49. Jürgens G, Hoff HF, Chisolm GM, Esterbauer H (1987) Modification of human serum low density lipoprotein by oxidation — characterization and pathophysiological implications. Chem Phys Lipids 45(2):315–336. CrossRefPubMedGoogle Scholar
  50. Kekkonen RA, Sysi-Aho M, Seppänen-Laakso T, Julkunen I, Vapaatalo H, Orešič M, Korpela R (2008) Effect of probiotic Lactobacillus rhamnosus GG intervention on global serum lipidomic profiles in healthy adults. WJG 14(20):3188–3194. CrossRefPubMedGoogle Scholar
  51. Kerr WC, Ye Y (2007) Population-level relationships between alcohol consumption measures and ischemic heart disease mortality in U.S. time-series. Alcohol Clin Exp Res 31(11):1913–1919. CrossRefPubMedGoogle Scholar
  52. Kießling G, Schneider J, Jahreis G (2002) Long-term consumption of fermented dairy products over 6 months increases HDL cholesterol. Eur J Clin Nutr 56:843–849. CrossRefPubMedGoogle Scholar
  53. Kimoto H, Ohmomo S, Okamoto T (2002) Cholesterol removal from media by Lactococci. J Dairy Sci 85(12):3182–3188. CrossRefPubMedGoogle Scholar
  54. Krieger M (1997) The other side of scavenger receptors: pattern recognition for host defense. Curr Opin Lipidol 8(5):275–280CrossRefPubMedGoogle Scholar
  55. Kullisaar T, Zilmer K, Salum T, Rehema A, Zilmer M (2016) The use of probiotic L. fermentum ME-3 containing Reg’Activ cholesterol supplement for 4 weeks has a positive influence on blood lipoprotein profiles and inflammatory cytokines: an open-label preliminary study. Nutr J 15(1):93. CrossRefPubMedPubMedCentralGoogle Scholar
  56. Kumar M, Nagpal R, Kumar R, Hemalatha R, Verma V, Kumar A, Chakraborty C, Singh B, Marotta F, Jain S, Yadav H (2012) Cholesterol-lowering probiotics as potential biotherapeutics for metabolic diseases. Exp Diabetes Res 2012:14–14. CrossRefGoogle Scholar
  57. Kumar R, Grover S, Batish VK (2011) Hypocholesterolaemic effect of dietary inclusion of two putative probiotic bile salt hydrolase-producing Lactobacillus plantarum strains in Sprague-Dawley rats. Br J Nutr 105(4):561–573. CrossRefPubMedGoogle Scholar
  58. Lee DE, Cooper RS (2009) Recommendations for global hypertension monitoring and prevention. Curr Hypertens Rep 11(6):444–449. CrossRefPubMedGoogle Scholar
  59. Lee HS, Lee SS, Hwang IY, Park YJ, Yoon SH, Han K, Son JW, Ko SH, Park YG, Yim HW, Lee WC, Park YM (2012) Prevalence, awareness, treatment and control of hypertension in adults with diagnosed diabetes: the Fourth Korea National Health and Nutrition Examination Survey (KNHANES IV). J Hum Hypertens 27:381–387. CrossRefPubMedGoogle Scholar
  60. Levenson JW, Skerrett PJ, Gaziano JM (2002) Reducing the global burden of cardiovascular disease: the role of risk factors. Prev Cardiol 5(4):188–199. CrossRefPubMedGoogle Scholar
  61. Lindblad U, Langer RD, Wingard DL, Thomas RG, Barrett-Connor EL (2001) Metabolic syndrome and ischemic heart disease in elderly men and women. Am J Epidemiol 153(5):481–489. CrossRefPubMedGoogle Scholar
  62. Liong MT, Shah NP (2005) Acid and bile tolerance and cholesterol removal ability of Lactobacilli strains. J Dairy Sci 88(1):55–66. CrossRefPubMedGoogle Scholar
  63. Loree HM, Tobias BJ, Gibson LJ, Kamm RD, Small DM, Lee RT (1994) Mechanical properties of model atherosclerotic lesion lipid pools. Arterioscler Thromb Vasc Biol 14(2):230–234. CrossRefGoogle Scholar
  64. Lye H-S, Rahmat-Ali GR, Liong M-T (2010) Mechanisms of cholesterol removal by lactobacilli under conditions that mimic the human gastrointestinal tract. Int Dairy J 20(3):169–175. CrossRefGoogle Scholar
  65. Malik VS, Popkin BM, Bray GA, Després J-P, Hu FB (2010) Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk. Circulation 121(11):1356–1364. CrossRefPubMedPubMedCentralGoogle Scholar
  66. Mann GV (1977) A factor in yogurt which lowers cholesteremia in man. Atherosclerosis 26(3):335–340. CrossRefPubMedGoogle Scholar
  67. Manson JE, Tosteson H, Ridker PM, Satterfield S, Hebert P, O’Connor GT, Buring JE, Hennekens CH (1992) The primary prevention of myocardial infarction. N Engl J Med 326(21):1406–1416. CrossRefPubMedGoogle Scholar
  68. Martin SS, Blaha MJ, Blankstein R, Agatston A, Rivera JJ, Virani SS, Ouyang P, Jones SR, Blumenthal RS, Budoff MJ (2014) Dyslipidemia, coronary artery calcium, and incident atherosclerotic cardiovascular disease: implications for statin therapy from the multi-ethnic study of atherosclerosis. Circulation 129(1):77–86CrossRefPubMedGoogle Scholar
  69. Maruf A, Wang Y, Yin T, Huang J, Wang N, Durkan C, Tan Y, Wu W, Wang G (2019) Atherosclerosis treatment with stimuli-responsive nanoagents: recent advances and future perspectives. Adv Healthc Mater :1900036
  70. Melián A, Geng Y-J, Sukhova GK, Libby P, Porcelli SA (1999) CD1 expression in human atherosclerosis: a potential mechanism for T cell activation by foam cells. Am J Pathol 155(3):775–786. CrossRefPubMedPubMedCentralGoogle Scholar
  71. Mendis S, Puska P, Norrving B (2011) Global atlas on cardiovascular disease prevention and control. WHO, GenevaGoogle Scholar
  72. Mercenier A, Pavan S, Pot B (2003) Probiotics as biotherapeutic agents: present knowledge and future prospects. Curr Pharm Des 9(2):175–191. CrossRefPubMedGoogle Scholar
  73. Michail S (2009) The role of probiotics in allergic diseases. Allergy. Asthma Clin Immunol 5(1):5. CrossRefGoogle Scholar
  74. Naghavi M, Wang H, Lozano R, Davis A, Liang X, Zhou M, Vollset SEV, Abbasoglu Ozgoren A, Norman RE, Vos T, Lopez AD, Murray CJL (2015) Global, regional, and national age–sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 385(9963):117–171. CrossRefGoogle Scholar
  75. Nagy L, Tontonoz P, Alvarez JGA, Chen H, Evans RM (1998) Oxidized LDL regulates macrophage gene expression through ligand activation of PPARγ. Cell 93(2):229–240. CrossRefPubMedGoogle Scholar
  76. Ngongang EFT, Tiencheu B, Achidi AU, Fossi BT, Shiynyuy DM, Womeni HM, François ZN (2016) Effects of probiotic bacteria from yogurt on enzyme and serum cholesterol levels of experimentally induced hyperlipidemic Wistar Albino rats. Am J Biol Life Sci 4:48Google Scholar
  77. Nguyen TDT, Kang JH, Lee MS (2007) Characterization of Lactobacillus plantarum PH04, a potential probiotic bacterium with cholesterol-lowering effects. Int J Food Microbiol 113(3):358–361. CrossRefPubMedGoogle Scholar
  78. Ooi L-G, Liong M-T (2010) Cholesterol-lowering effects of probiotics and prebiotics: a review of in vivo and in vitro findings. Int J Mol Sci 11(6):2499–2522CrossRefPubMedPubMedCentralGoogle Scholar
  79. Pan DD, Zeng XQ, Yan YT (2011) Characterisation of Lactobacillus fermentum SM-7 isolated from koumiss, a potential probiotic bacterium with cholesterol-lowering effects. J Sci Food Agric 91(3):512–518. CrossRefPubMedGoogle Scholar
  80. Park D-Y, Ahn Y-T, Park S-H, Huh C-S, Yoo S-R, Yu R, Sung M-K, McGregor RA, Choi M-S (2013) Supplementation of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 in diet-induced obese mice is associated with gut microbial changes and reduction in obesity. PLoS One 8(3):e59470. CrossRefPubMedPubMedCentralGoogle Scholar
  81. Park YH (2007) Effect of dietary inclusion of Lactobacillus acidophilus ATCC 43121 on cholesterol metabolism in rats. J Microbiol Biotechnol 17(4):655–662PubMedGoogle Scholar
  82. Park YH, Kim JG, Shin YW, Kim SH, Whang KY (2007) Effect of dietary inclusion of Lactobacillus acidophilus ATCC 43121 on cholesterol metabolism in rats. J Microbiol Biotechnol 17(4):655–662PubMedGoogle Scholar
  83. Pavlović N, Stankov K, Mikov M (2012) Probiotics—interactions with bile acids and impact on cholesterol metabolism. Appl biochem and biotechnol 2012 v.168 no.7(no. 7):pp. 1880–1895
  84. Pereira DIA, Gibson GR (2002) Effects of consumption of probiotics and prebiotics on serum lipid levels in humans. Crit Rev Biochem Mol Biol 37(4):259–281. CrossRefPubMedGoogle Scholar
  85. Perova NV, Metel’skaia VA (2008) Plant sterols and stanols as the dietary factors lowering hypercholesterolemia by inhibition of intestinal cholesterol absorption. Kardiologiia 48(5):62–69PubMedGoogle Scholar
  86. Peterson DA, Frank DN, Pace NR, Gordon JI (2008) Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases. Cell Host Microbe 3(6):417–427. CrossRefPubMedPubMedCentralGoogle Scholar
  87. Popkin BM, Slining MM (2013) New dynamics in global obesity facing low- and middle-income countries. Obes Rev 14:11–20. CrossRefPubMedPubMedCentralGoogle Scholar
  88. Prentice AM (2006) The emerging epidemic of obesity in developing countries. Int J Epidemiol 35(1):93–99. CrossRefPubMedGoogle Scholar
  89. Rajavashisth T, Qiao JH, Tripathi S, Tripathi J, Mishra N, Hua M, Wang XP, Loussararian A, Clinton S, Libby P, Lusis A (1998) Heterozygous osteopetrotic (op) mutation reduces atherosclerosis in LDL receptor-deficient mice. J Clin Invest 101(12):2702–2710CrossRefPubMedPubMedCentralGoogle Scholar
  90. Reid G, Bruce AW, Fraser N, Heinemann C, Owen J, Henning B (2001) Oral probiotics can resolve urogenital infections. FEMS Immunol Medi Microbiol 30(1):49–52. CrossRefGoogle Scholar
  91. Reid G, Jass J, Sebulsky MT, McCormick JK (2003) Potential uses of probiotics in clinical practice. Clin Microbiol Rev 16(4):658–672. CrossRefPubMedPubMedCentralGoogle Scholar
  92. Reynier MO, Montet JC, Gerolami A, Marteau C, Crotte C, Montet AM, Mathieu S (1981) Comparative effects of cholic, chenodeoxycholic, and ursodeoxycholic acids on micellar solubilization and intestinal absorption of cholesterol. J Lipid Res 22(3):467–473PubMedGoogle Scholar
  93. Richardson DP, Eggersdorfer M (2015) Opportunities for product innovation using authorised European Union health claims. Int J Food Sci Technol 50(1):3–12. CrossRefGoogle Scholar
  94. Roth GA, Forouzanfar MH, Moran AE, Barber R, Nguyen G, Feigin VL, Naghavi M, Mensah GA, Murray CJL (2015) Demographic and epidemiologic drivers of global cardiovascular mortality. N Engl J Med 372(14):1333–1341. CrossRefPubMedPubMedCentralGoogle Scholar
  95. Sanders ME (2008) Probiotics: definition, sources, selection, and uses. Clin Infect Dis 46(s2):S58-S61CrossRefPubMedGoogle Scholar
  96. Sayin Sama I, Wahlström A, Felin J, Jäntti S, Marschall H-U, Bamberg K, Angelin B, Hyötyläinen T, Orešič M, Bäckhed F (2013) Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab 17(2):225–235. CrossRefPubMedGoogle Scholar
  97. Schmidt AM, Yan SD, Wautier J-L, Stern D (1999) Activation of receptor for advanced glycation end products. A mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ Res 84(5):489–497. CrossRefPubMedGoogle Scholar
  98. Shanahan F (2004) Probiotics in inflammatory bowel disease—therapeutic rationale and role. Adv Drug Deliv Rev 56(6):809–818. CrossRefPubMedGoogle Scholar
  99. Shaper AG, Jones KW, Jones M, Kyobe J (1963) Serum lipids in three nomadic tribes of northern Kenya. Am J Clin Nutr 13(3):135–146CrossRefPubMedGoogle Scholar
  100. Simons LA, Amansec SG, Conway P (2006) Effect of Lactobacillus fermentum on serum lipids in subjects with elevated serum cholesterol. Nutr Metab Cardiovasc Dis 16(8):531–535. CrossRefPubMedGoogle Scholar
  101. Sindhu SC, Khetarpaul N (2003) Effect of feeding probiotic fermented indigenous food mixture on serum cholesterol levels in mice. Nutr Res 23(8):1071–1080. CrossRefGoogle Scholar
  102. Singh RB, Rastogi V, Niaz MA, Ghosh S, Sy RG, Janus ED (1998) Serum cholesterol and coronary artery disease in populations with low cholesterol levels: the Indian paradox. Int J Cardiol 65(1):81–90. CrossRefPubMedGoogle Scholar
  103. Sirilun S, Chaiyasut C, Kantachote D, Luxananil P (2010) Characterisation of non human origin probiotic Lactobacillus plantarum with cholesterol-lowering property. Afr J Microbiol Res 4(10):994–1000Google Scholar
  104. Smith JD, Trogan E, Ginsberg M, Grigaux C, Tian J, Miyata M (1995) Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E. Proceedings of the National Academy of Sci 92(18):8264–8268CrossRefGoogle Scholar
  105. Stanton C, Gardiner G, Meehan H, Collins K, Fitzgerald G, Lynch PB, Ross RP (2001) Market potential for probiotics. The Am J Cli Nutri 73(2):476s–483sCrossRefGoogle Scholar
  106. Stanton C, Ross RP, Fitzgerald GF, Sinderen DV (2005) Fermented functional foods based on probiotics and their biogenic metabolites. Curr Opin Biotechnol 16(2):198–203. CrossRefPubMedGoogle Scholar
  107. Steinberg D (1997) Lewis A. Conner memorial lecture. Oxidative Modification of LDL and Atherogenesis 95(4):1062–1071. CrossRefGoogle Scholar
  108. Stemme S, Faber B, Holm J, Wiklund O, Witztum JL, Hansson GK (1995) T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proceedings of the National Academy of Sci 92(9):3893–3897. CrossRefGoogle Scholar
  109. Stitt AW, Bucala R, Vlassara H (1997) Atherogenesis and advanced glycation: promotion, progression, and prevention. Annals of the New York Academy of Sci 811(1):115–129. CrossRefGoogle Scholar
  110. Sudha MR, Prashant C, Kalpana D, Sekhar B, Kaiser J (2009) Probiotics as complementary therapy for hypercholesterolemia. Bio Medi 1(4):Rev4Google Scholar
  111. Tabas I (1999) Nonoxidative modifications of lipoproteins in atherogenesis. Annu Rev Nutr 19(1):123–139. CrossRefPubMedGoogle Scholar
  112. Thushara RM, Gangadaran S, Solati Z, Moghadasian MH (2016) Cardiovascular benefits of probiotics: a review of experimental and cli studies. Food Funct 7(2):632–642. CrossRefPubMedGoogle Scholar
  113. Tok E, Aslim B (2010) Cholesterol removal by some lactic acid bacteria that can be used as probiotic. Microbiol Immunol 54(5):257–264. CrossRefPubMedGoogle Scholar
  114. Tontonoz P, Nagy L, Alvarez JGA, Thomazy VA, Evans RM (1998) PPARγ promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 93(2):241–252. CrossRefPubMedGoogle Scholar
  115. Tsai C-C, Lin P-P, Hsieh Y-M, Z-y Z, Wu H-C, Huang C-C (2014) Cholesterol-lowering potentials of lactic acid bacteria based on bile-salt hydrolase activity and effect of potent strains on cholesterol metabolism in vitro and in vivo. The Scientific W J 2014:690752. CrossRefGoogle Scholar
  116. Vani M, Prakash MS, Devi PY (2012) Hypocholesterolemic effects of Lactobacillus acidophilus as a dietary SupplGoogle Scholar
  117. Walker DK, Gilliland SE (1993) Relationships among bile tolerance, bile salt deconjugation, and assimilation of cholesterol by Lactobacillus acidophilus. J Dairy Sci 76(4):956–961. CrossRefPubMedGoogle Scholar
  118. Wall R, Marques TM, O’Sullivan O, Ross RP, Shanahan F, Quigley EM, Dinan TG, Kiely B, Fitzgerald GF, Cotter PD, Fouhy F, Stanton C (2012) Contrasting effects of Bifidobacterium breve NCIMB 702258 and Bifidobacterium breve DPC 6330 on the composition of murine brain fatty acids and gut microbiota. The Am J Cli Nutri 95(5):1278–1287. CrossRefGoogle Scholar
  119. Wang J, Zhang H, Chen X, Chen Y, Menghebilige BQ (2012) Selection of potential probiotic lactobacilli for cholesterol-lowering properties and their effect on cholesterol metabolism in rats fed a high-lipid diet. J Dairy Sci 95(4):1645–1654. CrossRefPubMedGoogle Scholar
  120. Wang Y, Zhang K, Qin X, Li T, Qiu J, Yin T, Huang J, McGinty S, Pontrelli G, Ren J (2019) Biomimetic nanotherapies: red blood cell based core–shell structured nanocomplexes for atherosclerosis management. Adva Sci:1900172
  121. Wei D, Chen Y, Tang C, Huang H, Liu L, Wang Z, Li R, Wang G (2013) LDL decreases the membrane compliance and cell adhesion of endothelial cells under fluid shear stress. Ann Biomed Eng 41(3):611–618. CrossRefPubMedGoogle Scholar
  122. Who J, Consultation FE (2003) Diet, nutrition and the prevention of chronic diseases. World Health Organ Tech Rep Ser 916(i-viii)Google Scholar
  123. Xiao JZ, Kondo S, Takahashi N, Miyaji K, Oshida K, Hiramatsu A, Iwatsuki K, Kokubo S, Hosono A (2003) Effects of milk products fermented by Bifidobacterium longum on blood lipids in rats and healthy adult male volunteers. J Dairy Sci 86(7):2452–2461. CrossRefPubMedGoogle Scholar
  124. Xie N, Cui Y, Yin Y-N, Zhao X, Yang J-W, Wang Z-G, Fu N, Tang Y, Wang X-H, Liu X-W, Wang C-L, Lu F-G (2011) Effects of two Lactobacillus strains on lipid metabolism and intestinal microflora in rats fed a high-cholesterol diet. BMC Complement Altern Med 11(1):53. CrossRefPubMedPubMedCentralGoogle Scholar
  125. Xie X, Tan J, Wei D, Lei D, Yin T, Huang J, Zhang X, Qiu J, Tang C, Wang G (2013) In vitro and in vivo investigations on the effects of low-density lipoprotein concentration polarization and haemodynamics on atherosclerotic localization in rabbit and zebrafish. J Royal Soc Interface 10(82):20121053. CrossRefGoogle Scholar
  126. Yamada Y (1998) Scavenger receptor family proteins : roles for atherosclerosis, host defence and disorders of the central nervous system. Cell Mol Life Sci 54:628–640CrossRefPubMedGoogle Scholar
  127. Yang Q, Zhang Z, Gregg EW, Flanders W, Merritt R, Hu FB (2014) Added sugar intake and cardiovascular diseases mortality among us adults. JAMA Intern Med 174(4):516–524. CrossRefPubMedGoogle Scholar
  128. Yeo S-K, Liong M-T (2010) Angiotensin I-converting enzyme inhibitory activity and bioconversion of isoflavones by probiotics in soymilk supplemented with prebiotics. Int J Food Sci Nutr 61(2):161–181. CrossRefPubMedGoogle Scholar
  129. Yurko-Mauro K, McCarthy D, Rom D, Nelson EB, Ryan AS, Blackwell A, Salem N, Stedman M (2010) Beneficial effects of docosahexaenoic acid on cognition in age-related cognitive decline. Alzheimers Dement 6(6):456–464. CrossRefPubMedGoogle Scholar
  130. Zhu Y., LI, T., Din, AU, Hassan, A., Wang, Y., Wang, G (2019) Beneficial effects of Enterococcus faecalis in hypercholesterolemic mice on cholesterol transportation and gut microbiota. Appl Microbiol Biotechnol.
  131. (1999) Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. The Lancet 354(9177):447–455
  132. (2011) A prioritized research agenda for prevention and control of noncommunicable diseases. WHO , GenevaGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Adil Hassan
    • 1
  • Ahmad Ud Din
    • 1
  • Yuan Zhu
    • 1
  • Kun Zhang
    • 1
  • Tianhan Li
    • 1
  • Yi Wang
    • 1
  • Yang Luo
    • 1
  • Guixue Wang
    • 1
    Email author
  1. 1.Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqingChina

Personalised recommendations