Advertisement

Applied Microbiology and Biotechnology

, Volume 103, Issue 13, pp 5117–5129 | Cite as

Technical applications of plasma treatments: current state and perspectives

  • Juliana ŠimončicováEmail author
  • Svetlana Kryštofová
  • Veronika Medvecká
  • Kamila Ďurišová
  • Barbora KaliňákováEmail author
Mini-Review
  • 214 Downloads

Abstract

Rapidly evolving cold atmospheric pressure plasma (CAPP)–based technology has been actively used not only in bioresearch but also in biotechnology, food safety and processing, agriculture, and medicine. High variability in plasma device configurations and electrode layouts has accelerated non-thermal plasma applications in treatment of various biomaterials and surfaces of all sizes. Mode of cold plasma action is likely associated with synergistic effect of biologically active plasma components, such as UV radiation or reactive species. CAPP has been employed in inactivation of viruses, to combat resistant microorganisms (antibiotic resistant bacteria, spores, biofilms, fungi) and tumors, to degrade toxins, to modify surfaces and their properties, to increase microbial production of compounds, and to facilitate wound healing, blood coagulation, and teeth whitening. The mini-review provides a brief overview of non-thermal plasma sources and recent achievements in biological sciences. We have also included pros and cons of CAPP technologies as well as future directions in biosciences and their respective industrial fields.

Keywords

Cold atmospheric pressure plasma Cold plasma applications Biological decontamination Plasma mode of action 

Notes

Funding information

This work was supported by the Slovak Research and Development Agency under the contract no. APVV-16-0216.

Compliance with ethical standards

Conflict of interest

The authors declare they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or experimental animals performed by any of the authors.

References

  1. Arjunan KP, Sharma VK, Ptasinska S (2015) Effects of atmospheric pressure plasmas on isolated and cellular DNA - a review. Int J Mol Sci 16:2971–3016.  https://doi.org/10.3390/ijms16022971 CrossRefGoogle Scholar
  2. Bafoil M, Jemmat A, Martinez Y, Merbahi N, Eichwald O, Dunand C, Yousfi M (2018) Effects of low temperature plasmas and plasma activated waters on Arabidopsis thaliana germination and growth. PLoS One 13:1–16.  https://doi.org/10.1371/journal.pone.0195512 CrossRefGoogle Scholar
  3. Bahrami N, Bayliss D, Chope G, Penson S, Perehinec T, Fisk ID (2016) Cold plasma: a new technology to modify wheat flour functionality. Food Chem 202:247–253.  https://doi.org/10.1016/j.foodchem.2016.01.113 CrossRefGoogle Scholar
  4. Bekeschus S, Schmidt A, Kramer A, Metelmann HR, Adler F, von Woedtke T, Niessner F, Weltmann KD, Wende K (2018) High throughput image cytometry micronucleus assay to investigate the presence or absence of mutagenic effects of cold physical plasma. Environ Mol Mutagen 59:268–277.  https://doi.org/10.1002/em.22172 CrossRefGoogle Scholar
  5. Bellan PM (2008) Fundamentals of plasma physics. Cambridge University Press, CambridgeGoogle Scholar
  6. Bridier A, Sanchez-Vizuete P, Guilbaud M, Piard J, Naïtali M (2015) Biofilm-associated persistence of food-borne pathogens. Food Microbiol 45:167–178.  https://doi.org/10.1016/j.fm.2014.04.015 CrossRefGoogle Scholar
  7. Brun P, Bernabè G, Marchiori C, Scarpa M, Zuin M, Cavazzana R, Zaniol B, Martines E (2018) Antibacterial efficacy and mechanisms of action of low power atmospheric pressure cold plasma: membrane permeability, biofilm penetration and antimicrobial sensitization. J Appl Microbiol 125:398–408.  https://doi.org/10.1111/jam.13780 CrossRefGoogle Scholar
  8. Campas O, Mahadevan L (2009) Report shape and dynamics of tip-growing cells. Curr Biol 19:2102–2107.  https://doi.org/10.1016/j.cub.2009.10.075 CrossRefGoogle Scholar
  9. Chatraie M, Torkaman G, Khani M, Salehi H, Shokri B (2018) In vivo study of non-invasive effects of non-thermal plasma in pressure ulcer treatment. Sci Rep 8:5621.  https://doi.org/10.1038/s41598-018-24049-z CrossRefGoogle Scholar
  10. Chirokov A, Gutsol A, Fridman A (2005) Atmospheric pressure plasma of dielectric barrier discharges. 77:487–495.  https://doi.org/10.1351/pac200577020487
  11. Coutinho NM, Silveira MR, Rocha RS, Moraes J, Ferreira MVS, Pimentel TC, Freitas MQ, Silva MC, Raices RSL, Ranadheera CS, Borges FO, Mathias SP, Fernandes FAN, Rodrigues S, Cruz AG (2018) Cold plasma processing of milk and dairy products. Trends Food Sci Technol 74:56–68.  https://doi.org/10.1016/j.tifs.2018.02.008 CrossRefGoogle Scholar
  12. Cullen PJ, Lalor J, Scally L, Boehm D, Milosavljević V, Bourke P, Keener K (2018) Translation of plasma technology from the lab to the food industry. Plasma Process Polym 15:1–11.  https://doi.org/10.1002/ppap.201700085 CrossRefGoogle Scholar
  13. Czapka T, Maliszewska I, Olesiak-Banska J (2018) Influence of atmospheric pressure non-thermal plasma on inactivation of biofilm cells. Plasma Chem Plasma Process 38:1181–1197.  https://doi.org/10.1007/s11090-018-9925-z CrossRefGoogle Scholar
  14. Edengeiser E, Lackmann J, Bründermann E, Schneider S, Benedikt J, Bandow JE, Havenith M (2015) Synergistic effects of atmospheric pressure plasma-emitted components on DNA oligomers: a Raman spectroscopic study. J Biophotonics 8:918–924.  https://doi.org/10.1002/jbio.201400123 CrossRefGoogle Scholar
  15. Foest R, Schmidt M, Becker K (2006) Microplasmas, an emerging field of low-temperature plasma science and technology. Int J Mass Spectrom 248:87–102.  https://doi.org/10.1016/j.ijms.2005.11.010 CrossRefGoogle Scholar
  16. Fridman G, Peddinghaus M, Ayan H, Fridman A, Balasubramanian M, Gutsol A, Brooks A, Friedman G (2006) Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air. Plasma Chem Plasma Process 26:425–442.  https://doi.org/10.1007/s11090-006-9024-4 CrossRefGoogle Scholar
  17. Furchtgott L, Wingreen NS, Huang KC (2011) Mechanisms for maintaining cell shape in rod-shaped Gram-negative bacteria. Mol Microbiol 81:340–353.  https://doi.org/10.1111/j.1365-2958.2011.07616.x MechanismsCrossRefGoogle Scholar
  18. Graves DB (2014) Low temperature plasma biomedicine: a tutorial review. Phys Plasmas 21:80901.  https://doi.org/10.1063/1.4892534 CrossRefGoogle Scholar
  19. Groot MN, Abee T, van Bokhorst-van de Veen H (2018) Inactivation of conidia from three Penicillium spp. isolated from fruit juices by conventional and alternative mild preservation technologies and disinfection treatments. Food Microbiol 81:0–1.  https://doi.org/10.1016/j.fm.2018.06.004 Google Scholar
  20. Guo L, Xu R, Gou L, Liu Z, Zhao Y, Liu D, Zhang L, Chen H, Kong MG (2018a) Mechanism of virus inactivation by cold atmospheric-pressure plasma and plasma-activated water. Appl Environ Microbiol 84:726–718.  https://doi.org/10.1128/AEM.00726-18 Google Scholar
  21. Guo Q, Meng Y, Qu G, Wang T, Yang F, Liang D, Hu S (2018b) Improvement of wheat seed vitality by dielectric barrier discharge plasma treatment. Bioelectromagnetics 39:120–131.  https://doi.org/10.1002/bem.22088 CrossRefGoogle Scholar
  22. Handorf O, Weihe T, Bekeschus S, Graf AC, Schnabel U, Riedel K, Ehlbeck J, Physiology M (2018) Non-thermal plasma jet treatment negatively affects viability and structure of Candida albicans SC5314 biofilms. Appl Environ Microbiol 84:e01163–e01118.  https://doi.org/10.1128/AEM.01163-18 CrossRefGoogle Scholar
  23. Hassan YI, Zhou T (2018) Promising detoxification strategies to mitigate mycotoxins in food and feed. Toxins (Basel) 10:1–5.  https://doi.org/10.3390/toxins10030116 Google Scholar
  24. He Z, Liu K, Manaloto E, Casey A, Cribaro GP, Byrne HJ, Tian F, Barcia C, Conway GE, Cullen PJ, Curtin JF (2018) Cold atmospheric plasma induces ATP-dependent endocytosis of nanoparticles and synergistic U373MG cancer cell death. Sci Rep 8:1–11.  https://doi.org/10.1038/s41598-018-23262-0 CrossRefGoogle Scholar
  25. Huang Y, Ye XP, Doona CJ, Feeherry FE, Radosevich M, Wang S (2018) An investigation of inactivation mechanisms of Bacillus amyloliquefaciens spores in non-thermal plasma of ambient air. J Sci Food Agric 99:368–378.  https://doi.org/10.1002/jsfa.9198 CrossRefGoogle Scholar
  26. Itooka K, Takahashi K, Kimata Y, Izawa S (2018) Cold atmospheric pressure plasma causes protein denaturation and endoplasmic reticulum stress in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 102:2279–2288.  https://doi.org/10.1007/s00253-018-8758-2 CrossRefGoogle Scholar
  27. Ji SH, Ki SH, Ahn JH, Shin JH, Hong EJ, Kim YJ, Choi EH (2018) Inactivation of Escherichia coli and Staphylococcus aureus on contaminated perilla leaves by dielectric barrier discharge (DBD) plasma treatment. Arch Biochem Biophys 643:32–41.  https://doi.org/10.1016/j.abb.2018.02.010 CrossRefGoogle Scholar
  28. Kim JH, Min SC (2018) Moisture vaporization-combined helium dielectric barrier discharge-cold plasma treatment for microbial decontamination of onion flakes. Food Control 84:321–329.  https://doi.org/10.1016/j.foodcont.2017.08.018 CrossRefGoogle Scholar
  29. Kim T, Seo H, Bae H, Kim T, Yang S (2018) Generation of active species and antimicrobial efficacy of an underwater plasma device equipped with a porous bubbler. Plasma Process Polym 15:1–7.  https://doi.org/10.1002/ppap.201700229 Google Scholar
  30. Kim SY, Bang IH, Min SC (2019) Effects of packaging parameters on the inactivation of Salmonella contaminating mixed vegetables in plastic packages using atmospheric dielectric barrier discharge cold plasma treatment. J Food Eng 242:55–67.  https://doi.org/10.1016/j.jfoodeng.2018.08.020 CrossRefGoogle Scholar
  31. Kogelschatz U, Eliasson B, Egli W, France PIV, Abb E (2003) Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem Plasma Process 23:1–46.  https://doi.org/10.1023/A:1022470901385 CrossRefGoogle Scholar
  32. Lackmann J-W, Schneider S, Edengeiser E, Jarzina F, Brinckmann S, Steinborn E, Havenith M, Benedikt J, Bandow JE (2013) Photons and particles emitted from cold atmospheric-pressure plasma inactivate bacteria and biomolecules independently and synergistically. J R Soc Interface 10:20130591.  https://doi.org/10.1098/rsif.2013.0591 CrossRefGoogle Scholar
  33. Laroussi M, Mendis DA, Rosenberg M (2003) Plasma interaction with microbes. New J Phys 5:41CrossRefGoogle Scholar
  34. Liao X, Cullen PJ, Liu D, Muhammad AI, Chen S, Ye X, Wang J, Ding T (2018a) Combating Staphylococcus aureus and its methicillin resistance gene (mecA) with cold plasma. Sci Total Environ 645:1287–1295.  https://doi.org/10.1016/j.scitotenv.2018.07.190 CrossRefGoogle Scholar
  35. Liao X, Li J, Muhammad AI, Suo Y, Chen S, Ye X, Liu D, Ding T (2018b) Application of a dielectric barrier discharge atmospheric cold plasma (Dbd-Acp) for Eshcerichia coli inactivation in apple juice. J Food Sci 83:401–408.  https://doi.org/10.1111/1750-3841.14045 CrossRefGoogle Scholar
  36. Liao X, Li J, Suo Y, Ahn J, Liu D, Chen S, Hu Y, Ye X, Ding T (2018c) Effect of preliminary stresses on the resistance of Escherichia coli and Staphylococcus aureus toward non-thermal plasma (NTP) challenge. Food Res Int 105:178–183.  https://doi.org/10.1016/j.foodres.2017.11.010 CrossRefGoogle Scholar
  37. Lin A, Xiang B, Merlino DJ, Baybutt TR, Sahu J, Fridman A, Snook AE, Miller V (2018) Non-thermal plasma induces immunogenic cell death in vivo in murine CT26 colorectal tumors. Oncoimmunology 7:e1484978.  https://doi.org/10.1080/2162402X.2018.1484978 CrossRefGoogle Scholar
  38. Lis KA, Boulaaba A, Binder S, Li Y, Kehrenberg C, Zimmermann JL, Klein G, Ahlfeld B (2018) Inactivation of Salmonella Typhimurium and Listeria monocytogenes on ham with nonthermal atmospheric pressure plasma. PLoS One 13:1–21CrossRefGoogle Scholar
  39. Los A, Ziuzina D, Akkermans S, Boehm D, Cullen PJ, Van IJ, Bourke P (2018) Improving microbiological safety and quality characteristics of wheat and barley by high voltage atmospheric cold plasma closed processing. Food Res Int 106:509–521.  https://doi.org/10.1016/j.foodres.2018.01.009 CrossRefGoogle Scholar
  40. Lu X, Laroussi M, Puech V (2012) On atmospheric-pressure non-equilibrium plasma jets and plasma bullets. Plasma Sources Sci Technol 21:34005.  https://doi.org/10.1088/0963-0252/21/3/034005 CrossRefGoogle Scholar
  41. Ma Y, Yang H, Chen X, Sun B, Du G, Zhou Z, Song J, Fan Y, Shen W (2015) Significantly improving the yield of recombinant proteins in Bacillus subtilis by a novel powerful mutagenesis tool (ARTP): alkaline α-amylase as a case study. Protein Expr Purif 114:82–88.  https://doi.org/10.1016/j.pep.2015.06.016 CrossRefGoogle Scholar
  42. Măgureanu M, Sîrbu R, Dobrin D, Gîdea M (2018) Stimulation of the germination and early growth of tomato seeds by non-thermal plasma. Plasma Chem Plasma Process 38:989–1001.  https://doi.org/10.1007/s11090-018-9916-0 CrossRefGoogle Scholar
  43. Mai-Prochnow A, Clauson M, Hong J, Murphy AB (2016) Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Sci Rep 6:1–11.  https://doi.org/10.1038/srep38610 CrossRefGoogle Scholar
  44. Metelmann HR, Seebauer C, Miller V, Fridman A, Bauer G, Graves DB, Pouvesle JM, Rutkowski R, Schuster M, Bekeschus S, Wende K, Masur K, Hasse S, Gerling T, Hori M, Tanaka H, Ha Choi E, Weltmann KD, Metelmann PH, Von Hoff DD, von Woedtke T (2018) Clinical experience with cold plasma in the treatment of locally advanced head and neck cancer. Clin Plasma Med 9:6–13.  https://doi.org/10.1016/j.cpme.2017.09.001 CrossRefGoogle Scholar
  45. Min SC, Roh SH, Niemira BA, Boyd G, Sites JE, Fan X, Sokorai K, Jin TZ (2018) In-package atmospheric cold plasma treatment of bulk grape tomatoes for microbiological safety and preservation. Food Res Int 108:378–386.  https://doi.org/10.1016/j.foodres.2018.03.033 CrossRefGoogle Scholar
  46. Misra NN, Pankaj SK, Segat A, Ishikawa K (2016) Cold plasma interactions with enzymes in foods and model systems. Trends Food Sci Technol 55:39–47.  https://doi.org/10.1016/j.tifs.2016.07.001 CrossRefGoogle Scholar
  47. Mošovská S, Medvecká V, Halászová N, Ďurina P, Valík Ľ, Mikulajová A, Zahoranová A (2018) Cold atmospheric pressure ambient air plasma inhibition of pathogenic bacteria on the surface of black pepper. Food Res Int 106:862–869.  https://doi.org/10.1016/j.foodres.2018.01.066 CrossRefGoogle Scholar
  48. Muhammad AI, Liao X, Cullen PJ, Liu D, Xiang Q, Wang J, Chen S, Ye X (2018) Effects of nonthermal plasma technology on functional food components. 17:1379–1394. doi:  https://doi.org/10.1111/1541-4337.12379
  49. Nam SH, Ok SM, Kim GC (2018) Tooth bleaching with low-temperature plasma lowers surface roughness and Streptococcus mutans adhesion. Int Endod J 51:479–488.  https://doi.org/10.1111/iej.12860 CrossRefGoogle Scholar
  50. Nishime TMCC, Borges AC, Koga-ito CY, Machida M, Hein LROO, Kostov KG (2017) Non-thermal atmospheric pressure plasma jet applied to inactivation of different microorganisms. Surf Coat Technol 312:19–24.  https://doi.org/10.1016/j.surfcoat.2016.07.076 CrossRefGoogle Scholar
  51. Pankaj SK (2018) Effects of cold plasma on food quality: a review. Foods 7:4.  https://doi.org/10.3390/foods7010004 CrossRefGoogle Scholar
  52. Pawłat J, Starek A, Sujak A, Terebun P, Kwiatkowski M, Budze M, Andrejko D (2018) Effects of atmospheric pressure plasma jet operating with DBD on Lavatera thuringiaca L . seeds ’ germination. PLoS One 13:1–12Google Scholar
  53. Phan KTK, Phan HT, Boonyawan D, Intipunya P, Brennan CS, Regenstein JM, Phimolsiripol Y (2018) Non-thermal plasma for elimination of pesticide residues in mango. Innov Food Sci Emerg Technol 48:164–171.  https://doi.org/10.1016/j.ifset.2018.06.009 CrossRefGoogle Scholar
  54. Pizá MPC, Prevosto L, Zilli C, Cejas E, Kelly H, Balestrasse K (2018) Effects of non – thermal plasmas on seed-borne Diaporthe/Phomopsis complex and germination parameters of soybean seeds. Innov Food Sci Emerg Technol 49:82–91.  https://doi.org/10.1016/j.ifset.2018.07.009 CrossRefGoogle Scholar
  55. Pykönen M, Silvaani H, Preston J, Fardim P, Toivakka M (2009) Plasma activation induced changes in surface chemistry of pigment coating components. Colloids Surf A Physicochem Eng Asp 352:103–112.  https://doi.org/10.1016/j.colsurfa.2009.10.008 CrossRefGoogle Scholar
  56. Recek N, Zhou RR, Zhou RR, VSJ T’O, Speight RE, Mozetič M, Vesel A, Cvelbar U, Bazaka K, Ostrikov K (2018) Improved fermentation efficiency of S. cerevisiae by changing glycolytic metabolic pathways with plasma agitation. Sci Rep 8:1–13.  https://doi.org/10.1038/s41598-018-26227-5 CrossRefGoogle Scholar
  57. Ritter AC, Santi L, Vannini L, Beys-da-Silva WO, Gozzi G, Yates J, Ragni L, Brandelli A (2018) Comparative proteomic analysis of foodborne Salmonella Enteritidis SE86 subjected to cold plasma treatment. Food Microbiol 76:310–318.  https://doi.org/10.1016/j.fm.2018.06.012 CrossRefGoogle Scholar
  58. Roth JR (2001) Industrial plasma engineering. CRC press, Boca RatonCrossRefGoogle Scholar
  59. Saadati F, Mahdikia H, Abbaszadeh H-A, Abdollahifar M-A, Khoramgah MS, Shokri B (2018) Comparison of direct and indirect cold atmospheric-pressure plasma methods in the B16F10 melanoma cancer cells treatment. Sci Rep 8:7689.  https://doi.org/10.1038/s41598-018-25990-9 CrossRefGoogle Scholar
  60. Sakudo A, Miyagi H, Horikawa T, Yamashiro R, Misawa T (2018) Treatment of Helicobacter pylori with dielectric barrier discharge plasma causes UV induced damage to genomic DNA leading to cell death. Chemosphere 200:366–372.  https://doi.org/10.1016/j.chemosphere.2018.02.115 CrossRefGoogle Scholar
  61. Shaw P, Kumar N, Kwak HS, Park JH, Uhm HS, Bogaerts A, Choi EH, Attri P (2018) Bacterial inactivation by plasma treated water enhanced by reactive nitrogen species. Sci Rep 8:1–10.  https://doi.org/10.1038/s41598-018-29549-6 CrossRefGoogle Scholar
  62. Shi H, Ileleji K, Stroshine RL, Keener K, Jensen JL (2017) Reduction of aflatoxin in corn by high voltage atmospheric cold plasma. Food Bioprocess Technol 10:1042–1052.  https://doi.org/10.1007/s11947-017-1873-8 CrossRefGoogle Scholar
  63. Siciliano I, Spadaro D, Prelle A, Vallauri D, Cavallero MC, Garibaldi A, Gullino ML (2016) Use of cold atmospheric plasma to detoxify hazelnuts from aflatoxins. Toxins (Basel) 8:125.  https://doi.org/10.3390/toxins8050125 CrossRefGoogle Scholar
  64. Šimončicová J, Kaliňáková B, Medvecká V, Lakatoš B, Kryštofová S, Hoppanová L, Palušková V, Hudecová D, Ďurina P, Zahoranová A (2018) Cold plasma treatment triggers antioxidative defense system and induces changes in hyphal surface and subcellular structures of Aspergillus flavus. Appl Microbiol Biotechnol:1–12Google Scholar
  65. Sivachandiran L, Khacef A (2017) Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: combined effect of seed and water treatment. RSC Adv 7:1822–1832.  https://doi.org/10.1039/c6ra24762h CrossRefGoogle Scholar
  66. Soler-Arango J (2018) Characterization of an air-based coaxial dielectric barrier discharge plasma source for biofilm eradication. Plasma Chem Plasma Process 38:535–556.  https://doi.org/10.1007/s11090-018-9877-3 CrossRefGoogle Scholar
  67. Song W, Wang E, Gao Y, Wu Q, Rao S, Wang H, Bao L (2018) Low temperature plasma induced apoptosis in CNE-2Z cells through endoplasmic reticulum stress and mitochondrial dysfunction pathways. Plasma Process Polym 15:1–9.  https://doi.org/10.1002/ppap.201600249 CrossRefGoogle Scholar
  68. Štěpánová V, Slavíček P, Kelar J, Prášil J, Smékal M, Stupavská M, Jurmanová J, Černák M (2018) Atmospheric pressure plasma treatment of agricultural seeds of cucumber (Cucumis sativus L.) and pepper (Capsicum annuum L.) with effect on reduction of diseases and germination improvement. Plasma Process Polym 15:1–9.  https://doi.org/10.1002/ppap.201700076 Google Scholar
  69. Stoffels E, Sakiyama Y, Graves DB (2008) Cold atmospheric plasma: charged species and their interactions with cells and tissues. IEEE Trans Plasma Sci 36:1441–1457.  https://doi.org/10.1109/TPS.2008.2001084 CrossRefGoogle Scholar
  70. Su X, Tian Y, Zhou H, Li Y, Zhang Z, Jiang B, Yang B, Zhang J, Fang J (2018) Inactivation efficacy of nonthermal plasmaactivated solutions against Newcastle disease virus. Appl Environ Microbiol 84.  https://doi.org/10.1128/AEM.02836-17
  71. Sun Y, Zhang Z, Wang S (2018) Study on the bactericidal mechanism of atmospheric-pressure low-temperature plasma against Escherichia coli and its application in fresh-cut cucumbers. Molecules 23:975.  https://doi.org/10.3390/molecules23040975 CrossRefGoogle Scholar
  72. Suwal S, Coronel-Aguilera CP, Auer J, Applegate B, Garner AL, Huang JY (2018) Mechanism characterization of bacterial inactivation of atmospheric air plasma gas and activated water using bioluminescence technology. Innov Food Sci Emerg Technol 53:18–25.  https://doi.org/10.1016/j.ifset.2018.01.007 CrossRefGoogle Scholar
  73. Takai E, Kitano K, Kuwabara J, Shiraki K (2012) Protein inactivation by low-temperature atmospheric pressure plasma in aqueous solution. Plasma Process Polym 9:77–82.  https://doi.org/10.1002/ppap.201100063 CrossRefGoogle Scholar
  74. ten Bosch L, Pfohl K, Avramidis G, Wieneke S, Viöl W, Karlovsky P, ten Bosch L, Pfohl K, Avramidis G, Wieneke S, Viöl W, Karlovsky P (2017) Plasma-based degradation of mycotoxins produced by Fusarium, Aspergillus and Alternaria species. Toxins (Basel) 9:1–12.  https://doi.org/10.3390/toxins9030097 CrossRefGoogle Scholar
  75. Timmons C, Pai K, Jacob J, Zhang G, Maria L, Ma LM (2018) Inactivation of Salmonella enterica, Shiga toxin-producing Escherichia coli, and Listeria monocytogenes by a novel surface discharge cold plasma design. Food Control 84:455–462.  https://doi.org/10.1016/j.foodcont.2017.09.007 CrossRefGoogle Scholar
  76. Van Der Paal J, Neyts EC, Verlackt CCW, Bogaerts A (2016) Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress. Chem Sci 7:489–498.  https://doi.org/10.1039/c5sc02311d CrossRefGoogle Scholar
  77. Wang HY, Zhang J, Zhang YJ, Zhang B, Liu CX, He HR, Wang XJ, Xiang WS (2014) Combined application of plasma mutagenesis and gene engineering leads to 5-oxomilbemycins A3/A4 as main components from Streptomyces bingchenggensis. Appl Microbiol Biotechnol 98:9703–9712.  https://doi.org/10.1007/s00253-014-5970-6 CrossRefGoogle Scholar
  78. Weltmann K-D, von Woedtke T (2011) Basic requirements for plasma sources in medicine. Eur Phys J Appl Phys 55:13807.  https://doi.org/10.1051/epjap/2011100452 CrossRefGoogle Scholar
  79. Winter S, Meyer-Lindenberg A, Wolf G, Reese S, Nolff MC (2018) In vitro evaluation of the decontamination effect of cold argon plasma on selected bacteria frequently encountered in small animal bite injuries Short title: In vitro CAP evaluation. BioRxiv 353821Google Scholar
  80. Wu F (2015) Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J 8:137–142.  https://doi.org/10.3920/WMJ2014.1737 CrossRefGoogle Scholar
  81. Xiang Q, Liu X, Li J, Liu S, Zhang H, Bai Y (2018) Effects of dielectric barrier discharge plasma on the inactivation of Zygosaccharomyces rouxii and quality of apple juice. Food Chem 254:201–207.  https://doi.org/10.1016/j.foodchem.2018.02.008 CrossRefGoogle Scholar
  82. Xu D, Cui Q, Xu Y, Wang B, Tian M, Li Q, Liu Z, Liu D, Chen H, Kong M (2018a) Systemic study on the safety of immuno-deficient nude mice treated by atmospheric plasma-activated water. Plasma Sci Technol 20:44003.  https://doi.org/10.1088/2058-6272/aa9842 CrossRefGoogle Scholar
  83. Xu D, Xu Y, Cui Q, Liu D, Liu Z, Wang X, Yang Y, Feng M, Liang R, Chen H, Ye K, Kong MG (2018b) Cold atmospheric plasma as a potential tool for multiple myeloma treatment. Oncotarget 9:18002–18017.  https://doi.org/10.18632/oncotarget.24649 Google Scholar
  84. Xu D, Xu Y, Ning N, Cui Q, Liu Z, Wang X, Liu D, Chen H, Kong MG (2018c) Alteration of metabolite profiling by cold atmospheric plasma treatment in human myeloma cells. Cancer Cell Int 18:1–11.  https://doi.org/10.1186/s12935-018-0541-z CrossRefGoogle Scholar
  85. Xu Z, Cheng C, Shen J, Lan Y, Hu S, Han W, Chu PK (2018d) In vitro antimicrobial effects and mechanisms of direct current air-liquid discharge plasma on planktonic Staphylococcus aureus and Escherichia coli in liquids. Bioelectrochemistry 121:125–134.  https://doi.org/10.1016/j.bioelechem.2018.01.012 CrossRefGoogle Scholar
  86. Yang Y, Guo J, Zhou X, Liu Z, Wang C, Wang K, Zhang J, Wang Z (2018) A novel cold atmospheric pressure air plasma jet for peri-implantitis treatment: An in vitro study. Dent Mater J 37:157–166.  https://doi.org/10.4012/dmj.2017-030 CrossRefGoogle Scholar
  87. Zahoranová A, Hoppanová L, Šimončicová J, Tučeková Z, Medvecká V, Hudecová D, Kaliňáková B, Kováčik D, Černák M (2018) Effect of cold atmospheric pressure plasma on maize seeds: enhancement of seedlings growth and surface microorganisms inactivation. Plasma Chem Plasma Process 38:969–988.  https://doi.org/10.1007/s11090-018-9913-3 CrossRefGoogle Scholar
  88. Zhang XFX, Zhang C, Zhou QQ, Zhang XFX, Wang LY, Chang HB, Li HP, Oda Y, Xing XH (2015) Quantitative evaluation of DNA damage and mutation rate by atmospheric and room-temperature plasma (ARTP) and conventional mutagenesis. Appl Microbiol Biotechnol 99:5639–5646.  https://doi.org/10.1007/s00253-015-6678-y CrossRefGoogle Scholar
  89. Zhang JJ, Jo JO, Huynh DL, Ghosh M, Kim N, Lee SB, Lee HK, Mok YS, Kwon T, Jeong DK (2017) Lethality of inappropriate plasma exposure on chicken embryonic development. Oncotarget 8:85642–85654.  https://doi.org/10.18632/oncotarget.21105
  90. Zhang B, Li R, Yan J (2018a) Study on activation and improvement of crop seeds by the application of plasma treating seeds equipment. Arch Biochem Biophys 655:37–42.  https://doi.org/10.1016/j.abb.2018.08.004 CrossRefGoogle Scholar
  91. Zhang JJ, Do HL, Chandimali N, Lee SB, Mok YS, Kim N, Kim SB, Kwon T, Jeong DK (2018b) Non-thermal plasma treatment improves chicken sperm motility via the regulation of demethylation levels. Sci Rep 8:7576.  https://doi.org/10.1038/s41598-018-26049-5 CrossRefGoogle Scholar
  92. Zhang JJ, Huynh DL, Chandimali N, Kang TY, Kim N, Mok YS, Kwon T, Jeong DK (2018c) Growth and male reproduction improvement of non-thermal dielectric barrier discharge plasma treatment on chickens. J Phys D Appl Phys 51:205201CrossRefGoogle Scholar
  93. Zhang JJ, Wang XZ, Kwon T, Huynh DL, Chandimali N, Kim N, Kang TY, Ghosh M, Gera M, Lee SB, Lee SJ, Lee WS, Kim SB, Mok YS, Jeong DK (2018d) Innovative approach of non-thermal plasma application for improving the growth rate in chickens. Int J Mol Sci 19:1–19.  https://doi.org/10.3390/ijms19082301 Google Scholar
  94. Zhang Y, Xiong Y, Xie P, Ao X, Zheng Z, Dong X, Li H, Yu Q, Zhu Z, Chen M, Chen W (2018e) Non-thermal plasma reduces periodontitis-induced alveolar bone loss in rats. Biochem Biophys Res Commun 503:2040–2046.  https://doi.org/10.1016/j.bbrc.2018.07.154 CrossRefGoogle Scholar
  95. Zhao B, Li Y, Li C, Yang H, Wang W (2018) Enhancement of Schizochytrium DHA synthesis by plasma mutagenesis aided with malonic acid and zeocin screening. Appl Microbiol Biotechnol 102:2351–2361.  https://doi.org/10.1007/s00253-018-8756-4 CrossRefGoogle Scholar
  96. Ziuzina D, Boehm D, Patil S, Cullen PJ, Bourke P (2015) Cold plasma inactivation of bacterial biofilms and reduction of quorum sensing regulated virulence factors. PLoS One 10:1–21.  https://doi.org/10.1371/journal.pone.0138209 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Biochemistry and Microbiology, Faculty of Chemical and Food TechnologySlovak University of TechnologyBratislavaSlovakia
  2. 2.Department of Experimental Physics, Faculty of Mathematics, Physics and InformaticsComenius UniversityBratislavaSlovakia

Personalised recommendations