Advertisement

Applied Microbiology and Biotechnology

, Volume 103, Issue 13, pp 5065–5078 | Cite as

Biological agents for 2,4-dichlorophenoxyacetic acid herbicide degradation

  • Maria Pilar Serbent
  • Andrey Martinez Rebelo
  • Adilson Pinheiro
  • Adriana Giongo
  • Lorena Benathar Ballod TavaresEmail author
Mini-Review
  • 235 Downloads

Abstract

Phenoxy herbicides are the most widely used family of herbicides worldwide. The dichlorophenoxyacetic acid (2,4-D) is extensively used as a weed killer on cereal crops and pastures. This herbicide is highly water-soluble, and even after a long period of disuse, considerable amounts of both 2,4-D and its main product of degradation, 2,4 dichlorophenol (2,4-DCP), might be found in nature. Biological decomposition of pesticides is an expressive and effective way for the removal of these compounds from the environment. The role of bacteria as well as the enzymes and genes that regulate the 2,4-D degradation has been widely studied, but the 2,4-D degradation by fungi, especially regarding the ability of white-rot basidiomycetes as agent for its bioconversion, has been not extensively considered. This review discusses the current knowledge about the biochemical mechanisms of 2,4-D biodegradation, focused on the role of white-rot fungi in this process. Finally, the cultivation conditions and medium composition for the growth of 2,4-D-degrading microorganisms are also addressed.

Keywords

Chlorinated aromatic compounds Bioconversion White-rot fungi Metabolic pathways Catabolic genes 

Notes

Acknowledgments

The authors A. Pinheiro and L.B.B. Tavares are fellowship holders of the National Council for Scientific and Technological Development (CNPq).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Ahn MY, Dec J, Kim JJE, Bollag JM (2002) Treatment of 2,4-dichlorophenol polluted soil with free and immobilized laccase. J Environ Qual 31:1509–1515.  https://doi.org/10.2134/jeq2002.1509 Google Scholar
  2. Alexander M (1961) Introduction to soil microbiology. Wiley, New YorkGoogle Scholar
  3. Arora P, Bae HS (2014) Integration of bioinformatics to biodegradation. Biol Proced Online 16:8.  https://doi.org/10.1186/1480-9222-16-8 Google Scholar
  4. Balajee S, Mahadevan A (1990) Dissimilation of 2,4-dichlorophenoxyacetic acid by Azotobacter chroococcum. Xenobiotica 20:607–617.  https://doi.org/10.3109/00498259009046876 Google Scholar
  5. Baumgartner D, Souza EGD, Coelho SRM, Maggi MF (2017) Correlation between 2,4-D herbicide residues and soil attributes in southern of Brazil. Rev Ciênc Agron 48(3):428–437.  https://doi.org/10.5935/1806-6690.20170050 Google Scholar
  6. Bernat P, Nykiel-Szymańska J, Stolarek P, Słaba M, Szewczyk R, Ro’żalska S (2018) 2,4- dichlorophenoxyacetic acid-induced oxidative stress: metabolome and membrane modifications in Umbelopsis isabellina, a herbicide degrader. PLoS One 13(6):e0199677.  https://doi.org/10.1371/journal.pone.0199677 Google Scholar
  7. Bhosle NP, Thore AS (2016) Biodegradation of the herbicide 2,4-D by some fungi. American-Eurasian J Agric Environ Sci 16(10):1666–1671Google Scholar
  8. Bollag JM, Liu SY (1990) Biological transformation processes of pesticides. In: Cheng HH (ed) Pesticides in the soil environment: processes, impacts and modeling. Soil Science Society of America, Madison, pp 169–211 Google Scholar
  9. Carboneras B, Villasenor J, Fernandez-Morales FJ (2017) Modelling aerobic biodegradation of atrazine and 2,4-dichlorophenoxy acetic acid by mixed-cultures. Bioresour Technol 243:1044–1050.  https://doi.org/10.1016/j.biortech.2017.07.089 Google Scholar
  10. Carvalho FP (2017) Pesticides, environment, and food safety. Food Energy Secur 6:48–60.  https://doi.org/10.1002/fes3.108 Google Scholar
  11. Chen X, Zhang H, Wan Y, Chen X, Li Y (2018) Determination of 2,4-dichlorophenoxyacetic acid (2,4-D) in rat serum for pharmacokinetic studies with a simple HPLC method. PLoSOne 13(1):e0191149.  https://doi.org/10.1371/journal.pone.0191149 Google Scholar
  12. Chicatto JA, Costa A, Nunes H, Helm CV, Tavares LB (2014) Evaluation of hollocelulase production by Lentinula edodes (Berk.) Pegler during the submerged fermentation growth using RSM. Braz J Biol 74(1):243–250.  https://doi.org/10.1590/1519-6984.21712 Google Scholar
  13. Clement P, Pieper DH, Gonzalez B (2001) Molecular characterization of a deletion/duplication rearrangement in tfd genes from Ralstonia eutropha JMP134(pJP4) that improves growth on 3-chlorobenzoic acid but abolishes growth on 2,4-dichlorophenoxyacetic acid. Microbiology 147:2141–2148.  https://doi.org/10.1099/00221287-147-8-2141 Google Scholar
  14. Coelho-Moreira JS, Maciel GM, Castoldi R, Mariano SS, Inácio FD, Bracht A, Peralta RM (2013) Involvement of lignin-modifying enzymes in the degradation of herbicides. In: Price AJ, Kelton JA (eds) Herbicides - advances in research. InTech, Rijeka, pp 165–187.  https://doi.org/10.5772/55848 Google Scholar
  15. Costa TM, Hermann KL, Garcia-Roman M, Valle RCSC, Tavares LBB (2017) Lipase production by Aspergillus niger grown in different agro-industrial wastes by solid-state fermentation. Braz J Chem Eng 34(2):419–427.  https://doi.org/10.1590/0104-6632.20170342s20150477 Google Scholar
  16. Cycoń M, Żmijowska A, Piotrowska-Seget Z (2011) Biodegradation kinetics of 2,4-D by bacterial strains isolated from soil. Cent Eur J Biol 6(2):188–198.  https://doi.org/10.2478/s11535-011-0005-0 Google Scholar
  17. de Lipthay JR, Barkay T, Sørensen SJ (2001) Enhanced degradation of phenoxyacetic acid in soil by horizontal transfer of the tfdA gene encoding a 2,4-dichlorophenoxyacetic acid dioxygenase. FEMS Microbiol Ecol 35(1):75–84.  https://doi.org/10.1111/j.1574-6941.2001.tb00790.x Google Scholar
  18. Ditzelmüller G, Loidl M, Streichsbier F (1989) Isolation and characterization of a 2,4-dichlorophenoxyacetic acid-degrading soil bacterium. Appl Microbiol Biotechnol 31(1):93–96.  https://doi.org/10.1007/bf00252535 Google Scholar
  19. Don RH, Weightman AJ, Knackmuss HJ, Timmis KN (1985) Transposon mutagenesis and cloning analysis of the pathways for degradation of 2,4-dichlorophenoxyacetic acid and 3-chlorobenzoate in Alcaligenes eutrophus JMP134(pJP4). J Bacteriol 161(1):85–90Google Scholar
  20. Donnelly PK, Entry JA, Crawford DL (1993) Degradation of atrazine and 2,4-dichlorophenoxyacetic acid by mycorrhizal fungi at three nitrogen concentrations in vitro. Appl Environ Microbiol 59(8):2642–2647Google Scholar
  21. Ellouze M, Sayadi S (2016) White-rot fungi and their enzymes as a biotechnological tool for xenobiotic bioremediation. In: Rahman RA (ed) Management of hazardous wastes. InTech, Rijeka, pp 103–120Google Scholar
  22. Faulkner JK, Woodcock D (1964) Metabolism of 2,4-dichlorophenoxyacetic acid (‘2,4-D’) by Aspergillus niger van Tiegh. Nature 203:865.  https://doi.org/10.1038/203865a0 Google Scholar
  23. Faulkner JK, Woodcock D (1965) Fungal detoxication. Part VII. Metabolism of 2,4-dichloro-phenoxyacetic and 4-chloro-2- methylphenoxyacetic acids by Aspergillus niger. Part I. J Chem Soc 1187–1191.  https://doi.org/10.1039/JR9650001187
  24. Ferreira-Guedes S, Mendes B, Leitão AL (2012) Degradation of 2,4-dichlorophenoxyacetic acid by a halotolerant strain of Penicillium chrysogenum: antibiotic production. Environ Technol 33(6):677–686.  https://doi.org/10.1080/09593330.2011.588251 Google Scholar
  25. Fournier JC, Catroux G (1980) L’utilisation de souches de micro-organismes de collection pour l’etude de la biodegradabilite des pesticides. Chemosphere 9(1):33–38.  https://doi.org/10.1016/0045-6535(80)90152-6 Google Scholar
  26. Gaitan IJ, Medina SC, González JC, Rodríguez A, Espejo AJ, Osma JF, Sarria V, Alméciga-Díaz CJ, Sánchez OF (2011) Evaluation of toxicity and degradation of a chlorophenol mixture by the laccase produced by Trametes pubescens. Bioresour Technol 102(3):3632–3635.  https://doi.org/10.1016/j.biortech.2010.11.040 Google Scholar
  27. Ghosal D, Ghosh S, Dutta TK, Ahn Y (2016) Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Front Microbiol 7:1369.  https://doi.org/10.3389/fmicb.2016.01369 Google Scholar
  28. Gill HK, Garg H (2014) Pesticides: environmental impacts and management strategies. In: Larramendy ML, Soloneski S (eds) Pesticides - toxic aspects. InTech, Rijeka, pp 187–230.  https://doi.org/10.5772/57399 Google Scholar
  29. Gonod LV, Martin-Laurent F, Chenu C (2006) 2,4-D impact on bacterial communities, and the activity and genetic potential of 2,4-D degrading communities in soil. FEMS Microbiol Ecol 58(3):529–537.  https://doi.org/10.1111/j.1574-6941.2006.00159.x Google Scholar
  30. Greer CW, Hawari J, Samson R (1990) Influence of environmental factors on 2,4-dichlorophenoxyacetic acid degradation by Pseudomonas cepacia isolated from peat. Arch Microbiol 154(4):317–322.  https://doi.org/10.1007/bf00276525 Google Scholar
  31. Han L, Liu Y, He A, Zhao D. (2014) 16S rRNA gene phylogeny and tfdA gene analysis of 2,4-Ddegrading bacteria isolated in China. World journal of microbiology and biotechnology 30, 2567–2576.  https://doi.org/10.1007/s11274-014-1680-6
  32. Hayashi S, Sano T, Suyama K, Itoh K (2016) 2,4-Dichlorophenoxyacetic acid (2,4-D)- and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)-degrading gene cluster in the soybean root-nodulating bacterium Bradyrhizobium elkanii USDA94. Microbiol Res 188:62–71.  https://doi.org/10.1016/j.micres.2016.04.014 Google Scholar
  33. Hermann KL, Costa A, Helm CV, De Lima EA, Tavares LB (2013) Expression of manganese peroxidase by Lentinula edodes and Lentinula boryana in solid state and submerged system fermentation. An Acad Bras Cienc 85(3):965–973.  https://doi.org/10.1590/S0001-37652013000300009 Google Scholar
  34. Hernández-Mendieta E, Guillén-Sánchez D, López-Martínez V, Tejacal IA, Andrade-Rodríguez M, Villegas-Torres OG, Martínez-Fernández E, Huerta-Lara M, Segura-Miranda A (2013) Identificación del agente causal de la pudrición blanca en Morelos, México. Rev Colomb Biotecnol 15(2):1–8.  https://doi.org/10.15446/rev.colomb.biote.v15n2.41744 Google Scholar
  35. Hiran S, Kumar S (2017) 2, 4-D dichlorophenoxyacetic acid poisoning; case report and literature review. Asia Pac J Med Toxicol 6(1):29–33.  https://doi.org/10.22038/apjmt.2017.8475 Google Scholar
  36. Hoffmann D, Kleinsteuber S, Muller RH, Babel W (2003) A transposon encoding the complete 2,4-dichlorophenoxyacetic acid degradation pathway in the alkalitolerant strain Delftia acidovorans P4a. Microbiology 149:2545–2556.  https://doi.org/10.1099/mic.0.26260-0 Google Scholar
  37. Hou J, Liu F, Wu N, Ju J, Yu B (2016) Efficient biodegradation of chlorophenols in aqueous phase by magnetically immobilized aniline-degrading Rhodococcus rhodochrous strain. J Nanobiotechnol 14:5.  https://doi.org/10.1186/s12951-016-0158-0
  38. Huang X, He J, Yan X, Hong Q, Chen K, He Q, Zhang L, Liu X, Chuang S, Li S, Jiang J (2017) Microbial catabolism of chemical herbicides: microbial resources, metabolic pathways and catabolic genes. Pestic Biochem Physiol 143:272–297.  https://doi.org/10.1016/j.pestbp.2016.11.010 Google Scholar
  39. Huong NL, Itoh K, Suyama K (2007) Diversity of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)-degrading bacteria in Vietnamese soils. Microbes Environ 22(3):243–256.  https://doi.org/10.1264/jsme2.22.243 Google Scholar
  40. Igbinosa OE, Ajisebutu OS, Okoh IA (2007a) Aerobic dehalogenation activities of two petroleum degrading bacteria. Afr J Biotechnol 6(7):897–901.  https://doi.org/10.5897/AJB2007.000-2107 Google Scholar
  41. Igbinosa OE, Ajisebutu OS, Okoh IA (2007b) Studies on aerobic biodegradation activities of 2,4-dichlorophenoxyacetic acid by bacteria species isolated from petroleum polluted site. Afr J Biotechnol 6(12):1426–1431.  https://doi.org/10.4314/ajb.v6i12.57564 Google Scholar
  42. Itoh K, Tashiro Y, Uobe K, Kamagata Y, Suyama K, Yamamoto H (2004) Root nodule Bradyrhizobium spp. Harbor tfdAα and cadA, homologous with genes encoding 2,4-dichlorophenoxyacetic acid-degrading proteins. Appl Environ Microbiol 70(545):2110–2118.  https://doi.org/10.1128/AEM.70.4.2110-2118.2004 Google Scholar
  43. Itoh K, Kinoshita M, Morishita S, Chida M, Suyama K (2013) Characterization of 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid-degrading fungi in Vietnamese soils. FEMS Microbiol Ecol 84(1):124–132.  https://doi.org/10.1111/1574-6941.12043 Google Scholar
  44. Jacobsen CS, Pedersen JC (1992) Mineralization of 2,4-dichlorophenoxyacetic acid (2,4-D) in soil inoculated with Pseudomonas cepacia DBO1(pRO101), Alcaligenes eutrophus AEO106(pRO101) and Alcaligenes eutrophus JMP134(pJP4): effects of inoculation level and substrate concentration. Biodegradation 2(4):253–263.  https://doi.org/10.1007/bf00114557 Google Scholar
  45. Javaid MK, Ashiq M, Tahir M (2016) Potential of biological agents in decontamination of agricultural soil. Scientifica (Cairo) 2016:1598325–1598329.  https://doi.org/10.1155/2016/1598325 Google Scholar
  46. Joshi N, Gupta D (2008) Soil mycofloral responses following the exposure to 2,4-D. J Environ Biol 29(2):211–214Google Scholar
  47. Kim T, Kim MS, Jung MK, Joe MJ, Ahn JH, Oh KH, Lee M, Kim M, Ka JO (2005) Analysis of plasmid pJP4 horizontal transfer and its impact on bacterial community structure in natural soil. J Microbiol Biotechnol 15(2):376–383Google Scholar
  48. Kitagawa W, Takami S, Miyauchi K, Masai E, Kamagata Y, Tiedje JM, Fukuda M (2002) Novel 2,4-dichlorophenoxyacetic acid degradation genes from oligotrophic Bradyrhizobium sp. strain HW13 isolated from a pristine environment. J Bacteriol 184(2):509–518.  https://doi.org/10.1128/jb.184.2.509-518.2002 Google Scholar
  49. Kleinsteuber S, Müller RH, Babel W (2001) Expression of the 2,4-D degradative pathway of pJP4 in an alkaliphilic, moderately halophilic soda lake isolate, Halomonas sp. EF43. Extremophiles 5(6):375–384.  https://doi.org/10.1007/s007920100202 Google Scholar
  50. Kumar A, Trefault N, Olaniran AO (2016) Microbial degradation of 2,4-dichlorophenoxyacetic acid: insight into the enzymes and catabolic genes involved, their regulation and biotechnological implications. Crit Rev Microbiol 42(2):194–208.  https://doi.org/10.3109/1040841x.2014.917068 Google Scholar
  51. Lerch TZ, Dignac MF, Barriuso E, Bardoux G, Mariotti A (2007) Tracing 2,4-D metabolism in Cupriavidus necator JMP134 with 13C-labelling technique and fatty acid profiling. J Microbiol Methods 71(2):162–174.  https://doi.org/10.1016/j.mimet.2007.08.003 Google Scholar
  52. Lerch TZ, Dignac MF, Nunan N, Bardoux G, Barriuso E, Mariotti A (2009) Dynamics of soil microbial populations involved in 2,4-D biodegradation revealed by FAME-based stable isotope probing. Soil Biol Biochem 41(1):77–85.  https://doi.org/10.1016/j.soilbio.2008.09.020 Google Scholar
  53. Li XM, Yang Q, Zhang Y, Zheng W, Yue X, Wang DB, Zeng GM (2010) Biodegradation of 2,4-dichlorophenol in a fluidized bed reactor with immobilized Phanerochaete chrysosporium. Water Sci Technol 62(4):947–955.  https://doi.org/10.2166/wst.2010.320 Google Scholar
  54. Lurquin PF (2016) Production of a toxic metabolite in 2,4-D-resistant GM crop plants. 3 Biotech 6(1):82.  https://doi.org/10.1007/s13205-016-0387-9 Google Scholar
  55. Magan N, Fragoeiro S, Bastos C (2010) Environmental factors and bioremediation of xenobiotics using white rot fungi. Mycobiology 38(4):238–248.  https://doi.org/10.4489/MYCO.2010.38.4.238 Google Scholar
  56. Marco-Urrea E, Reddy CA (2012) Degradation of chloro-organic pollutants by white rot fungi. In: Singh SN (ed) Microbial degradation of xenobiotics. Springer-Verlag, Berlin, pp 31–66Google Scholar
  57. Markusheva TV, Zhurenko EY, Galkin EG, Korobov VV, Zharikova NV, Gafiyatova LR (2004) Identification and characterization of a plasmid in strain Aeronomas hydrophila IBRB-36 4CPA carrying genes for catabolism of chlorophenoxyacetic acids. Genetika 40(11):1469–1474.  https://doi.org/10.1023/B:RUGE.0000048662.23804.41 Google Scholar
  58. Mahmood I, Imadi SR, Shazadi K, Gul A, Hakeem KR (2016) In: Hakeem K, Akhtar M, Abdullah S (eds) Effects of pesticides on environment. Springer, Cham. Plant, Soil and Microbes, pp 253–269.  https://doi.org/10.1007/978-3-319-27455-3_13 Google Scholar
  59. McManus SL, Moloney M, Richards KG, Coxon CE, Danaher M (2014) Determination and occurrence of phenoxyacetic acid herbicides and their transformation products in groundwater using ultra high performance liquid chromatography coupled to tandem mass spectrometry. Molecules 19:20627–20649.  https://doi.org/10.3390/molecules191220627 Google Scholar
  60. Müller RH (2007) Activity and reaction mechanism of the initial enzymatic step specifying the microbial degradation of 2,4-dichlorophenoxyacetate. Eng Life Sci 7(4):311–321.  https://doi.org/10.1002/elsc.200720198 Google Scholar
  61. Nakagawa A, Osawa S, Hirata T, Yamagishi Y, Hosoda J, Horikoshi T (2006) 2,4-Dichlorophenol degradation by the soil fungus Mortierella sp. Biosci Biotechnol Biochem 70(2):525–527.  https://doi.org/10.1271/bbb.70.525 Google Scholar
  62. Neelakanta G, Sultana H (2013) The use of metagenomic approaches to analyze changes in microbial communities. Microbiol Insights 6:37–48.  https://doi.org/10.4137/MBI.S10819 Google Scholar
  63. Nykiel-Szymanska J, Stolarek P, Bernat P (2018) Elimination and detoxification of 2,4-D by Umbelopsis isabellina with the involvement of cytochrome P450. Environ Sci Pollut Res Int 25(3):2738–2743.  https://doi.org/10.1007/s11356-017-0571-4 Google Scholar
  64. Nielsen TK, Rasmussen M, Demanèche S, Cecillon S, Vogel TM, Hansen LH (2017) Evolution of Sphingomonad gene clusters related to pesticide catabolism revealed by genome sequence and mobilomics of Sphingobium herbicidovorans MH. Genome Biol Evol 9(9):2477–2490Google Scholar
  65. Ning D, Wang H (2012) Involvement of cytochrome P450 in pentachlorophenol transformation in a white rot fungus Phanerochaete chrysosporium. PLoS One 7(9):e45887.  https://doi.org/10.1371/journal.pone.0045887 Google Scholar
  66. Olicón-Hernández DR, González-López J, Aranda E (2017) Overview on the biochemical potential of filamentous fungi to degrade pharmaceutical compounds. Front Microbiol 8:1792.  https://doi.org/10.3389/fmicb.2017.01792 Google Scholar
  67. Pedri ZC, Lozano LMS, Hermann KL, Helm CV, Peralta RM, Tavares LBB (2015) Influence of nitrogen sources on the enzymatic activity and grown by Lentinula edodes in biomass Eucalyptus benthamii. Braz J Biol 75(4):940–947.  https://doi.org/10.1590/1519-6984.03214 Google Scholar
  68. Pereira PM, Teixeira RSS, Oliveira MAL, Silva M, Santana VFL (2013) Optimized atrazine degradation by Pleurotus ostreatus INCQS 40310: an alternative for impact reduction of herbicides used in sugarcane crops. J Microb Biochem Technol S12:1–8.  https://doi.org/10.4172/1948-5948.s12-006
  69. Pinheiro A, Silva MR, Kraisch R (2010) Presence of pesticides in surface and groundwater in the Itajaí basin, SC. (in Portuguese). REGA 7(2):17–26Google Scholar
  70. Pinheiro A, Moraes JCS, Silva MR (2011) Pesticides in the soil profile in planting areas of onions in Ituporanga, SC. (in Portuguese). Rev Bras Eng Agríc 15(5):533–538Google Scholar
  71. Queiroz ARS, Vidal RA (2014) The development of dichlorophenoxyacetate herbicide tolerant crops: literature review. Planta Daninha 32(3):649–654.  https://doi.org/10.1590/S0100-83582014000300021 Google Scholar
  72. Reddy GVB, Joshi DK, Gold MH (1997) Degradation of chlorophenoxyacetic acids by the lignin-degrading fungus Dichomitus squalens. Microbiology 143(7):2353–2360.  https://doi.org/10.1099/00221287-143-7-2353 Google Scholar
  73. Schulz B, Segobye K (2016) 2,4-D transport and herbicide resistance in weeds. J Exp Bot 67(11):3177–3179.  https://doi.org/10.1093/jxb/erw199 Google Scholar
  74. Shailubhai K, Sahasrabudhe SR, Vora KA, Modi VV (1983) Degradation of chlorinated derivatives of phenoxyacetic acid and benzoic acid by Aspergillus niger. FEMS Microbiol Lett 18(3):279–282Google Scholar
  75. Silva TM, Stets MI, Mazzetto AM, Andrade FD, Pileggi SAV, Fávero PR, Cantú MD, Carrilho E, Carneiro PIB, Pileggi M (2007) Degradation of 2,4-D herbicide by microorganisms isolated from Brazilian contaminated soil. Braz J Microbiol 38(3):522–525.  https://doi.org/10.1590/S1517-83822007000300026 Google Scholar
  76. Singh H (2006) Mycoremediation - fungal bioremediation. John Wiley & Sons, Inc, HobokenGoogle Scholar
  77. Stellman JM, Stellman SD (2018) Agent Orange during the Vietnam war: the lingering issue of its civilian and military health impact. Am J Public Health 108(6):726–728.  https://doi.org/10.2105/AJPH.2018.304426 Google Scholar
  78. Stibal M, Baelum J, Holben WE, Sorensen SR, Jensen A, Jacobsen CS (2012) Microbial degradation of 2,4-dichlorophenoxyacetic acid on the Greenland ice sheet. Appl Environ Microbiol 78(15):5070–5076.  https://doi.org/10.1128/aem.00400-12 Google Scholar
  79. Syed K, Yadav JS (2012) P450monooxygenases (P450ome) of the model white rot fungus Phanerochaete chrysosporium. Crit Rev Microbiol 38(4):339–363.  https://doi.org/10.3109/1040841X.2012.682050 Google Scholar
  80. Székács A, Mörtl M, Darvas B (2015) Monitoring pesticide residues in surface and ground water in Hungary: surveys in 1990–2015. J Chem 2015:1–15.  https://doi.org/10.1155/2015/717948
  81. Thiel M, Kaschabek SR, Groning J, Mau M, Schlomann M (2005) Two unusual chlorocatechol catabolic gene clusters in Sphingomonas sp. TFD44. Arch Microbiol 183(2):80–94.  https://doi.org/10.1007/s00203-004-0748-3 Google Scholar
  82. Tsujiyama S, Muraoka T, Takada N (2013) Biodegradation of 2,4-dichlorophenol by shiitake mushroom (Lentinula edodes) using vanillin as an activator. Biotechnol Lett 35:1079–1083.  https://doi.org/10.1007/s10529-013-1179-5 Google Scholar
  83. Valli K, Gold MH (1991) Degradation of 2,4-dichlorophenol by the lignin-degrading fungus Phanerochaete chrysosporium. J Bacteriol 173(1):345–352Google Scholar
  84. Vedler E, Vahter M, Heinaru A (2004) The completely sequenced plasmid pEST4011 contains a novel IncP1 backbone and a catabolic transposon harboring tfd genes for 2,4-dichlorophenoxyacetic acid degradation. J Bacteriol 186(21):7161–7174.  https://doi.org/10.1128/JB.186.21.7161-7174.2004 Google Scholar
  85. Vroumsia T, Steiman R, Seiglemurandi F, Benoitguyod J (2005) Fungal bioconversion of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4-dichlorophenol (2,4-DCP). Chemosphere 60(10):1471–1480.  https://doi.org/10.1016/j.chemosphere.2004.11.102 Google Scholar
  86. World Health Organization (WHO) (2017) Guidelines for drinking-water quality: fourth edition incorporating the first addendum. Geneva, 541 p. Available online: http://www.who.int/water_sanitation_health/publications/drinking-water-quality-guidelines-4-including-1st-addendum/en/
  87. Wu X, Wang W, Liu J, Pan D, Tu X, Lv P, Wang Y, Cao H, Wang Y, Hua R (2017) Rapid biodegradation of the herbicide 2,4-dichlorophenoxyacetic acid by Cupriavidus gilardii T-1. J Agric Food Chem 65(18):3711–3720.  https://doi.org/10.1021/acs.jafc.7b00544 Google Scholar
  88. Xia ZY, Zhang L, Zhao Y, Yan X, Li SP, Gu T, Jiang JD (2017) Biodegradation of the herbicide 2,4-dichlorophenoxyacetic acid by a new isolated strain of Achromobacter sp. LZ35. Curr Microbiol 74(2):193–202.  https://doi.org/10.1007/s00284-016-1173-y Google Scholar
  89. Yadav JS, Reddy CA (1993) Mineralization of 2,4-dichlorophenoxyacetic acid (2,4-D) and mixtures of 2,4-D and 2,4,5-trichlorophenoxyacetic acid by Phanerochaete chrysosporium. Appl Environ Microbiol 59(9):2904–2908Google Scholar
  90. Yang Z, Xu X, Dai M, Wang L, Shi X, Guo R (2017) Rapid degradation of 2,4-dichlorophenoxyacetic acid facilitated by acetate under methanogenic condition. Bioresour Technol 232:146–151.  https://doi.org/10.1016/j.biortech.2017.01.069 Google Scholar
  91. Zhang J, Xu Z, Chen H, Zong Y (2009) Removal of 2,4-dichlorophenol by chitosan-immobilized laccase from Coriolus versicolor. Biochem Eng J 45(1):54–59.  https://doi.org/10.1016/j.bej.2009.02.005 Google Scholar
  92. Zharikova NV, Iasakov TR, Zhurenko EY, Korobov VV, Markusheva TV (2018) Bacterial genes of 2,4-dichlorophenoxyacetic acid degradation encoding α-ketoglutarate-dependent dioxygenase activity. Biol Bull Rev 8(2):155–167Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Sanitary EngineeringState University of Santa CatarinaIbiramaBrazil
  2. 2.Environmental Engineering Graduate ProgramRegional University of BlumenauBlumenauBrazil
  3. 3.Santa Catarina State Agricultural Research and Rural Extension EnterpriseItajaíBrazil

Personalised recommendations