Advertisement

Quantification of outer membrane vesicles: a potential tool to compare response in Pseudomonas putida KT2440 to stress caused by alkanols

  • Christian Eberlein
  • Stephan Starke
  • Álvaro Escobar Doncel
  • Francesco Scarabotti
  • Hermann J. HeipieperEmail author
Applied microbial and cell physiology
  • 132 Downloads

Abstract

The bacterial release of outer membrane vesicles (OMVs) is an important physiological mechanism of Gram-negative bacteria playing numerous key roles. One function of the release of OMVs is related to an increase in surface hydrophobicity. This phenomenon initiates biofilm formation, making bacteria more tolerant to environmental stressors. Recently, it was qualitatively shown for Pseudomonas putida that vesicle formation plays a crucial role in multiple stress responses. Yet, no quantification of OMVs for certain stress scenarios has been conducted. In this study, it is shown that the quantification of OMVs can serve as a simple and feasible tool, which allows a comparison of vesicle yields for different experimental setups, cell densities, and environmental stressors. Moreover, the obtained results provide insight to the underlying mechanism of vesicle formation as it was observed that n-alkanols, with a chain length of C7 and longer, caused a distinct and steep increase in vesiculation (12–19-fold), compared to shorter chain n-alkanols (2–4-fold increase).

Keywords

Gram-negative bacteria Benchmark test for stress response Biofilm formation Outer membrane vesicles n-alkanols 

Notes

Funding information

The financial support by the European Union’s Horizon 2020 research and innovation program under grant agreement no. 633962 for the project P4SB are greatly appreciated.

Compliance with ethical standards

Ethical statement

This article does not contain any studies with human or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

253_2019_9812_MOESM1_ESM.pdf (96 kb)
ESM 1 (PDF 95 kb)

References

  1. Atashgahi S, Sanchez-Andrea I, Heipieper HJ, van der Meer JR, Stams AJM, Smidt H (2018) Prospects for harnessing biocide resistance for bioremediation and detoxification. Science 360(6390):743–746.  https://doi.org/10.1126/science.aar3778 CrossRefGoogle Scholar
  2. Bauman SJ, Kuehn MJ (2006) Purification of outer membrane vesicles from Pseudomonas aeruginosa and their activation of an IL-8 response. Microbes Infect 8(9–10):2400–2408.  https://doi.org/10.1016/j.micinf.2006.05.001 CrossRefGoogle Scholar
  3. Baumgarten T, Vazquez J, Bastisch C, Veron W, Feuilloley MG, Nietzsche S, Wick LY, Heipieper HJ (2012a) Alkanols and chlorophenols cause different physiological adaptive responses on the level of cell surface properties and membrane vesicle formation in Pseudomonas putida DOT-T1E. Appl Microbiol Biotechnol 93(2):837–845.  https://doi.org/10.1007/s00253-011-3442-9 CrossRefGoogle Scholar
  4. Baumgarten T, Sperling S, Seifert J, von Bergen M, Steiniger F, Wick LY, Heipieper HJ (2012b) Membrane vesicle formation as a multiple-stress response mechanism enhances Pseudomonas putida DOT-T1E cell surface hydrophobicity and biofilm formation. Appl Environ Microbiol 78(17):6217–6224.  https://doi.org/10.1128/AEM.01525-12 CrossRefGoogle Scholar
  5. Bernadac A, Gavioli M, Lazzaroni JC, Raina S, Lloubes R (1998) Escherichia coli tol-pal mutants form outer membrane vesicles. J Bacteriol 180(18):4872–4878Google Scholar
  6. Dubern JF, Diggle SP (2008) Quorum sensing by 2-alkyl-4-quinolones in Pseudomonas aeruginosa and other bacterial species. Mol BioSyst 4(9):882–888.  https://doi.org/10.1039/b803796p CrossRefGoogle Scholar
  7. Eberlein C, Baumgarten T, Starke S, Heipieper HJ (2018) Immediate response mechanisms of Gram-negative solvent-tolerant bacteria to cope with environmental stress: cis-trans isomerization of unsaturated fatty acids and outer membrane vesicle secretion. Appl Microbiol Biotechnol 102:2583–2593.  https://doi.org/10.1007/s00253-018-8832-9 CrossRefGoogle Scholar
  8. Fernandez-Pinar R, Ramos JL, Rodriguez-Herva JJ, Espinosa-Urgel M (2008) A two-component regulatory system integrates redox state and population density sensing in Pseudomonas putida. J Bacteriol 190(23):7666–7674.  https://doi.org/10.1128/JB.00868-08 CrossRefGoogle Scholar
  9. Hartmans S, Smits JP, Vanderwerf MJ, Volkering F, Debont JAM (1989) Metabolism of styrene oxide and 2-phenylethanol in the styrene-degrading Xanthobacter strain 124x. Appl Environ Microbiol 55(11):2850–2855Google Scholar
  10. Heipieper HJ, de Bont JA (1994) Adaptation of Pseudomonas putida S12 to ethanol and toluene at the level of fatty acid composition of membranes. Appl Environ Microbiol 60(12):4440–4444Google Scholar
  11. Heipieper HJ, Diefenbach R, Keweloh H (1992) Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity. Appl Environ Microbiol 58(6):1847–1852Google Scholar
  12. Heipieper HJ, Loffeld B, Keweloh H, de Bont JAM (1995) The cis/trans isomerisation of unsaturated fatty acids in Pseudomonas putida S12: an indicator for environmental stress due to organic compounds. Chemosphere 30(6):1041–1051CrossRefGoogle Scholar
  13. Heipieper HJ, Meinhardt F, Segura A (2003) The cis-trans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism. FEMS Microbiol Lett 229(1):1–7CrossRefGoogle Scholar
  14. Heipieper HJ, Neumann G, Cornelissen S, Meinhardt F (2007) Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems. Appl Microbiol Biotechnol 74(5):961–973.  https://doi.org/10.1007/s00253-006-0833-4 CrossRefGoogle Scholar
  15. Ingram LO (1976) Adaptation of membrane lipids to alcohols. J Bacteriol 125(2):670–678Google Scholar
  16. Ingram LO (1977) Changes in lipid composition of Escherichia coli resulting from growth with organic solvents and with food additives. Appl Environ Microbiol 33(5):1233–1236Google Scholar
  17. Kadurugamuwa JL, Beveridge TJ (1995) Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J Bacteriol 177(14):3998–4008CrossRefGoogle Scholar
  18. Kadurugamuwa JL, Beveridge TJ (1997) Natural release of virulence factors in membrane vesicles by Pseudomonas aeruginosa and the effect of aminoglycoside antibiotics on their release. J Antimicrob Chemother 40(5):615–621.  https://doi.org/10.1093/jac/40.5.615 CrossRefGoogle Scholar
  19. Kobayashi H, Uematsu K, Hirayama H, Horikoshi K (2000) Novel toluene elimination system in a toluene-tolerant microorganism. J Bacteriol 182(22):6451–6455CrossRefGoogle Scholar
  20. Kulp A, Kuehn MJ (2010) Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol 64:163–184.  https://doi.org/10.1146/annurev.micro.091208.073413 CrossRefGoogle Scholar
  21. Makin SA, Beveridge TJ (1996) The influence of A-band and B-band lipopolysaccharide on the surface characteristics and adhesion of Pseudomonas aeruginosa to surfaces. Microbiology 142:299–307CrossRefGoogle Scholar
  22. Mashburn LM, Whiteley M (2005) Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature 437(7057):422–425.  https://doi.org/10.1038/nature03925 CrossRefGoogle Scholar
  23. Mashburn-Warren L, Howe J, Garidel P, Richter W, Steiniger F, Roessle M, Brandenburg K, Whiteley M (2008) Interaction of quorum signals with outer membrane lipids: insights into prokaryotic membrane vesicle formation. Mol Microbiol 69(2):491–502CrossRefGoogle Scholar
  24. Mashburn-Warren L, Howe J, Brandenburg K, Whiteley M (2009) Structural requirements of the Pseudomonas quinolone signal for membrane vesicle stimulation. J Bacteriol 191(10):3411–3414.  https://doi.org/10.1128/JB.00052-09 CrossRefGoogle Scholar
  25. McBroom AJ, Johnson AP, Vemulapalli S, Kuehn MJ (2006) Outer membrane vesicle production by Escherichia coli is independent of membrane instability. J Bacteriol 188(15):5385–5392.  https://doi.org/10.1128/JB.00498-06 CrossRefGoogle Scholar
  26. Meers PR, Liu C, Chen R, Bartos W, Davis J, Dziedzic N, Orciuolo J, Kutyla S, Pozo MJ, Mithrananda D, Panzera D, Wang S (2018) Vesicular delivery of the antifungal antibiotics of Lysobacter enzymogenes C3. Appl Environ Microbiol 84(20):e01353-18.  https://doi.org/10.1128/AEM.01353-18 CrossRefGoogle Scholar
  27. Molina-Santiago C, Udaondo Z, Gomez-Lozano M, Molin S, Ramos JL (2017) Global transcriptional response of solvent-sensitive and solvent-tolerant Pseudomonas putida strains exposed to toluene. Environ Microbiol 19(2):645–658.  https://doi.org/10.1111/1462-2920.13585 CrossRefGoogle Scholar
  28. Neumann G, Kabelitz N, Zehnsdorf A, Miltner A, Lippold H, Meyer D, Schmid A, Heipieper HJ (2005) Prediction of the adaptability of Pseudomonas putida DOT-T1E to a second phase of a solvent for economically sound two-phase biotransformations. Appl Environ Microbiol 71(11):6606–6612.  https://doi.org/10.1128/AEM.71.11.6606-6612.2005 CrossRefGoogle Scholar
  29. Neumann G, Cornelissen S, van Breukelen F, Hunger S, Lippold H, Loffhagen N, Wick LY, Heipieper HJ (2006) Energetics and surface properties of Pseudomonas putida DOT-T1E in a two-phase fermentation system with 1-decanol as second phase. Appl Environ Microbiol 72(6):4232–4238.  https://doi.org/10.1128/AEM.02904-05 CrossRefGoogle Scholar
  30. Okuyama H, Okajima N, Sasaki S, Higashi S, Murata N (1991) The cis trans isomerization of the double bond of a fatty acid as a strategy for adaptation to changes in ambient temperature in the psychrophilic bacterium, Vibrio sp strain Abe-1. Biochim Biophys Acta 1084(1):13–20.  https://doi.org/10.1016/0005-2760(91)90049-N CrossRefGoogle Scholar
  31. Pardo YA, Florez C, Baker KM, Schertzer JW, Mahler GJ (2015) Detection of outer membrane vesicles in Synechocystis PCC 6803. FEMS Microbiol Lett 362(20).  https://doi.org/10.1093/femsle/fnv163
  32. Pinkart HC, Wolfram JW, Rogers R, White DC (1996) Cell envelope changes in solvent-tolerant and solvent-sensitive Pseudomonas putida strains following exposure to o-xylene. Appl Environ Microbiol 62(3):1129–1132Google Scholar
  33. Rekker RF, Kort HMD (1979) Hydrophobic fragmental constant - extension to a 1000 data point set. Eur J Med Chem 14(6):479–488Google Scholar
  34. Rijnaarts HHM, Norde W, Lyklema J, Zehnder AJB (1995) The isoelectric point of bacteria as an indicator for the presence of cell-surface polymers that inhibit adhesion. Colloid Surface B 4(4):191–197.  https://doi.org/10.1016/0927-7765(94)01164-Z CrossRefGoogle Scholar
  35. Rojas A, Duque E, Schmid A, Hurtado A, Ramos JL, Segura A (2004) Biotransformation in double-phase systems: physiological responses of Pseudomonas putida DOT-T1E to a double phase made of aliphatic alcohols and biosynthesis of substituted catechols. Appl Environ Microbiol 70(6):3637–3643.  https://doi.org/10.1128/aem.70.6.3637-3643.2004 CrossRefGoogle Scholar
  36. Sabra W, Lunsdorf H, Zeng AP (2003) Alterations in the formation of lipopolysaccharide and membrane vesicles on the surface of Pseudomonas aeruginosa PAO1 under oxygen stress conditions. Microbiology 149:2789–2795.  https://doi.org/10.1099/mic.0.26443-0 CrossRefGoogle Scholar
  37. Schertzer JW, Whiteley M (2012) A bilayer-couple model of bacterial outer membrane vesicle biogenesis. MBio 3(2).  https://doi.org/10.1128/mBio.00297-11
  38. Schertzer JW, Whiteley M (2013) Bacterial outer membrane vesicles in trafficking, communication and the host-pathogen interaction. J Mol Microbiol Biotechnol 23(1–2):118–130.  https://doi.org/10.1159/000346770 CrossRefGoogle Scholar
  39. Schertzer JW, Boulette ML, Whiteley M (2009) More than a signal: non-signaling properties of quorum sensing molecules. Trends Microbiol 17(5):189–195.  https://doi.org/10.1016/j.tim.2009.02.001 CrossRefGoogle Scholar
  40. Schwechheimer C, Kuehn MJ (2015) Outer-membrane vesicles from gram-negative bacteria: biogenesis and functions. Nat Rev Microbiol 13(10):605–619.  https://doi.org/10.1038/nrmicro3525 CrossRefGoogle Scholar
  41. Segura A, Duque E, Mosqueda G, Ramos JL, Junker F (1999) Multiple responses of Gram-negative bacteria to organic solvents. Environ Microbiol 1(3):191–198CrossRefGoogle Scholar
  42. Tashiro Y, Ichikawa S, Nakajima-Kambe T, Uchiyama H, Nomura N (2010) Pseudomonas quinolone signal affects membrane vesicle production in not only Gram-negative but also Gram-positive bacteria. Microbes Environ 25(2):120–125.  https://doi.org/10.1264/jsme2.ME09182 CrossRefGoogle Scholar
  43. Toyofuku M, Tashiro Y, Hasegawa Y, Kurosawa M, Nomura N (2015) Bacterial membrane vesicles, an overlooked environmental colloid: biology, environmental perspectives and applications. Adv Colloid Interf Sci 226(Pt A:65–77.  https://doi.org/10.1016/j.cis.2015.08.013 CrossRefGoogle Scholar
  44. Van Loosdrecht MCM, Lyklema J, Norde W, Schraa G, Zehnder AJB (1987) The role of bacterial cell wall hydrophobicity in adhesion. Appl Environ Microbiol 53:1893–1897Google Scholar
  45. Wagner T, Joshi B, Janice J, Askarian F, Skalko-Basnet N, Hagestad OC, Mekhlif A, Wai SN, Hegstad K, Johannessen M (2018) Enterococcus faecium produces membrane vesicles containing virulence factors and antimicrobial resistance related proteins. J Proteome 187:28–38.  https://doi.org/10.1016/j.jprot.2018.05.017 CrossRefGoogle Scholar
  46. Weber FJ, de Bont JAM (1996) Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochim Biophys Acta 1286(3):225–245CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Environmental BiotechnologyHelmholtz Centre for Environmental Research - UFZLeipzigGermany

Personalised recommendations